The minimum monthly payment to pay off a $5500 loan with a 5% interest rate for a term of 2 years is $247.49.
To calculate the minimum monthly payment to pay off a $5500 loan with a 5% interest rate for a term of 2 years, you can use the formula for calculating the monthly payment on a loan, which is:
P = (L[i(1 + i)ⁿ])/([(1 + i)ⁿ] - 1) where:
P = monthly payment
L = loan amount
i = interest rate per month
n = number of months in the loan term
Given:
L = $5500
i = 0.05/12 (5% annual interest rate divided by 12 months)
= 0.0041667
n = 2 years x 12 months/year
= 24 months
Plugging these values into the formula, we get:
P = ($5500[0.0041667(1 + 0.0041667)²⁴])/([(1 + 0.0041667)²⁴] - 1)
P = $247.49
To know more about interest rate visit:
https://brainly.com/question/32457439
#SPJ11
After the release of radioactive material into the atmosphere from a nuclear power plant in a country in 1997, the hay in that country was contaminated by a radioactive isotope (half-fe days). If it is safe to feed the hay to cows when 11% of the radioactive isotope remains, how long did the farmers need to wait to use this hay?
The farmers needed to wait approximately days for it to be safe to feed the hay to the cows. (Round to one decimal place as needed.)
The farmers needed to wait approximately 6.8 times the half-life for it to be safe to feed the hay to the cows.
To determine the time the farmers needed to wait for the hay to be safe to feed to the cows, we need to calculate the time it takes for the radioactive isotope to decay to 11% of its initial quantity. The decay of a radioactive substance can be modeled using the formula:
N(t) = N₀ * (1/2)^(t/half-life)
Where:
N(t) is the quantity of the radioactive substance at time t,
N₀ is the initial quantity of the radioactive substance,
t is the time that has passed, and
half-life is the time it takes for the quantity to reduce by half.
In this case, we know that when 11% of the radioactive isotope remains, the quantity has reduced by a factor of 0.11.
0.11 = (1/2)^(t/half-life)
Taking the logarithm of both sides of the equation:
log(0.11) = (t/half-life) * log(1/2)
Solving for t/half-life:
t/half-life = log(0.11) / log(1/2)
Using logarithm properties, we can rewrite this as:
t/half-life = logₓ(0.11) / logₓ(1/2)
Since the base of the logarithm does not affect the ratio, we can choose any base. Let's use the common base 10 logarithm (log).
t/half-life = log(0.11) / log(0.5)
Calculating this ratio:
t/half-life ≈ -2.0589 / -0.3010 ≈ 6.8389
Therefore, t/half-life ≈ 6.8389.
To find the time t, we need to multiply this ratio by the half-life:
t = (t/half-life) * half-life
Given that the half-life is measured in days, we can assume that the time t is also in days.
t ≈ 6.8389 * half-life
The farmers needed to wait approximately 6.8 times the half-life for it to be safe to feed the hay to the cows.
To know more about Logarithm here:
https://brainly.com/question/30226560.
#SPJ11
Find the least-squares solutions of Ax=b where: 01 A= 1 1, b = 0 [21] 0
To find the least-squares solutions of the equation Ax=b, where A is a matrix and b is a vector, we can use the method of ordinary least squares.
The least-squares solution is a technique used when the system of linear equations Ax=b does not have an exact solution. In this case, the equation is given by A= [[1, 1], [2, 1]] and b= [0, 2]. To find the least-squares solution, we use the method of ordinary least squares. First, we calculate the transpose of matrix A, denoted as A^T. Then, we compute the product of A^T and A, denoted as A^T * A. Next, we find the inverse of A^T * A, denoted as (A^T * A)^(-1). Finally, we calculate the product of (A^T * A)^(-1) and A^T * b, denoted as x = (A^T * A)^(-1) * A^T * b. The resulting vector x provides the least-squares solution to the equation Ax=b.
For more information on least-squares solutions visit: brainly.com/question/28382658
#SPJ11
Consider the following.
(a) Sketch the line that appears to be the best fit for the given points.
(b) Find the least squares regression line. (Round your numerical values to two decimal places.)
y(x) =
(c) Calculate the sum of squared error. (Round your answer to two decimal places.)
Consider the following arithmetic sequence. 8, 10, 12,... (a) Identify d and a₁. d = a₁ = (b) Write the next three terms. a4 25 a6 =
a. The common difference (d) of the arithmetic sequence is 2, and the first term (a₁) is 8.
b. he next three terms are: a₄ = 14, a₅ = 16, a₆ = 18
(a) In an arithmetic sequence, the common difference (d) is the constant value added to each term to obtain the next term. In this sequence, the common difference can be identified by subtracting consecutive terms:
10 - 8 = 2
12 - 10 = 2
So, the common difference (d) is 2.
The first term (a₁) of the sequence is the initial term. In this case, a₁ is the first term, which is 8.
Therefore:
d = 2
a₁ = 8
(b) To find the next three terms, we can simply add the common difference (d) to the previous term:
Next term (a₄) = 12 + 2 = 14
Next term (a₅) = 14 + 2 = 16
Next term (a₆) = 16 + 2 = 18
So, the next three terms are:
a₄ = 14
a₅ = 16
a₆ = 18
Learn more about arithmetic sequence
https://brainly.com/question/28882428
#SPJ11
(a) Since the first term is 8, we can identify a₁ (the first term) as 8.
So, d = 2 and a₁ = 8.
(b) the sixth term (a₆) is 18.
(a) In an arithmetic sequence, the common difference (d) is the constant value added to each term to obtain the next term.
In the given sequence, we can observe that each term is obtained by adding 2 to the previous term. Therefore, the common difference (d) is 2.
We can recognize a₁ (the first term) as 8 because the first term is 8.
So, d = 2 and a₁ = 8.
(b) To write the next three terms of the arithmetic sequence, we can simply add the common difference (d) to the previous term.
a₂ (second term) = a₁ + d = 8 + 2 = 10
a₃ (third term) = a₂ + d = 10 + 2 = 12
a₄ (fourth term) = a₃ + d = 12 + 2 = 14
Therefore, the next three terms are 10, 12, and 14.
To find a₆ (sixth term), we can continue the pattern
a₅ = a₄ + d = 14 + 2 = 16
a₆ = a₅ + d = 16 + 2 = 18
So, the sixth term (a₆) is 18.
