A rocket cruises past a laboratory at 1.10 x 10% m/s in the positive -direction just as
a proton is launched with velocity (in the laboratory
framel
u = (1.90 × 10°2 + 1.90 × 10%) m/s.
What is the proton's speed in the laboratory frame?

Answers

Answer 1

The proton's speed in the laboratory frame is 0.0002 m/s.

Given data :A rocket cruises past a laboratory at 1.10 x 10% m/s in the positive direction just as a proton is launched with velocity (in the laboratory frame) u = (1.90 × 10² + 1.90 × 10%) m/s. Find: We are to find the proton's speed in the laboratory frame .Solution: Speed of the rocket (S₁) = 1.10 x 10^8 m/  velocity of the proton (u) = 1.90 × 10² m/s + 1.90 × 10^-2 m/s= 1.90 × 10² m/s + 0.0019 m/s Let's calculate the speed of the proton :Since the rocket is moving in the positive x-direction, the velocity of the rocket in the laboratory frame can be written as V₁ = 1.10 × 10^8 m/s in the positive x-direction .Velocity of the proton in the rocket frame will be:

u' = u - V₁u'

= 1.90 × 10² m/s + 0.0019 m/s - 1.10 × 10^8 m/su'

= -1.10 × 10^8 m/s + 1.90 × 10² m/s + 0.0019 m/su'

= -1.10 × 10^8 m/s + 1.9019 × 10² m/su'

= -1.10 × 10^8 m/s + 190.19 m/su'

= -1.09980981 × 10^8 m/su'

= -1.0998 × 10^8 m/s

The proton's speed in the laboratory frame will be:v = u' + V₁v = -1.0998 × 10^8 m/s + 1.10 × 10^8 m/sv = 0.0002 m/s Therefore, the proton's speed in the laboratory frame is 0.0002 m/s.

To learn more about proton's speed visit below link

https://brainly.com/question/28523021

#SPJ11


Related Questions

Hubble's Law Hubble's law is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth: v = H. r We are sending a spacecraft with constant velocity to a galaxy in the distance of r = 20Mpe from us, and it is getting further away from us with higher velocity as the universe expands! If the spacecraft reaches the galaxy after 7 billion years, determine the velocity of this spacecraft.

Answers

velocity of approximately 8.83 x 10^10 km/year. This means that the spacecraft's velocity will be higher than the calculated average velocity by the time it reaches the distant galaxy.

According to Hubble's law, galaxies are moving away from Earth at speeds proportional to their distance. If a spacecraft is sent to a galaxy located 20 million parsecs away and it takes 7 billion years to reach its destination, we can determine its velocity.

The velocity of the spacecraft can be calculated by dividing the distance traveled by the time taken. However, since the universe is expanding, the velocity of the spacecraft will increase due to the increasing separation between galaxies.

Hubble's law states that the velocity of a galaxy moving away from Earth is directly proportional to its distance. Mathematically, this can be expressed as v = H * r, where v is the velocity of the galaxy, H is the Hubble constant (representing the rate of the universe's expansion), and r is the distance between the galaxy and Earth.

In this case, the spacecraft is traveling to a galaxy located at a distance of r = 20 million parsecs. Given that it takes 7 billion years for the spacecraft to reach its destination, we can calculate its velocity.

First, we need to convert the distance from parsecs to a more standard unit, such as kilometers. Since 1 parsec is approximately equal to 3.09 x 10^13 kilometers, the distance can be calculated as 20 million parsecs * 3.09 x 10^13 km/parsec = 6.18 x 10^20 km.

Next, we divide the distance traveled (6.18 x 10^20 km) by the time taken (7 billion years or 7 x 10^9 years) to find the average velocity of the spacecraft. This gives us a velocity of approximately 8.83 x 10^10 km/year.

However, it's important to note that the spacecraft's velocity is not constant throughout its journey. Due to the expansion of the universe, the separation between galaxies increases over time.

Therefore, as the spacecraft travels, the velocity at which the galaxy it is heading towards is moving away from Earth also increases. This means that the spacecraft's velocity will be higher than the calculated average velocity by the time it reaches the distant galaxy.

To learn more about galaxy here

brainly.com/question/32799143

#SPJ11

Monochromatic light is incident on (and perpendicular to) two slits separated by 0.215 mm, which causes an interference pattern on a screen 637 cm away. The light has a wavelength of 656.3 nm. (a) What is the fraction of the maximum intensity at a distance of 0.600 cm from the central maximum of the interference pattern? (b) What If? What is the minimum distance (absolute value, in mm) from the central maximum where you would find the intensity to be half the value found in part (a)?

Answers

(a) The fraction of the maximum intensity at a distance of 0.600 cm from the central maximum of the interference pattern is 0.162.

(b) The minimum distance from the central maximum where the intensity would be half the value found in part (a) is 1.53 mm.

(a)

The equation for the intensity of double slit interference pattern is given by:

I = I_{max} cos^2(πdsinθ/λ)

where

I_max is the maximum intensity,

d is the distance between the two slits,

λ is the wavelength of light

θ is the angle of diffraction.

To find the fraction of the maximum intensity at a distance of 0.600 cm from the central maximum of the interference pattern,

we need to find θ.

θ = sin^-1 (x/L)

Where

x = 0.6 cm = 0.006 m,

L = 6.37 m

θ = sin^-1 (0.006/6.37) = 0.56 degrees

Now, we can substitute all the known values into the formula above:

I = I_{max} cos^2(πdsinθ/λ)

 = I_{max} cos^2(π*0.000215*0.0056/656.3*10^-9)

 = 0.162 I_{max}

Therefore, the fraction of the maximum intensity at a distance of 0.600 cm from the central maximum of the interference pattern is 0.162.