Learn more about arithmetic sequence
https://brainly.com/question/28882428
#SPJ11
Consider the following system of linear equations. Write this in your paper. 17x+5y+7z=43
16x+13y+4z=18
7x+20y+11z=71
Solve it in paper using Cramer's rule.
Note that the solution to the system of linear equations is
x = -1
y = 1, and
z = 2.
How is this so?The system of linear equations is as follows -
17x + 5y + 7z =43
16x + 13y + 4z = 18
7x + 20y + 11z = 71
To solve this system using Cramer's rule, we need to find the determinant of the coefficient matrix,which is as follows -
| 17 5 7 | = 1269
| 16 13 4 |
| 7 20 11 |
Once we have the determinant of the coefficient matrix, we can then find the values of x, y,and z using the following formulas -
x = det(A|b) / det(A)
y = det(B|a) / det(A)
z = det(C|a) / det(A)
where -
A is the coefficient matrix b is the column vector of constantsdet() is the determinant operatorSubstituting the values of the coefficient matrix and the column vector of constants,we get the following values for x, y, and z -
x = det(A|b) / det(A) = (43 * 13 - 5 * 18 - 7 * 71) / 1269 = -1
y = det(B|a) / det(A) = (17 * 18 - 16 * 43 - 4 * 71) / 1269 = 1
z = det(C|a) / det(A) = (17 * 13 - 5 * 16 - 7 * 71) / 1269 = 2
Therefore, the solution to the system of linear equations is
x = -1
y = 1, and
z = 2.
Learn more about Linear Equations at:
https://brainly.com/question/2030026
#SPJ4
By using the Cramer's rule we get the solution of the system is x = 1.406, y = -1.34, z = 0.504
To solve a system of linear equations using Cramer's rule, we first solve for the determinant of the coefficient matrix, D. The determinant of the coefficient matrix is given by the formula:
D = a₁₁(a₂₂a₃₃ - a₃₂a₂₃) - a₁₂(a₂₁a₃₃ - a₃₁a₂₃) + a₁₃(a₂₁a₃₂ - a₃₁a₂₂)
where aᵢⱼ is the element in the ith row and jth column of the coefficient matrix.
According to Cramer's rule, the value of x is given by: x = Dx/Dy
where Dx represents the determinant of the coefficient matrix with the x-column replaced by the constant terms, and Dy represents the determinant of the coefficient matrix with the y-column replaced by the constant terms.
Similarly, the value of y and z can be obtained using the same formula.
The determinant of the coefficient matrix is given as:
D = 17(13 × 11 - 4 × 20) - 5(16 × 11 - 7 × 20) + 7(16 × 20 - 13 × 7)= 323
We now need to find the determinants of Dx and Dy.
Replacing the x-column with the constants gives:
Dx = 43(13 × 11 - 4 × 20) - 5(18 × 11 - 7 × 20) + 71(18 × 4 - 13 × 7) = 454
Dy = 17(18 × 11 - 4 × 71) - 16(13 × 11 - 4 × 20) + 7(13 × 20 - 11 × 7) = -433x = Dx/D = 454/323 = 1.406y = Dy/D = -433/323 = -1.34z = Dz/D = 163/323 = 0.504
Therefore, the solution of the system is x = 1.406, y = -1.34, z = 0.504
To learn more about Cramer's rule follow the given link
https://brainly.com/question/20354529
#SPJ11
Identify the type I error and the type Il error that corresponds to the given hypothesis. The proportion of adults who use the internet is greater than 0.25. Which of the following is a type I error?
In hypothesis testing, a Type I error occurs when we reject a null hypothesis that is actually true.
In this case, the null hypothesis would be that the proportion of adults who use the internet is not greater than 0.25. Therefore, a Type I error would correspond to incorrectly rejecting the null hypothesis and concluding that the proportion of adults who use the internet is indeed greater than 0.25, when in reality, it is not.
To summarize, in the context of the given hypothesis that the proportion of adults who use the internet is greater than 0.25, a Type I error would be incorrectly rejecting the null hypothesis and concluding that the proportion is greater than 0.25 when it is actually not.
To learn more about hypothesis testing click here: brainly.com/question/17099835
#SPJ11
Solve the given linear programming problem using the table method. Maximize P=6x₁ + 7x₂ subject to: 2x₁ + 3x₂ ≤ 12 2x₁ + x₂ 58 x1, x₂ 20 O A. Max P = 55 at x₁ = 4, x₂ = 4 B. Max P = 32 at x₁ = 3, x₂ = 2 C. Max P = 24 at x₁ = 4. x₂ = 0 D. Max P=32 at x₁ = 2, x₂ = 3 ICKEN
The maximum value of P is 24, which occurs when x₁ = 4 and x₂ = 0.
To solve the given linear programming problem using the table method, we can follow these steps:
Step 1: Set up the initial table by listing the variables, coefficients, and constraints.
Coefficients:
```
| x₁ | x₂ | |
------------------------
Objective | 6 | 7 | P |
------------------------
C₁ | 2 | 3 | 12|
------------------------
C₂ | 2 | 1 | 58|
```
Step 2: Compute the relative profit (P) values for each variable by dividing the objective row coefficients by the corresponding constraint row coefficients.
Coefficients:
```
| x₁ | x₂ | |
------------------------
Objective | 6 | 7 | P |
------------------------
C₁ | 2 | 3 | 12|
------------------------
C₂ | 2 | 1 | 58|
```
Relative Profit (P) values:
```
| x₁ | x₂ | |
------------------------
Objective | 3 | 7/2| P |
------------------------
C₁ | 2 | 3 | 12|
------------------------
C₂ | 2 | 1 | 58|
```
Step 3: Select the variable with the highest relative profit (P) value. In this case, it is x₂.
Step 4: Compute the ratio for each constraint by dividing the right-hand side (RHS) value by the coefficient of the selected variable.
Coefficients:
```
| x₁ | x₂ | |
------------------------
Objective | 3 | 7/2| P |
------------------------
C₁ | 2 | 3 | 12|
------------------------
C₂ | 2 | 1 | 58|
```
Ratios:
```
| x₁ | x₂ | |
------------------------
Objective | 3 | 7/2| P |
------------------------
C₁ | 2 | 3 | 6 |
------------------------
C₂ | 2 | 1 | 58|
```
Step 5: Select the constraint with the lowest ratio. In this case, it is C₁.
Step 6: Perform row operations to make the selected variable (x₂) the basic variable in the selected constraint (C₁).
Coefficients:
```
| x₁ | x₂ | |
------------------------
Objective | 3 | 0 | P |
------------------------
C₁ | 2 | 3 | 6 |
------------------------
C₂ | 2 | 1 | 58|
```
Step 7: Update the remaining values in the table using the row operations.
Coefficients:
```
| x₁ | x₂ | |
------------------------
Objective | 3 | 0 | 18|
------------------------
C₁ | 2 | 3 | 6 |
------------------------
C₂ | 2 | 1 | 58|
```
Step 8: Repeat steps 3-7 until there are no negative values in the objective row.
Coefficients:
```
| x₁ | x₂ | |
------------------------
Objective | 0 | 0 | 24|
------------------------
C₁ | 2 | 3 | 6 |
------------------------
C₂ | 2 | 1 | 58|
```
Step 9: The maximum value of P is 24, which occurs when x₁ = 4 and x₂ = 0.
Therefore, the correct answer is:
C. Max P = 24 at x₁ = 4, x₂ = 0
Learn more about linear programming
https://brainly.com/question/30763902
#SPJ11
(a) Show that the power series solution for the Associated Laguerre Equation must terminate. (b) Find a general expression for the power series coefficients in terms of the first coefficient.
(a) The power series solution for the Associated Laguerre Equation must terminate because the equation satisfies the necessary termination condition for a polynomial solution.
(b) The general expression for the power series coefficients in terms of the first coefficient can be obtained by using recurrence relations derived from the differential equation.
(a) The power series solution for the Associated Laguerre Equation, when expanded as a polynomial, must terminate because the differential equation is a second-order linear homogeneous differential equation with polynomial coefficients. Such equations have polynomial solutions that terminate after a finite number of terms.
(b) To find the general expression for the power series coefficients in terms of the first coefficient, one can use recurrence relations derived from the differential equation. These recurrence relations relate each coefficient to the preceding coefficients and the first coefficient. By solving these recurrence relations, one can express the coefficients in terms of the first coefficient and obtain a general expression.
To know more about power series, visit,
https://brainly.com/question/28158010
#SPJ4
David sold mugs at a crafts show. On the first day, he sold 10 mugs but lost $ 5. 40 on each mug. On the second day, he raised his price and sold 7 mugs with a profit of $ 5. 00 on each mug. What was his total profit or loss? Write a profit as a positive number and a loss as a negative number
David's total profit or loss is -$19, indicating a loss of $19.
To calculate David's total profit or loss, we need to determine the profit or loss on each day and then sum them up.
On the first day, David sold 10 mugs and incurred a loss of $5.40 on each mug. So the total loss on the first day is 10 * (-$5.40) = -$54.
On the second day, David sold 7 mugs and made a profit of $5.00 on each mug. Therefore, the total profit on the second day is 7 * $5.00 = $35.
To find the total profit or loss, we add the profit and loss from each day: -$54 + $35 = -$19.
Learn more about total profit here :-
https://brainly.com/question/30495119
#SPJ11
Evaluate the surface integral of the function g(x,y,z) over the surface s, where s is the surface of the rectangular prism formed from the coordinate planes and the planes x=2 y=2 z=3
The surface integral of the function g(x, y, z) over the surface S is evaluated.
To evaluate the surface integral, we consider the rectangular prism formed by the coordinate planes and the planes x = 2, y = 2, z = 3. This prism encloses a six-sided surface S. The surface integral of a function over a surface measures the flux or flow of the function across the surface.
In this case, we are integrating the function g(x, y, z) over the surface S. The specific form of the function g(x, y, z) is not provided in the given question. To evaluate the surface integral, we need to know the expression of g(x, y, z).
Once we have the expression for g(x, y, z), we can set up the integral by parameterizing the surface S and calculating the dot product of the function g(x, y, z) and the surface normal vector. The integral will involve integrating over the appropriate range of the parameters that define the surface.
Without the specific expression for g(x, y, z) or further details, it is not possible to provide the exact numerical evaluation of the surface integral. However, the general procedure for evaluating a surface integral involves parameterizing the surface, setting up the integral, and then performing the necessary calculations.
Learn more about Surface
brainly.com/question/32235761
brainly.com/question/1569007
#SPJ11
Basic Definitions and Examples 1.3. Let U= {(u', u²) | 0
The parameterization of the solutions to the equation is:
[x, y, z] = [ (4s - 8t)/7, s, t ]
To parameterize the solutions to the linear equation -7x + 4y - 8z = 4, we can express the variables x, y, and z in terms of two parameters, s and t. Here's the parameterization in vector form:
Let's set y = s and z = t. Then, we can solve for x:
-7x + 4y - 8z = 4
-7x + 4s - 8t = 4
-7x = -4s + 8t
x = (4s - 8t)/7
Therefore, the parameterization of the solutions to the equation is:
[x, y, z] = [ (4s - 8t)/7, s, t ]
In vector form, we can write it as:
[r, s, t] = [ (4s - 8t)/7, s, t ]
where r represents the x-coordinate, s represents the y-coordinate, and t represents the z-coordinate of the solution vector.
Learn more about parameterization
https://brainly.com/question/14762616
#SPJ11
4 Q4. Let me N. Let a, b and k be integers where mk. Prove or disprove each of the following statements. (1) {x € Z : ax = b (mod m)} = {x € Z : akx = bk (mod m)} (2) {x ≤ Z : akx = bk (mod m)} ≤ {x € Z : ax=b (mod m)}
(1) The statement is true.
(2) The statement is false.
(1) To prove the first statement, we need to show that the sets {x ∈ Z : ax ≡ b (mod m)} and {x ∈ Z : akx ≡ bk (mod m)} are equal.
Let's assume y ∈ {x ∈ Z : ax ≡ b (mod m)}. This means that ax = b + my for some integer y.
Now, multiplying both sides by k, we get akx = bk + mky. Since y is an integer, mky is also an integer, and therefore akx ≡ bk (mod m). Hence, y ∈ {x ∈ Z : akx ≡ bk (mod m)}.
Similarly, we can assume z ∈ {x ∈ Z : akx ≡ bk (mod m)} and show that z ∈ {x ∈ Z : ax ≡ b (mod m)}. Therefore, the two sets are equal.