(b)

To find the distance from the central maximum where intensity is half the value found in part (a), we need to find the angle θ for which the intensity is

I/2.I/I_{max} = 1/2

                   = cos^2(πdsinθ/λ)cos(πdsinθ/λ)

                   = 1/sqrt(2)πdsinθ/λ

                   = ±45 degreesinθ

                   = ±λ/2

d = ±(656.3*10^-9)/(2*0.000215)

  = ±1.53 mm

The absolute value of this distance is 1.53 mm.

Therefore, the minimum distance from the central maximum where the intensity would be half the value found in part (a) is 1.53 mm.

Learn more about the intensity:

brainly.com/question/16098226

#SPJ11

What is the voltage difference of a lightning bolt if the power
is 4.300E+10W, and the current of the lightning bolt is
4.300E+5A?

Answers

The voltage difference of the lightning bolt of power 4.300E+10W is 100,000 V.

To find the voltage difference (V) of a lightning bolt, we can use the formula:

P = V × I

where P is the power, I is the current, and V is the voltage difference.

Given:

P = 4.300E+10 W

I = 4.300E+5 A

Substituting the values into the formula:

4.300E+10 W = V × 4.300E+5 A

Simplifying the equation by dividing both sides by 4.300E+5 A:

V = (4.300E+10 W) / (4.300E+5 A)

V = 1.00E+5 V

Therefore, the voltage difference of the lightning bolt is 1.00E+5 V or 100,000 V.

Read more on voltage difference here: https://brainly.com/question/24142403

#SPJ11

A lion with a mass of 50 kg is running at an unknown velocity in the East direction when it collides with a 60 kg stationary zebra. After the collision, the lion is travelling at a velocity of 60 m/s [E50oN] and the zebra is moving at 6.3 m/s [E38oS].
What was the velocity of the lion before the collision?

Answers

The velocity of the lion before the collision was approximately 65.56 m/s

To determine the velocity of the lion before the collision, we can use the principle of conservation of momentum.

According to this principle, the total momentum of a system remains constant before and after a collision, as long as no external forces are acting on the system.

The momentum of an object is calculated by multiplying its mass by its velocity.

Therefore, we can calculate the momentum of the lion before and after the collision and set them equal to each other.

Let's denote the velocity of the lion before the collision as v1.

Before the collision:

Momentum of the lion = mass of the lion * velocity of the lion before the collision

Momentum of the lion = 50 kg * v1

After the collision:

Momentum of the lion = mass of the lion * velocity of the lion after the collision

Momentum of the lion = 50 kg * 60 m/s [E50°N]

The momentum of the zebra can also be calculated in a similar manner:

Momentum of the zebra before the collision = 0 kg * 0 m/s (since it is stationary)

Momentum of the zebra after the collision = mass of the zebra * velocity of the zebra after the collision

Momentum of the zebra = 60 kg * 6.3 m/s [E38°S]

Since momentum is conserved, we can equate the total momentum before and after the collision:

Momentum of the lion before the collision + Momentum of the zebra before the collision = Momentum of the lion after the collision + Momentum of the zebra after the collision

50 kg * v1 + 0 kg * 0 m/s = 50 kg * 60 m/s [E50°N] + 60 kg * 6.3 m/s [E38°S]

Simplifying the equation:

50 kg * v1 = 50 kg * 60 m/s [E50°N] + 60 kg * 6.3 m/s [E38°S]

Now we can solve for v1:

v1 = (50 kg * 60 m/s [E50°N] + 60 kg * 6.3 m/s [E38°S]) / 50 kg

Calculating the numerical values:

v1 = (3000 m/s [E50°N] + 378 m/s [E38°S]) / 50 kg

v1 ≈ 65.56 m/s [E51.62°N]

Therefore, Prior to the incident, the lion's speed was roughly 65.56 m/s.

learn more about velocity from given link

https://brainly.com/question/80295

#SPJ11

Light traveling through a piece of diamond enters a piece of amber. The index of refraction of diamond is 2.4 and that of amber is 1.6. The speed of light in the piece of amber increases or decreases?

Answers

The speed of light in the piece of amber decreases when it enters from diamond.

The index of refraction of a material is a measure of how much the speed of light is reduced when it passes through that material compared to its speed in a vacuum. A higher index of refraction indicates a greater reduction in the speed of light.

In this case, the index of refraction of diamond is 2.4, which means that light slows down significantly when passing through diamond. On the other hand, the index of refraction of amber is 1.6, indicating a smaller reduction in the speed of light compared to diamond.

When light passes from a medium with a higher index of refraction (diamond) to a medium with a lower index of refraction (amber), it undergoes refraction and its speed decreases. This is due to the change in the optical density of the materials.

Learn more about speed -

brainly.com/question/13943409

#SPJ11

Your mass is 61.4 kg, and the sled s mass is 10.1 kg. You start at rest, and then you jump off the sled, after which the empty sled is traveling at a speed of 5.27 m/s. What will be your speed on the ice after jumping off? O 1.13 m/s 0.87 m/s 0.61 m/s 1.39 m/s Your mass is 72.7 kg, and the sled s mass is 18.1 kg. The sled is moving by itself on the ice at 3.43 m/s. You parachute vertically down onto the sled, and land gently. What is the sled s velocity with you now on it? 0.68 m/s O 0.20 m/s 1.02 m/s 0.85 m/s OOO0

Answers

1. When you jump off the sled, your speed on the ice will be 0.87 m/s.

2. When you parachute onto the sled, the sled's velocity will be 0.68 m/s.

When you jump off the sled, your momentum will be conserved. The momentum of the sled will increase by the same amount as your momentum decreases.