(2) To disprove the second statement, we can provide a counterexample. Let's consider a = 2, b = 1, k = 3, and m = 4.
Using these values, we can calculate the sets:
{x ≤ Z : akx ≡ bk (mod m)} = {x ≤ Z : 8x ≡ 1 (mod 4)} = {0, 1, 2, 3}
{x ∈ Z : ax ≡ b (mod m)} = {x ∈ Z : 2x ≡ 1 (mod 4)} = {1, 3}
We can observe that the first set has four elements, while the second set has only two elements. Therefore, the second statement is false.
In conclusion, the first statement is true, as the two sets are equal. However, the second statement is false, as the set on the left side can have more elements than the set on the right side.
Learn more about Statement
brainly.com/question/30830924
#SPJ11
State if the statement below is true, or false. If it is false, write the correct statement. 1.1 lim,-a f(x) = f(a). 1.2 limx→a(f(x) + g(x)) = limx→a f(x) — limx→a g(x). 1.3 limx+c(x) = limx→a f(x)—limx→ag(x) limx→a g(x) g(x) = (lim,-a f(x))(limx→a g(x)). = (n-1) limx→a f(x)(n-1). 1.4 lim, f(x) -a 1.5 limx→a f(x)
The statement 1.1 lim,-a f(x) = f(a) is not true. The correct statement is lim_x→a f(x) = f(a). Statement 1.2 is true and is an example of the limit laws.
Statement 1.1 is incorrect as it is not the correct form for the limit theorem where `x → a`.
The limit theorem states that if a function `f(x)` approaches `L` as `x → a`, then `lim_x→a f(x) = L`.
Hence, the correct statement is lim_x→a f(x) = f(a).
Statement 1.2 is true and is an example of the limit laws. According to this law, the limit of the sum of two functions is equal to the sum of the limits of the individual functions: `[tex]lim_x→a(f(x) + g(x)) = lim_x→a f(x) + lim_x→a g(x)`.[/tex]
Statement 1.3 is not true.
The correct statement is [tex]`lim_x→a[c(x)f(x)] = c(a)lim_x→a f(x)`.[/tex]
Statement 1.4 is not complete. We need to know what `f(x)` is approaching as `x → a`. If `f(x)` approaches `L`, then [tex]`lim_x→a (f(x) - L) = 0`[/tex].
Statement 1.5 is true, and it is another example of the limit laws. It states that if a constant multiple is taken from a function `f(x)`, then the limit of the result is equal to the product of the constant and the limit of the original function.
Therefore, `[tex]lim_x→a (c*f(x)) = c * lim_x→a f(x)`.[/tex]
Learn more about limit theorem from the link :
https://brainly.com/question/12207558
#SPJ11
2. Let p be a prime and e a positive integer, show that σ(p^e)/p^e < p/p-1
The equation is given below:
σ(p^e)/p^e < p/p-1The expression σ(p^e)/p^e represents the sum of divisors of p^e divided by p^e, where p is a prime and e is a positive integer. We need to show that this expression is less than p/(p-1).
In order to understand why this inequality holds, let's break it down into smaller steps.
First, let's consider the sum of divisors of p^e, denoted by σ(p^e). The sum of divisors function σ(n) is multiplicative, which means that for any two coprime positive integers m and n, σ(mn) = σ(m)σ(n). Since p and p^e are coprime (as p is a prime and p^e has no prime factors other than p), we can write σ(p^e) = σ(p)^e.
Next, let's analyze the relationship between σ(p) and p. For a prime number p, the only divisors of p are 1 and p itself. Therefore, σ(p) = 1 + p.
Now, substituting these values back into the expression, we have:
σ(p^e)/p^e = σ(p)^e/p^e = (1 + p)^e/p^e.
Expanding (1 + p)^e using the binomial theorem, we get:
(1 + p)^e = 1 + ep + (eC2)p^2 + ... + (eCk)p^k + ... + p^e.
Note that all the terms in the expansion (except for the first and last terms) have a factor of p^2 or higher. Therefore, when we divide this expression by p^e, all these terms become less than 1. We are left with:
(1 + p)^e/p^e < 1 + ep/p^e + p^e/p^e = 1 + e/p + 1 = e/p + 2.
Finally, we need to prove that e/p + 2 < p/(p-1).
Multiplying both sides by p(p-1), we get:
ep(p-1) + 2p(p-1) < p^2.
Expanding and simplifying, we have:
[tex]ep^2 - ep + 2p^2 - 2p < p^2[/tex].
Rearranging the terms, we obtain:
[tex]ep^2 - (e+1)p + 2p^2 < p^2.[/tex]
Since e and p are positive integers, and p is prime, all the terms on the left side are positive. Therefore, the inequality holds true.
In conclusion, we have shown that σ(p^e)/p^e < p/(p-1), which demonstrates the desired result.
Learn more about positive integer
brainly.com/question/18380011
#SPJ11
Find the solution of the initial value problem y" + 4y + 5y = 0, 70 (7) = = 7. Y y(t) = 0, y = How does the solution behave as too? Choose one
the solution tends to the trivial solution y(t) = 0 as t approaches infinity.
Initial value problem is of the form:
Given differential equation is y" + 4y + 5y = 0
Initial condition is y(0) = 7 and
y'(0) = 0.
The solution of the given differential equation is of the form:
y(t) = C1 e^(λ1 t) + C2 e^(λ2 t)
where C1 and C2 are constants and λ1 and λ2 are roots of the characteristic equation, which is given as m² + 4m + 5 = 0
Solving the above quadratic equation, we get
m = (-4 ± √(-4² - 4 × 5 × 1))/(2 × 1)
=> m = -2 ± i
On solving the differential equation, we get
y(t) = e^(-2t) (C1 cos t + C2 sin t)
Using the initial condition, we have
y(0) = 7 => C1 = 7
Using y'(0) = 0, we get
y'(t) = e^(-2t) (7 sin t - 2C2 cos t)
On putting y'(0) = 0, we get C2 = 3.5
Hence, the solution of the given initial value problem is:
y(t) = 7 e^(-2t) cos t + 3.5 e^(-2t) sin t
The solution behaves as y(t) approaches 0 as t approaches infinity since the term e^(-2t) decays to 0 as t increases and the oscillatory part (cos t + 3.5 sin t) has an amplitude that also approaches 0 as t increases.