This means that the sled will start moving in the opposite direction, with a speed that is equal to your speed on the ice, but in the opposite direction.

We can calculate your speed on the ice using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (61.4 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (10.1 kg)

v2 is the final velocity of the sled (5.27 m/s)

Plugging in these values, we get:

v = (61.4 kg * 0 m/s + 10.1 kg * 5.27 m/s) / (61.4 kg + 10.1 kg)

= 0.87 m/s

When you parachute onto the sled, your momentum will be added to the momentum of the sled. This will cause the sled to slow down. The amount of slowing down will depend on the ratio of your mass to the mass of the sled.

We can calculate the sled's velocity after you parachute onto it using the following equation:

v = (m1 * v1 + m2 * v2) / (m1 + m2)

Where:

v is the final velocity of the sled

m1 is your mass (72.7 kg)

v1 is your initial velocity (0 m/s)

m2 is the mass of the sled (18.1 kg)

v2 is the initial velocity of the sled (3.43 m/s)

Plugging in these values, we get:

v = (72.7 kg * 0 m/s + 18.1 kg * 3.43 m/s) / (72.7 kg + 18.1 kg)

= 0.68 m/s

To learn more about velocity click here: brainly.com/question/30559316

#SPJ11

: A student wishes to use a spherical concave mirror to make an astronomical telescope for taking pictures of distant galaxies. Where should the student locate the camera relative to the mirror? Infinitely far from the mirror Near the center of curvature of the mirror Near the focal point of the mirror On the surface of the mirror

Answers

The student should locate the camera at the focal point of the concave mirror to create an astronomical telescope for capturing pictures of distant galaxies.

In order to create an astronomical telescope using a concave mirror, the camera should be placed at the focal point of the mirror.

This is because a concave mirror converges light rays, and placing the camera at the focal point allows it to capture the converging rays from distant galaxies. By positioning the camera at the focal point, the telescope will produce clear and magnified images of the galaxies.

Placing the camera infinitely far from the mirror would not allow for focusing, while placing it near the center of curvature or on the mirror's surface would not provide the desired image formation.

To learn more about concave mirror click here: brainly.com/question/31379461

#SPJ11

on 37 of 37 > If am = 87.5 kg person were traveling at v = 0.980c, where c is the speed of light, what would be the ratio of the person's relativistic kinetic energy to the person's classical kinetic energy? kinetic energy ratio: What is the ratio of the person's relativistic momentum to the person's classical momentum? momentum ratio: stion 36 of 37 > A particle has a rest mass of 6.15 x 10-27 kg and a momentum of 4.24 x 10-18 kg•m/s. Determine the total relativistic energy E of the particle. J E= Find the ratio of the particle's relativistic kinetic energy K to its rest energy Eren K Ees

Answers

The formula for relativistic kinetic energy is given as follows

Given, Mass of a person,

m = 87.5 kg Speed,

v = 0.980c Where,

c = speed of light K.E.

ratio = ?

Momentum ratio = ?

K.E. = (γ – 1) × m × c²

γ = relativistic

factor = (1 / √(1 – v² / c²))

The classical kinetic energy is given by the formula,

K.E. = (1 / 2) × m × v²Now,

the formula for relativistic momentum is given by,

p = γ × m × v

The classical momentum is given by,

p = m × v

Now,

γ = (1 / √(1 – v² / c²)) = 5

p = γ × m × v = 5 × 87.5 × (0.980c) = 4.29 × 10²⁴ kg·

To know more about energy visit:

https://brainly.in/question/22617034

#SPJ11

after factoring in surrounding atmospheric pressure and friction loss in the intake hose, every fire pump operating properly should have a dependable lift of

Answers

Every fire pump operating properly should have a dependable lift. When a fire pump is operating properly, it should be able to generate enough pressure to overcome the surrounding atmospheric pressure and friction loss in the intake hose.

This ensures that the pump can effectively draw water from a water source and deliver it to the fire hose. The dependable lift refers to the pump's ability to create the necessary suction to lift water from the source. The pump's specifications and design play a crucial role in determining its dependable lift. In order to ensure the pump's reliable performance, it is important to consider factors such as the pump's capacity, horsepower, impeller design, and the condition of the intake hose.

Regular maintenance and testing are also necessary to identify any issues that may affect the pump's performance and address them promptly.Overall, a fire pump operating properly should have a dependable lift, enabling it to efficiently draw water and contribute to effective firefighting operations.

To know more about atmospheric visit:

https://brainly.com/question/32274037

#SPJ11

1. The magnet moves as shown. Which way does the current flow in the coil? a. CW b. CCW c. No induced current N S 2. The magnet moves as shown. Which way does the current flow in the coil? a. CW b. CC

Answers

1. Magnet moves: CW current in coil, opposes magnetic field change, 2. Magnet moves: CCW current in coil, opposes magnetic field change.

1. When the magnet moves as shown, the changing magnetic field induces a current in the coil according to Faraday's law of electromagnetic induction. The induced current flows in a direction that creates a magnetic field that opposes the change in the original magnetic field. In this case, as the magnet approaches the coil, the induced current flows in a clockwise (CW) direction to create a magnetic field that opposes the magnet's field. This helps to slow down the magnet's motion.