To learn more on quadratic equation:
https://brainly.com/question/30164833
#SPJ11
Help please!!!!!!!!!!!!!
Answer:
x = 24.7
Step-by-step explanation:
Using law of sines,
[tex]\frac{15}{sin\;35} =\frac{x}{sin\;71} \\\\\frac{15*sin\;71}{sin\;35} =x\\[/tex]
x = 24.7
(a) In a class of 100 students, 35 offer History, 43 offer Goography and 50 offer Fconomics. 14 . students offer History and Geography. 13 offer Geograpiry and Economacs and 11 offer History and Feonomies. The manher of sindents that olfer none of the sabjects is four times the number of those that olfer tiree subjects (i) How mam studenti offir thinee subjects?
The number of students who offer three subjects is 11.
Given that, In a class of 100 students,35 students offer History (H),43 students offer Geography (G) and50 students offer Economics (E).
14 students offer History and Geography,13 students offer Geography and Economics,11 students offer History and Economics.
Let X be the number of students who offer three subjects (H, G, E).Then the number of students who offer only two subjects = (14 + 13 + 11) - 2X= 38 - 2X
Now, the number of students who offer only one subject
= H - (14 + 11 - X) + G - (14 + 13 - X) + E - (13 + 11 - X)
= (35 - X) + (43 - X) + (50 - X) - 2(14 + 13 + 11 - 3X)
= 128 - 6X
The number of students who offer none of the subjects
= 100 - X - (38 - 2X) - (128 - 6X)
= - 66 + 9X
From the given problem, it is given that the number of students who offer none of the subjects is four times the number of those who offer three subjects.
So, -66 + 9X = 4XX = 11
Hence, 11 students offer three subjects.
Therefore, the number of students who offer three subjects is 11.
In conclusion, the number of students who offer three subjects is 11.
To know more about numbers visit:
brainly.com/question/24908711
#SPJ11
This quir: 25 points) possible This question: 1 point) possible The mast expensive diet will contain servingis) of food A and servings) of food B (Type indegers or fractions) Submit quiz Quiz: Practice Test 2 Question 10 of 25 A dieten is designing a daily diet that is to contain at least 90 units of protein, 70 units of carbohydrates, and 140 units of fat. The diet is to consist of two types of foods. One serving of food A contains 30 units of protein, 10 units of 1 costs $4.50 Design the diet that provides the daily requirements at the least cost carbohydrates, and 20 units of fat and costs 16. One serving of food B contains 10 units of protein, 10 units of carbohydrates, and 60 units -
To meet the daily requirements of 90 units of protein, 70 units of carbohydrates, and 140 units of fat at the least cost, the diet should consist of 2 servings of food A and 3 servings of food B.
To determine the optimal diet, we need to find the combination of food A and food B that meets the required protein, carbohydrate, and fat units while minimizing the cost. Let's start by calculating the nutrient content and cost per serving for each food:
Food A:
- Protein: 30 units
- Carbohydrates: 10 units
- Fat: 20 units
- Cost: $4.50
Food B:
- Protein: 10 units
- Carbohydrates: 10 units
- Fat: 60 units
- Cost: $1.60
Now, let's set up the equations based on the nutrient requirements:
Protein: 2 servings of food A (2 * 30 units) + 3 servings of food B (3 * 10 units) = 60 + 30 = 90 units
Carbohydrates: 2 servings of food A (2 * 10 units) + 3 servings of food B (3 * 10 units) = 20 + 30 = 50 units
Fat: 2 servings of food A (2 * 20 units) + 3 servings of food B (3 * 60 units) = 40 + 180 = 220 units
We have successfully met the requirements for protein (90 units), carbohydrates (70 units), and fat (220 units). Now, let's calculate the cost:
Cost: 2 servings of food A (2 * $4.50) + 3 servings of food B (3 * $1.60) = $9 + $4.80 = $13.80
Therefore, the diet that provides the daily requirements at the least cost consists of 2 servings of food A and 3 servings of food B.
Learn more about optimal diet
brainly.com/question/29321705
#SPJ11
1. Write the negation for each of the following statements a. All tests came back positive. b. Some tests came back positive. c. Some tests did not come back positive. d. No tests came back positive.
The negations for each of the following statements are as follows:
a. None of the tests came back positive.
b. No tests came back positive.
c. All tests came back positive.
d. Some tests came back positive.
Statement a. All tests came back positive.The negation of the statement is: None of the tests came back positive.
Statement b. Some tests came back positive.The negation of the statement is: No tests came back positive.
Statement c. Some tests did not come back positive.The negation of the statement is: All tests came back positive.
Statement d. No tests came back positive.The negation of the statement is: Some tests came back positive.
Learn more about negation at
https://brainly.com/question/15354218
#SPJ11
10 POINTS ANSWER NEEDED ASAP!!! WHAT IS THE SURFACE AREA OF THE FIGURE BELOW!! (LOOK AT THE PHOTO)
The surface area of a triangular prism can be calculated using the formula:
Surface Area = 2(Area of Base) + (Perimeter of Base) x (Height of Prism)
where the base of the triangular prism is a triangle and its height is the distance between the two parallel bases.
Given the measurements of the triangular prism as 10 cm, 6 cm, 8 cm, and 14 cm, we can find the surface area as follows:
- The base of the triangular prism is a triangle, so we need to find its area. Using the formula for the area of a triangle, we get:
Area of Base = (1/2) x Base x Height
where Base = 10 cm and Height = 6 cm (since the height of the triangle is perpendicular to the base). Plugging in these values, we get:
Area of Base = (1/2) x 10 cm x 6 cm = 30 cm^2
- The perimeter of the base can be found by adding up the lengths of the three sides of the triangle. Using the given measurements, we get:
Perimeter of Base = 10 cm + 6 cm + 8 cm = 24 cm
- The height of the prism is given as 14 cm.
Now we can plug in the values we found into the formula for surface area and get:
Surface Area = 2(Area of Base) + (Perimeter of Base) x (Height of Prism)
Surface Area = 2(30 cm^2) + (24 cm) x (14 cm)
Surface Area = 60 cm^2 + 336 cm^2
Surface Area = 396 cm^2
Therefore, the surface area of the triangular prism is 396 cm^2.
State whether the following statemant is true or false. In a fypothesis test, probabiify of not accepting the null hypothesis when it is failed is dependent on the level of significant. a) False b) True
In a hypothesis test, probability of not accepting the null hypothesis when it is failed is dependent on the level of significant, True. Option B
How to determine the statementIn a hypothesis test, the likelihood of not tolerating the invalid theory false is known as the Type II error rate or β (beta). The Type II error rate is impacted by a few variables, counting the level of significance (α) chosen for the test.
The level of centrality (α) is the likelihood of dismissing the invalid theory when it is really genuine.
By setting a lower level of importance, such as 0.01, the criteria for tolerating the elective speculation gotten to be more exacting, and the probability of committing a Type II error diminishes.
On the other hand, with the next level of significance, such as 0.10, the criteria gotten to be less strict, and the chances of committing a Sort II blunder increment.
Learn more about hypotheses at: https://brainly.com/question/606806
#SPJ4
The statement "In a hypothesis test, the probability of not accepting the null hypothesis when it is failed is dependent on the level of significance" is TRUE.
In hypothesis testing, the probability of not accepting the null hypothesis when it is false is dependent on the level of significance. The level of significance is determined by the researcher before testing begins, and it represents the threshold below which the null hypothesis will be rejected.
It is also referred to as alpha, and it is typically set to 0.05 (5%) or 0.01 (1%).
If the null hypothesis is false but the level of significance is high, there is a greater chance of accepting the null hypothesis (Type II error) and concluding that the data do not provide sufficient evidence to reject it. If the null hypothesis is true but the level of significance is low, there is a greater chance of rejecting the null hypothesis (Type I error) and concluding that there is sufficient evidence to reject it.
Therefore, the probability of not accepting the null hypothesis when it is false is dependent on the level of significance.
Learn more about hypothesis test from :
https://brainly.com/question/4232174
#SPJ11
please help!
Q2: Solve the given Differential Equation by Undetermined Coefficient-Annihilator
Approach. y" +16y=xsin4x
The general solution is the sum of the complementary and particular solutions: y(x) = y_c(x) + y_p(x) = c1 cos(4x) + c2 sin(4x) + ((1/16)x + 1/8) sin(4x) + (Cx + D) cos(4x).
y" + 16y = x sin(4x) using the method of undetermined coefficients-annihilator approach, we follow these steps:
Step 1: Find the complementary solution:
The characteristic equation for the homogeneous equation is r^2 + 16 = 0.
Solving this quadratic equation, we get the roots as r = ±4i.
Therefore, the complementary solution is y_c(x) = c1 cos(4x) + c2 sin(4x), where c1 and c2 are arbitrary constants.
Step 2: Find the particular solution:
y_p(x) = (Ax + B) sin(4x) + (Cx + D) cos(4x),
where A, B, C, and D are constants to be determined.
Step 3: Differentiate y_p(x) twice
y_p''(x) = -32A sin(4x) + 16B sin(4x) - 32C cos(4x) - 16D cos(4x).
Substituting y_p''(x) and y_p(x) into the original equation, we get:
(-32A sin(4x) + 16B sin(4x) - 32C cos(4x) - 16D cos(4x)) + 16((Ax + B) sin(4x) + (Cx + D) cos(4x)) = x sin(4x).
Step 4: Collect like terms and equate coefficients of sin(4x) and cos(4x) separately:
For the coefficient of sin(4x), we have: -32A + 16B + 16Ax = 0.
For the coefficient of cos(4x), we have: -32C - 16D + 16Cx = x.
Equating the coefficients, we get:
-32A + 16B = 0, and
16Ax = x.
From the first equation, we find A = B/2.
Substituting this into the second equation, we get 8Bx = x, which gives B = 1/8.
A = 1/16.
Step 5: Substitute the determined values of A and B into y_p(x) to get the particular solution:
y_p(x) = ((1/16)x + 1/8) sin(4x) + (Cx + D) cos(4x).
Step 6: The general solution is the sum of the complementary and particular solutions:
y(x) = y_c(x) + y_p(x) = c1 cos(4x) + c2 sin(4x) + ((1/16)x + 1/8) sin(4x) + (Cx + D) cos(4x).
learn more about general solution
https://brainly.com/question/31491463
#SPJ11
Let V = {(x, y, z) = R³ | 4x² +9y² +362² <144}. (a) Show that V is a Jordan domain. (b) Find the volume of V. (c) Evaluate the integral (4z² + y + z²)dxdydz. [5] [5] [5]
(a) Since \[tex]\rm (4x^2 + 9y^2 = C\), V[/tex] is a Jordan domain.
(b) The volume of V is [tex]\(\pi \cdot a \cdot b\)[/tex].
(c) The integral [tex]\(\iiint_V (4z^2 + y + z^2) dV\)[/tex] cannot be evaluated without further information or the value of (C).
(a) To show that (V) is a Jordan domain, we need to prove that it is bounded and has a piecewise-smooth boundary.
First, let's consider the inequality [tex]\(4x^2 + 9y^2 + 362^2 < 144\)[/tex]. This can be rewritten as:
[tex]\[4x^2 + 9y^2 < 144 - 362^2\][/tex]
We notice that the right-hand side is a negative constant, let's denote it as [tex]\(C = 144 - 362^2\)[/tex]. So, we have:
[tex]\[4x^2 + 9y^2 < C\][/tex]
This represents an ellipse in the \(xy\)-plane. Since an ellipse is a bounded shape, we conclude that \(V\) is bounded.
Next, we need to show that \(V\) has a piecewise-smooth boundary. The boundary of \(V\) corresponds to the points where the inequality is satisfied with equality. Therefore, we have:
[tex]\[4x^2 + 9y^2 = C\][/tex]
This equation represents an ellipse. The equation is satisfied with equality at the boundary points of \(V\), which form a closed and continuous curve. Since an ellipse is a smooth curve, we conclude that \(V\) has a piecewise-smooth boundary.
Hence, (V) is a Jordan domain.
(b) To find the volume of \(V\), we can set up the triple integral over (V) using the given inequality:
[tex]\[\iiint_V dV = \iint_D A(x, y) dA,\][/tex]
where (D) is the region in the (xy)-plane defined by the inequality [tex]\(4x^2 + 9y^2 < C\)[/tex], and \(A(x, y)\) is a constant function equal to 1.