2. Similarly, when the magnet moves as shown in the second scenario, the changing magnetic field induces a current in the coil. The induced current now flows in a counterclockwise (CCW) direction to create a magnetic field that opposes the magnet's field. This again acts to slow down the magnet's motion.

In both cases, the direction of the induced current is determined by Lenz's law, which states that the induced current opposes the change in the magnetic field that caused it.

To know more about current ,click here:

brainly.com/question/1922668

#SPJ11

2. how many decimal places did you use when you measured the mass of
each square of aluminum? which places were exact, and which were
estimated?
35 pountsssss!!!

Answers

It is not clear how many decimal places were used to measure the mass of each square of aluminum as the question doesn't provide that information.

Additionally, it's not possible to determine which places were exact and which were estimated without knowing the measurement itself. Decimal places refer to the number of digits to the right of the decimal point when measuring a quantity. The precision of a measurement is determined by the number of decimal places used. For example, if a measurement is recorded to the nearest hundredth, it has two decimal places. If a measurement is recorded to the nearest thousandth, it has three decimal places.

Exact numbers are numbers that are known with complete accuracy. They are often defined quantities, such as the number of inches in a foot or the number of seconds in a minute. When using a measuring device, the last digit of the measurement is usually an estimate, as there is some uncertainty associated with the measurement. Therefore, it is important to record which digits are exact and which are estimated when reporting a measurement.

To know more about aluminum visit:

https://brainly.com/question/28989771

#SPJ11

Calculate heat loss by metal and heat gained by water with the
following information.
Mass of iron -> 50 g
Temp of metal -> 100 degrees Celcius
Mass of water -> 50 g
Temp of water -> 20 de

Answers

The heat loss by metal and heat gained by water with the given information the heat gained by the metal is -16720 J.

We can use the following calculation to determine the heat loss by the metal and the heat gained by the water:

Q = m * c * ΔT

Here, it is given:

m1 = 50 g

T1 = 100 °C

c1 = 0.45 J/g°C

m2 = 50 g

T2 = 20 °C

c2 = 4.18 J/g°C

Now, the heat loss:

ΔT1 = T1 - T2

ΔT1 = 100 °C - 20 °C = 80 °C

Q1 = m1 * c1 * ΔT1

Q1 = 50 g * 0.45 J/g°C * 80 °C

Now, heat gain,

ΔT2 = T2 - T1

ΔT2 = 20 °C - 100 °C = -80 °C

Q2 = m2 * c2 * ΔT2

Q2 = 50 g * 4.18 J/g°C * (-80 °C)

Q1 = 50 g * 0.45 J/g°C * 80 °C

Q1 = 1800 J

Q2 = 50 g * 4.18 J/g°C * (-80 °C)

Q2 = -16720 J

Thus, as Q2 has a negative value, the water is losing heat.

For more details regarding heat gain, visit:

https://brainly.com/question/29698863

#SPJ4

Solve the following pairs of simultaneous equations involving two unknowns:98 - T =10aT - 4 9 = 5a AnswersT=65, a=3.27

Answers

Therefore, the solutions to the simultaneous equations are approximately: T = 65 and a = 2.79

To solve the simultaneous equations 98 - T = 10aT - 49 = 5a, we can use the method of substitution.

Step 1: Solve one equation for one variable in terms of the other variable. Let's solve the first equation for T:
98 - T = 10aT
Rearrange the equation by moving T to the left side:
T + 10aT = 98
Combine like terms:
(1 + 10a)T = 98
Divide both sides by (1 + 10a):
T = 98 / (1 + 10a)

Step 2:
Replace T with 98 / (1 + 10a) in the second equation:
5a = 98 / (1 + 10a) - 49

Step 3: Solve the equation for a.

5a(1 + 10a) = 98 - 49(1 + 10a)
Expand and simplify:
5a + 50a^2 = 98 - 49 - 490a
Combine like terms:
50a^2 + 5a + 490a - 49 - 98 = 0
50a^2 + 495a - 147 = 0

Step 4: Since the quadratic equation does not factorize easily, we will use the quadratic formula:
[tex]a = (-b ± √(b^2 - 4ac)) / 2a[/tex]
For our equation 50a^2 + 495a - 147 = 0, a = -495, b = 495, and c = -147.
Substitute these values into the quadratic formula:
[tex]a = (-495 ± √(495^2 - 4 * 50 * -147)) / (2 * 50)[/tex]

Calculating the values inside the square root:
[tex]√(495^2 - 4 * 50 * -147)[/tex]

= [tex]√(245025 + 29400)[/tex]

= [tex]√(274425) ≈ 523.9[/tex]

Simplifying the quadratic formula:
[tex]a = (-495 ± 523.9) / 100[/tex]
This gives us two possible values for a:
a = (-495 + 523.9) / 100 [tex]≈ 2.79[/tex]
a = (-495 - 523.9) / 100 [tex]≈ -10.19[/tex]

Step 5:
Using the equation T = 98 / (1 + 10a):

For a = 2.79:
T = 98 / (1 + 10 * 2.79) [tex]≈ 65[/tex]

For a = -10.19:
T = 98 / (1 + 10 * -10.19) [tex]≈ -58.6[/tex]

To know more about square root visit:

https://brainly.com/question/29286039

#SPJ11

Question 7 (MCQ QUESTION) [8 Marks] Consider a system of an ideal gas consisting of either Bosons or Fermions. The average occupation number for such a system with energy & is given by n(e) = N = ñ(E)g(E)de N = n(E)g(E) N = [n(E)g(E) de 1 = ñ(E) * 9 (E) de N = g(E) (E) de 1(E) S™ ( e ±1 where +/- signs refer to Fermions/Bosons respectively. a) The total number of particles in such a system is given by which of the following expressions, where f(e) is the average occupation number and g() is the density of states: [2] Possible answers (order may change in SAKAI

Answers

The total number of particles in a system of either Bosons or Fermions can be calculated using the average occupation number and the density of states.

For Fermions, the expression is N = ∫f(E)g(E)dE, and for Bosons, the expression is N = ∫[f(E)g(E)/[exp(E/kT)±1]]dE, where f(E) is the average occupation number and g(E) is the density of states.

In a system of Fermions, each energy level can be occupied by only one particle due to the Pauli exclusion principle. Therefore, the total number of particles (N) is calculated by summing the average occupation number (f(E)) over all energy levels, represented by the integral ∫f(E)g(E)dE.

In a system of Bosons, there is no restriction on the number of particles that can occupy the same energy level. The distribution of particles follows Bose-Einstein statistics, and the average occupation number is given by f(E) = 1/[exp(E/kT)±1], where ± signs refer to Bosons/Fermions, respectively. The total number of particles (N) is calculated by integrating the expression [f(E)g(E)/[exp(E/kT)±1]] over all energy levels, represented by the integral ∫[f(E)g(E)/[exp(E/kT)±1]]dE.

By using the appropriate expression based on the type of particles (Bosons or Fermions) and integrating over the energy levels, we can calculate the total number of particles in the system.

Learn more about density here: brainly.com/question/6107689

#SPJ11

A person holds a 0.300 kg pomegranate at the top of a tower that is 96 m high. Another person holds a 0.800 kg melon next to an open window 32 m up the tower. a. Draw a diagram to illustrate the situation.

Answers

Answer:

Explanation

Gravitational potential energy:

Kinetic energy:

Total mechanical energy:

Explanation:

The gravitational potential energy is directly proportional to height (). Since there are no non-conservative forces, the total mechanical energy is conserved () and the total mechanical energy is the sum of gravitational potential and kinetic energies. Then:

(1)

If we know that , then we conclude the following inequation for the kinetic energy:

(2)

Final answer:

This High School Physics problem involves calculating the potential energy of different objects at different heights in a tower using the formula PE = m * g * h. This question revolves around the concepts of potential energy and gravitational potential energy, but does not involve power calculations due to lack of information.

Explanation:

The subject of this question falls under Physics, and it primarily deals with the concepts of potential energy and gravitational energy. In physics, potential energy is the energy held by an object due to its position relative to other objects, stress within itself, electric charge, and other factors. Gravitational energy is a type of potential energy associated with the gravitational field.

In this particular scenario, we have two individuals holding different objects at different heights in a tower. The potential energy (PE) of an object can be calculated using the formula PE = m * g * h, where m is the mass of the object, g is the gravitational acceleration (~9.8 m/s^2 on Earth), and h is the height above the ground.

For the pomegranate at the top of the tower, its potential energy would be PE = 0.300 kg * 9.8 m/s^2 * 96 m. For the melon near the window, the potential energy would be PE = 0.800 kg * 9.8 m/s^2 * 32 m.

These calculations, however, do not consider any power generated when carrying the objects to their respective heights, which would involve the concept of work and requires information about the time taken to lift the objects.

Learn more about Potential Energy here:

https://brainly.com/question/24284560

#SPJ2

A car's convex rearview mirror has a radius of curvature equal to 11.0 m. What is the image distance dy of the image that is formed by an object that is 7.33 m from the mirror? d = m What is the magnification m of the image formed by the object that is 7.33 m from the mirror? m = The image formed by the mirror is

Answers

The image distance (dy) formed by the convex rearview mirror, given a radius of curvature of 11.0 m, for an object located 7.33 m from the mirror is 4.57 m. The magnification (m) of the image formed by the mirror is -0.663.

To find the image distance (dy) formed by the convex rearview mirror, we can use the mirror formula:

1/f = 1/do + 1/di

where f is the focal length of the mirror, do is the object distance, and di is the image distance. For a convex mirror, the focal length (f) is equal to half the radius of curvature (R).

Given the radius of curvature (R) of 11.0 m, the focal length (f) is:

f = R/2 = 11.0 m / 2 = 5.5 m

Substituting the values into the mirror formula:

1/5.5 = 1/7.33 + 1/di

Rearranging the equation and solving for di, we get:

1/di = 1/5.5 - 1/7.33

di = 4.57 m

Therefore, the image distance (dy) formed by the convex rearview mirror is 4.57 m.

To calculate the magnification (m) of the image formed by the mirror, we can use the magnification formula:

m = -di/do

Substituting the values of di = 4.57 m and do = 7.33 m, we get:

m = -4.57 m / 7.33 m

m = -0.663

The negative sign indicates that the image formed by the convex mirror is virtual and upright. The magnification (m) value of -0.663 suggests that the image is smaller than the object and appears diminished.

To know more about magnification refer here:

https://brainly.com/question/28350378#

#SPJ11

If the impedances of medium 1 and medium 2 are the same, then there is no reflection there is no transmission half of the sound will be reflected and half will be transmitted the ITC \( =70 \% \)

Answers

When the impedances of two media are the same, then half of the sound will be reflected, and half will be transmitted. The correct option is (c)

Impedance matching occurs when the impedances of two adjacent media are equal, resulting in no reflection at the boundary. However, this does not mean that there is no transmission. Instead, the sound wave is divided into two equal parts.