Since the region \(D\) is an ellipse, we can use the formula for the area of an ellipse:
[tex]\[A = \pi ab,\][/tex]
where \(a\) and \(b\) are the semi-major and semi-minor axes of the ellipse, respectively. In this case, [tex]\(a = \sqrt{\frac{C}{4}}\) and \(b = \sqrt{\frac{C}{9}}\)[/tex].
Therefore, the volume of \(V\) is given by:
[tex]\[\text{Volume} = \iint_D A(x, y) dA = \iint_D dA = \pi ab.\][/tex]
(c) To evaluate the integral [tex]\(\iiint_V (4z^2 + y + z^2) dV\),[/tex] we can set up the triple integral over \(V\) and integrate each term separately:
[tex]\[\iiint_V (4z^2 + y + z^2) dV = \iint_D \left(\int_{z = 0}^{\sqrt{144 - 4x^2 - 9y^2}} (4z^2 + y + z^2) dz\right) dA,\][/tex]
where \(D\) is the same region defined by [tex]\(4x^2 + 9y^2 < 144\)[/tex].
The inner integral with respect to (z) can be evaluated straightforwardly, resulting in:
[tex]\[\int_{z = 0}^{\sqrt{144 - 4x^2 - 9y^2}} (4z^2 + y + z^2) dz = \frac{4}{3}(144 - 4x^2 - 9y^2)^{3/2} + \sqrt{144 - 4x^2 - 9y^2} \cdot y + \frac{1}{3}(144 - 4x^2 - 9y^2)^{3/2}.\][/tex]
Substituting this expression back into the triple integral, we can now evaluate it over \(D\) to obtain the final result. However, it is not possible to provide the specific numerical value without the value of [tex]\(C\) (\(144 - 362^2\))[/tex] or further information about the region (D).
Learn more about Jordan domain
https://brainly.com/question/32318128
#SPJ11
A nonhomogeneous equation and a particular solution are given. Find a general solution for the equation.
11 y'' = 2y+11 cot x, Yp(x)==' cotx
The general solution is y(x) =
(Do not use d, D, e, E, i, or I as arbitrary constants since these letters already have defined meanings.)
nonhomogeneous equation y(x) = C_1e^(√(2/11)x) + C_2e^(-√(2/11)x) + cot(x)
To find the general solution of the nonhomogeneous equation 11y'' = 2y + 11cot(x) given a particular solution y_p(x) = cot(x), we need to find the complementary solution y_c(x) and then combine it with y_p(x) to obtain the general solution.
First, let's find the complementary solution by solving the homogeneous equation 11y'' - 2y = 0. We assume the solution has the form y_c(x) = e^(rx), where r is a constant to be determined. Substituting this into the equation, we get:
11(r^2)e^(rx) - 2e^(rx) = 0
Factoring out e^(rx), we have:
e^(rx)(11r^2 - 2) = 0
For this equation to hold true, either e^(rx) = 0 (which is not a valid solution) or 11r^2 - 2 = 0. Solving the quadratic equation, we find two possible values for r:
r_1 = √(2/11)
r_2 = -√(2/11)
The complementary solution is then given by:
y_c(x) = C_1e^(√(2/11)x) + C_2e^(-√(2/11)x)
where C_1 and C_2 are arbitrary constants.
The general solution of the nonhomogeneous equation is obtained by combining the complementary solution with the particular solution:
y(x) = y_c(x) + y_p(x) = C_1e^(√(2/11)x) + C_2e^(-√(2/11)x) + cot(x)
Here, C_1 and C_2 are arbitrary constants representing the coefficients of the complementary solution, and cot(x) represents the particular solution.
Learn more about: nonhomogeneous equation
https://brainly.com/question/30876746
#SPJ11
.
Which quadratic equation is equivalent to (x + 2)2 + 5(x + 2) - 6 = 0?
Answer:
The equivalent quadratic equation to (x + 2)2 + 5(x + 2) - 6 = 0 is x2 + 9x + 8 = 0.
Step-by-step explanation:
What is the quotient of -10 and -5? O-15 0-2 02 O 15
The quotient of -10 and -5 is 2,option c is correct .
The quotient is the result of dividing one number by another. In division, the quotient is the number that represents how many times one number can be divided by another. It is the answer or result of the division operation. For example, when you divide 10 by 2, the quotient is 5 because 10 can be divided by 2 five times without any remainder.
When dividing two negative numbers, the quotient is a positive number. In this case, when you divide -10 by -5, you are essentially asking how many times -5 can be subtracted from -10.Starting with -10, if we subtract -5 once, we get -5. If we subtract -5 again, we get 0. Therefore, -10 can be divided by -5 exactly two times, resulting in a quotient of 2.
-10/-5 =2
Alternatively, you can think of it as a multiplication problem. Dividing -10 by -5 is the same as multiplying -10 by the reciprocal of -5, which is 1/(-5) or -1/5. So, -10 multiplied by -1/5 is equal to 2.
To know more about quotient ,click
brainly.com/question/16134410
Answer:
What is the quotient of -10 and -5? O-15 0-2 02 O 15
Step-by-step explanation:
Six friends went to dinner. The bill was $74.80 and they left an
18% tip. The friends split the bill. How much did each friend
pay?
each friend will pay approximately $14.71.
To calculate how much each friend will pay, we need to consider both the bill amount and the tip.
The total amount to be paid, including the tip, is the sum of the bill and the tip amount:
Total amount = Bill + Tip
Tip = 18% of the Bill
Tip = 0.18 * Bill
Substituting the given values:
Tip = 0.18 * $74.80
Tip = $13.464
Now, we can calculate the total amount to be paid:
Total amount = $74.80 + $13.464
Total amount = $88.264
Since there are six friends splitting the bill evenly, each friend will pay an equal share. We divide the total amount by the number of friends:
Each friend's payment = Total amount / Number of friends
Each friend's payment = $88.264 / 6
Each friend's payment ≈ $14.71 (rounded to two decimal places)
To know more about number visit:
brainly.com/question/24908711
#SPJ11
Required information Use the following information for the Quick Studies below. (Algo) [The following information applies to the questions displayed below] QS 13.5 (Algo) Horizontal analysis LO P1 Compute the annual dollar changes and percent changes for each of the following items. (Decreases should be entered with a minus sign. Round your percentage answers to one decimal place.)
In order to compute the annual dollar changes and percent changes for each item, we need to follow these steps:
1. Identify the items for which we need to compute the changes.
2. Determine the dollar change for each item by subtracting the previous year's value from the current year's value. If the value has decreased, add a minus sign in front of the change to indicate a decrease.