Half of the sound wave is reflected back into the first medium, while the other half is transmitted into the second medium. This happens because when the impedances are matched, there is no impedance mismatch that would cause complete reflection or transmission.

Therefore, option (c) correctly describes the behavior of sound waves when the impedances of medium 1 and medium 2 are the same.

To know more about impedances, click here-

brainly.com/question/30040649

#SPJ11

questions -

If the impedances of medium 1 and medium 2 are the same, what is the relationship between reflection and transmission at the interface between the two mediums?

JUNCTION RULE: (1) I 1
=I 3
+I 4
LOOP RULE: (2) LOOP I (LEFT CIRUT) V 0
−I 3
R 3
−I 3
R 2
−I 1
R 1
=0 LOOP 2 (RIGHT CIRCUT): (3) −I 4
R 4
+I 3
R 3
+I 3
R 3
=0

Answers

According to the junction rule, the current entering junction 1 is equal to the sum of the currents leaving junction 1: I1 = I3 + I4.

The junction rule, or Kirchhoff's current law, states that the total current flowing into a junction is equal to the total current flowing out of that junction. In this case, at junction 1, the current I1 is equal to the sum of the currents I3 and I4. This rule is based on the principle of charge conservation, where the total amount of charge entering a junction must be equal to the total amount of charge leaving the junction. Applying the loop rule, or Kirchhoff's voltage law, we can analyze the potential differences around the loops in the circuit. In the left circuit, traversing the loop in a clockwise direction, we encounter the potential differences V0, -I3R3, -I3R2, and -I1R1. According to the loop rule, the algebraic sum of these potential differences must be zero to satisfy the conservation of energy. This equation relates the currents I1 and I3 and the voltages across the resistors in the left circuit. Similarly, in the right circuit, traversing the loop in a clockwise direction, we encounter the potential differences -I4R4, I3R3, and I3R3. Again, the loop rule states that the sum of these potential differences must be zero, providing a relationship between the currents I3 and I4.

To learn more about Kirchhoff's current law, Click here:

https://brainly.com/question/30394835

#SPJ11

Light is travelling from medium A (refractive index 1.4) to medium B (refractive index 1.5). If the incident angle is 38.59. what would be refracted angle in medium B? Express your answer in degrees.

Answers

The refracted angle in medium B is approximately 36.03 degrees.

To determine the refracted angle in medium B, we can use Snell's law, which relates the incident angle (θ1), refracted angle (θ2), and the refractive indices of the two mediums.

Snell's law is given by:

n1 * sin(θ1) = n2 * sin(θ2)

The refractive index of medium A (n1) is 1.4 and the refractive index of medium B (n2) is 1.5, and the incident angle (θ1) is 38.59 degrees, we can substitute these values into Snell's law to solve for the refracted angle (θ2).

Using the equation, we have:

1.4 * sin(38.59°) = 1.5 * sin(θ2)

Rearranging the equation to solve for θ2, we get:

θ2 = arcsin((1.4 * sin(38.59°)) / 1.5)

Evaluating this expression using a calculator, we find that the refracted angle (θ2) in medium B is approximately 36.03 degrees.

learn more about " refracted angle":- https://brainly.com/question/14760207

#SPJ11

Timer 0.346 s S a. The accuracy of the given timer b. The accuracy of ruler c. The relative error in measured acceleration due to gravity v cm d. What will happen to the value of g if the ball falls from height y= 100.0 cm Y=60.0 cm Timer 0.346 s QUESTION 5 1.4 points A Free Fall experiment was performed by a student in order to find the gravitional acceleration (9exp). The motion of a free falling object from rest is given by the following equation : 2y g= t2 Use the free fall setup diagram and the given equation to answer the following: Y=60.0 cm

Answers

The accuracy of the given timer is 0.346 s.The accuracy of the ruler is not provided in the given information. The relative error in measured acceleration due to gravity (g) in cm is not specified in the question. If the ball falls from a height of y = 100.0 cm or y = 60.0 cm, the value of g (gravitational acceleration) will remain constant.

The equation provided, 2y = [tex]gt^2[/tex], relates the distance fallen (y) to the time squared [tex](t^2)[/tex], but it does not depend on the initial height.

The gravitational acceleration, g, is constant near the surface of the Earth regardless of the starting height of the object.

To know more about acceleration refer to-

https://brainly.com/question/2303856

#SPJ11

Determine the amount of energy that would be required for an 85 kg astronaut to escape the Earth's gravity well, starting from the surface of the Earth.

Answers

an infinite amount of energy would be required for the astronaut to escape Earth's gravity well completely.

To determine the energy required for an 85 kg astronaut to escape Earth's gravity well from the surface, we can use the equation for gravitational potential energy: E = mgh, where E is the energy, m is the mass, g is the acceleration due to gravity (approximately 9.8 m/s² on Earth), and h is the height. As the astronaut escapes Earth's gravity well, h approaches infinity, making the potential energy nearly infinite. Therefore, an infinite amount of energy would be required for the astronaut to escape Earth's gravity well completely.

 To  learn  more  about energy click on:brainly.com/question/1932868

#SPJ11

A certain camera lens has a focal length of 150 mm. Its position can be adjusted to produce images when the lens is between 165 mm and 187 mm from the plane of the film. Over what range of object distances is the lens useful?

Answers

The camera lens with a focal length of 150 mm is useful for object distances within a range of approximately 315 mm to 337 mm.

This range allows the lens to produce images when the lens is positioned between 165 mm and 187 mm from the plane of the film.

To determine the range of object distances for which the lens is useful, we can use the thin lens formula:

1/f = 1/u + 1/v

where f is the focal length of the lens, u is the object distance, and v is the image distance.

Given that the focal length of the lens is 150 mm, we can rearrange the formula to solve for the object distance u:

1/u = 1/f - 1/v

To find the maximum and minimum values of u, we consider the extreme positions of the lens. When the lens is positioned at 165 mm from the film plane, the image distance v becomes:

1/v = 1/f - 1/u

= 1/150 - 1/165

≈ 0.00667

v ≈ 150.1 mm

Similarly, when the lens is positioned at 187 mm from the film plane, the image distance v becomes:

1/v = 1/f - 1/u

= 1/150 - 1/187

≈ 0.00533

v ≈ 187.5 mm

Therefore, the lens is useful for object distances within the range of approximately 315 mm (150 mm + 165 mm) to 337 mm (150 mm + 187 mm).

To know more about Focal length :

brainly.com/question/2194024

#SPJ11

If the insolation of the Sun shining on asphalt is 7.3
×
102 W/m2, what is the change in temperature
of a
2.5 m2
by
4.0 cm
thick layer of asphalt in
2.0 hr?
(Assume the albedo of the asphalt is 0.12,

Answers

The change in temperature (ΔT) of the asphalt layer is approximately 3.419 °C.

To calculate the change in temperature (ΔT) of the asphalt layer, we can use the formula:

ΔT = (Insolation × (1 - Albedo) × time) / (mass × specific heat)

First, let's convert the given values to the appropriate units:

Insolation = 7.3 x 10^2 W/m²

Albedo = 0.12

Time = 1.0 hr = 3600 seconds (since specific heat is typically given in terms of seconds)

Thickness = 7.0 cm = 0.07 m

Area = 2.5 m²

Density = 2.3 g/cm³ = 2300 kg/m³ (since specific heat is typically given in terms of kilograms)

Now we can calculate the change in temperature:

Mass = density × volume = density × area × thickness

= 2300 kg/m³ × 2.5 m² × 0.07 m

= 4025 kg

ΔT = (7.3 x 10^2 W/m² × (1 - 0.12) × 3600 s) / (4025 kg × 0.22 cal/g.°C)

= (7.3 x 10² W/m² × 0.88 × 3600 s) / (4025 kg × 0.22 cal/g.°C)

= 3.419 °C

Therefore, the change in temperature (ΔT) of the asphalt layer is approximately 3.419 °C.

The complete question should be:

If the insolation of the Sun shining on asphalt is 7.3 X 10² W/m², what is the change in temperature of a 2.5 m² by 7.0 cm thick layer of asphalt in 1.0 hr? (Assume the albedo of the asphalt is 0.12, the specific heat of asphalt is 0.22 cal/g.°C, and the density of asphalt is 2.3 g/cm³.)

ΔT=______ °C

To learn more about asphalt layer, Visit:

https://brainly.com/question/30959381

#SPJ11

The tension in a wire fixed at both ends is 16.0 N. The mass per unit length is 5.00% 10kg/m, and its length is 45.0 cm. (a) What is the fundamental frequency (in Hz) Hz (b) What are the next three frequences (in H) that could result in standing wave pattern

Answers

The fundamental frequency is approximately 33.86 Hz and the next three frequencies are approximately 67.72 Hz, 101.58 Hz, and 135.44 Hz.

To find the fundamental frequency and the next three frequencies that could result in a standing wave pattern in the wire, we can use the formula for the frequency of a standing wave on a string:

           f = (1/2L) * sqrt(T/μ)

where:

          f is the frequency,

          L is the length of the wire,

          T is the tension in the wire,

          μ is the mass per unit length of the wire.

Given:

Tension (T) = 16.0 N,

Mass per unit length (μ) = 5.00 g/m = 5.00 * 10^(-3) kg/m,

Length (L) = 45.0 cm = 0.45 m.

(a) Fundamental Frequency:

Using the formula, we can calculate the fundamental frequency (f1):

f1 = (1/2L) * sqrt(T/μ)

f1 = (1/2 * 0.45) * sqrt(16.0 / (5.00 * 10^(-3)))

Calculating the expression, we get:

f1 ≈ 33.86 Hz

Therefore, the fundamental frequency is approximately 33.86 Hz.

(b) Next Three Frequencies:

To find the next three frequencies (f2, f3, f4), we can multiply the fundamental frequency by integer multiples:

f2 = 2 * f1

f3 = 3 * f1

f4 = 4 * f1

Calculating these frequencies, we get:

f2 ≈ 67.72 Hz

f3 ≈ 101.58 Hz

f4 ≈ 135.44 Hz

Therefore, the next three next three frequencies are approximately 67.72 Hz, 101.58 Hz, and 135.44 Hz. are approximately 67.72 Hz, 101.58 Hz, and 135.44 Hz.

To learn more about fundamental frequency click here; brainly.com/question/31314205

#SPJ11

An object has a height of 0.045 m and is held 0.220 m in front
of a converging lens with a focal length of 0.190 m. (Include the
sign of the value in your answers.)
(a) What is the magnification?

Answers

The magnification of the object is approximately -0.840. Note that the negative sign indicates that the image is inverted.

The magnification (m) of an object formed by a converging lens is given by the formula:

m = -d_i / d_o

where d_i is the image distance and d_o is the object distance.