3. Calculate the percent change for each item by dividing the dollar change by the previous year's value and multiplying by 100. Round your percentage answers to one decimal place.
4. Repeat steps 2 and 3 for each item.
For example, let's say we have the following items:
Item A:
Previous year's value = $100
Current year's value = $120
Item B:
Previous year's value = $500
Current year's value = $400
Item C:
Previous year's value = $1000
Current year's value = $1100
To compute the changes:
1. Item A:
Dollar change = $120 - $100 = $20
Percent change = ($20 / $100) * 100 = 20%
2. Item B:
Dollar change = $400 - $500 = -$100
Percent change = (-$100 / $500) * 100 = -20%
3. Item C:
Dollar change = $1100 - $1000 = $100
Percent change = ($100 / $1000) * 100 = 10%
By following these steps, you can compute the annual dollar changes and percent changes for each item in the given information. Remember to round the percentage answers to one decimal place.
To know more about annual dollar here
https://brainly.com/question/28449645
#SPJ11
Xi~N (μ,σ^2) Show that S^2/n is an unbiased estimator of the variance of the sample mean given that the xi's are independent
We have shown that [tex]\(S^2/n\)[/tex] is an unbiased estimator of the variance of the sample mean when[tex]\(X_i\)[/tex] are independent and identically distributed (i.i.d.) with mean [tex]\(\mu\) and variance \(\sigma^2\).[/tex]
To show that [tex]\(S^2/n\)[/tex]is an unbiased estimator of the variance of the sample mean when[tex]\(X_i\)[/tex] are independent and identically distributed (i.i.d.) with mean[tex]\(\mu\)[/tex] and variance [tex]\(\sigma^2\),[/tex] we need to demonstrate that the expected value of [tex]\(S^2/n\)[/tex] is equal to [tex]\(\sigma^2\).[/tex]
The sample variance, \(S^2\), is defined as:
[tex]\[S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2\][/tex]
where[tex]\(\bar{X}\[/tex]) is the sample mean.
To begin, let's calculate the expected value of [tex]\(S^2/n\):[/tex]
[tex]\[\begin{aligned}E\left(\frac{S^2}{n}\right) &= E\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2\right)\end{aligned}\][/tex]
Using the linearity of expectation, we can rewrite the expression:
[tex]\[\begin{aligned}E\left(\frac{S^2}{n}\right) &= \frac{1}{n} E\left(\sum_{i=1}^{n} (X_i - \bar{X})^2\right)\end{aligned}\][/tex]
Expanding the sum:
[tex]\[\begin{aligned}E\left(\frac{S^2}{n}\right) &= \frac{1}{n} E\left(\sum_{i=1}^{n} (X_i^2 - 2X_i\bar{X} + \bar{X}^2)\right)\end{aligned}\][/tex]
Since [tex]\(X_i\) and \(\bar{X}\)[/tex] are independent, we can further simplify:
[tex]\[\begin{aligned}E\left(\frac{S^2}{n}\right) &= \frac{1}{n} E\left(\sum_{i=1}^{n} X_i^2 - 2\sum_{i=1}^{n} X_i\bar{X} + \sum_{i=1}^{n} \bar{X}^2\right)\end{aligned}\][/tex]
Next, let's focus on each term separately. Using the properties of expectation:
[tex]\[\begin{aligned}E(X_i^2) &= \text{Var}(X_i) + E(X_i)^2 \\&= \sigma^2 + \mu^2 \\&= \sigma^2 + \frac{1}{n} \sum_{i=1}^{n} \mu^2 \\&= \sigma^2 + \frac{1}{n} n \mu^2 \\&= \sigma^2 + \frac{1}{n} n \mu^2 \\&= \sigma^2 + \frac{1}{n} \sum_{i=1}^{n} \mu^2 \\&= \sigma^2 + \frac{1}{n} \sum_{i=1}^{n} \mu^2 \\&= \sigma^2 + \mu^2\end{aligned}\][/tex]
Since[tex]\(\bar{X}\)[/tex]is the average of [tex]\(X_i\)[/tex], we have:
[tex]\[\begin{aligned}\bar{X} &= \frac{1}{n} \sum_{i=1}^{n} X_i\end{aligned}\][/tex]
Thus, [tex]\(\sum_{i=1}^{n} X_i = n\bar{X}\)[/tex], and substit
uting this into the expression:
[tex]\[\begin{aligned}E\left(\frac{S^2}{n}\right) &= \frac{1}{n} E\left(\sum_{i=1}^{n} X_i^2 - 2n\bar{X}^2 + n\bar{X}^2\right) \\&= \frac{1}{n} E\left(n \sigma^2 + n \mu^2 - 2n \bar{X}^2 + n \bar{X}^2\right) \\&= \frac{1}{n} (n \sigma^2 + n \mu^2 - n \sigma^2) \\&= \frac{1}{n} (n \mu^2) \\&= \mu^2\end{aligned}\][/tex]
Learn more about unbiased estimator here :-
https://brainly.com/question/33454712
#SPJ11
1. Find the absolute maximum and absolute minimum over the indicated interval, and indicate the x-values at which they occur: () = 12 9 − 32 − 3 over [0, 3]
The absolute maximum and absolute minimum of the function () = 12 9 − 32 − 3 over the interval [0, 3], we need to evaluate the function at critical points and endpoints. The absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.
Step 1: Find the critical points by setting the derivative equal to zero and solving for x.
() = 12 9 − 32 − 3
() = 27 − 96x² − 3x²
Setting the derivative equal to zero, we have:
27 − 96x² − 3x² = 0
-99x² + 27 = 0
x² = 27/99
x = ±√(27/99)
x ≈ ±0.183
Step 2: Evaluate the function at the critical points and endpoints.
() = 12 9 − 32 − 3
() = 12(0)² − 9(0) − 32(0) − 3 = -3 (endpoint)
() ≈ 12(0.183)² − 9(0.183) − 32(0.183) − 3 ≈ -3.73 (critical point)
Step 3: Compare the values to determine the absolute maximum and minimum.
The absolute maximum occurs at x = 0 with a value of -3.
The absolute minimum occurs at x ≈ 0.183 with a value of approximately -3.73.
Therefore, the absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.
Learn more about interval here
https://brainly.com/question/30460486
#SPJ11