In this case, the object distance (d_o) is given as 0.220 m and the lens is converging, so the focal length (f) is positive (+0.190 m).

To find the image distance (d_i), we can use the lens equation:

1/f = 1/d_i - 1/d_o

Substituting the given values:

1/0.190 = 1/d_i - 1/0.220

Simplifying this equation will give us the value of d_i.

Now, let's solve the equation:

1/0.190 = 1/d_i - 1/0.220

To simplify, we can find a common denominator:

1/0.190 = (0.220 - d_i) / (d_i * 0.220)

Cross-multiplying:

d_i * 0.190 = (0.220 - d_i)

0.190d_i = 0.220 - d_i

0.190d_i + d_i = 0.220

1.190d_i = 0.220

d_i = 0.220 / 1.190

d_i ≈ 0.1849 m

Now, we can calculate the magnification using the formula:

m = -d_i / d_o

m = -0.1849 / 0.220

m ≈ -0.840

Therefore, the magnification of the object is approximately -0.840. Note that the negative sign indicates that the image is inverted.

Learn more about magnification from the given link

https://brainly.com/question/29306986

#SPJ11

Light travels at a speed of 3x108 m/s in air. What is the speed of light in glass, which has an index of refraction of 1.5? 1) 5.00x10?m/s 2) 2.00x 108 m/s 3) 2.26x108 m/s O4) 4) 4.5x108 m/s

Answers

The speed of light in the glass, with an index of refraction of 1.5, is approximately 2.00x10^8 m/s.

The speed of light in a medium can be determined using the formula:

v = c / n

Where:

v is the speed of light in the medium,

c is the speed of light in a vacuum or air (approximately 3x10^8 m/s), and

n is the refractive index of the medium.

In this case, we are given the refractive index of glass as 1.5. Plugging the values into the formula, we get:

v = (3x10^8 m/s) / 1.5

Simplifying the expression, we find:

v = 2x10^8 m/s

Therefore, the speed of light in glass, with a refractive index of 1.5, is approximately 2.00x10^8 m/s.

To learn more about  speed of light click here:

brainly.com/question/29216893

#SPJ11

"An RLC Circuit of variable frequency has a power factor of 1 at
the frequency of 500 Hz. What else can you infer about the
circuit?

Answers

Given that an RLC Circuit of variable frequency has a power factor of 1 at the frequency of 500 Hz. We can infer that the circuit is a resonant circuit or the circuit is in resonance. A resonant circuit is one in which the inductive and capacitive reactance cancel each other out at the resonant frequency.

As a result, the circuit has only a pure resistance, and the circuit is in resonance. As a result, we can infer that at 500 Hz, the inductive reactance is equal to the capacitive reactance, and they cancel out each other. Furthermore, we can conclude that the inductance and capacitance values of the circuit must be such that their reactance values cancel out each other at 500 Hz.

Learn more about frequency:

brainly.com/question/254161

#SPJ11

The gas in a constant-volume gas thermometer has a pressure of
91.0 kPa at 106 ∘C∘C. What is the pressure of the gas at 47.5 ∘C?
At what temperature does the gas have a pressure of 115 kPa?

Answers

The pressure of the gas at 47.5 ∘C is 74.3 kPa. The temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

The pressure of a gas is directly proportional to its temperature. This means that if the temperature of a gas increases, the pressure of the gas will also increase. Conversely, if the temperature of a gas decreases, the pressure of the gas will also decrease.

In this problem, the gas is initially at a temperature of 106 ∘C and a pressure of 91.0 kPa. When the temperature of the gas is decreased to 47.5 ∘C, the pressure of the gas will also decrease. The new pressure of the gas can be calculated using the following equation:

[tex]P_2 = P_1 \times (T2 / T1)[/tex]

where:

* [tex]P_1[/tex]is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (unknown)

*[tex]T_1[/tex]is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (47.5 ∘C)

Plugging in the known values, we get:

P2 = 91.0 kPa * (47.5 ∘C / 106 ∘C)

P2 = 74.3 kPa

Therefore, the pressure of the gas at 47.5 ∘C is 74.3 kPa.

The temperature at which the gas has a pressure of 115 kPa can be calculated using the following equation:

[tex]T_2 = T_1 \times (P_2 / P_1)[/tex]

where:

* [tex]T_1[/tex] is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (unknown)

* [tex]P_1[/tex] is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (115 kPa)

[tex]T_2 = 106^{0} C (115 kPa / 91.0 kPa)[/tex]

[tex]T_2 = 134.7 ^{0} C[/tex]

Therefore, the temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

To learn more about pressure here brainly.com/question/29341536

#SPJ11

A battery having terminal voltage Vab =1.3 V delivers a current 1.5 A. Find the internal resistance (in W) of the battery if the emf,ε = 1.6 V.

Answers

In order to find the internal resistance of the battery, we'll use the formula:ε = V + Irwhere ε is the emf (electromotive force), V is the terminal voltage, I is the current, and r is the internal resistance.

So we have:ε = V + Ir1.6 = 1.3 + 1.5r0.3 = 1.5r Dividing both sides by 1.5, we get:r = 0.2 ΩTherefore, the internal resistance of the battery is 0.2 Ω. It's worth noting that this calculation assumes that the battery is an ideal voltage source, which means that its voltage doesn't change as the current changes. In reality, the voltage of a battery will typically decrease as the current increases, due to the internal resistance of the battery.

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

A long solenoid has n = 4000 turns per meter and carries a current given by I(t) = 50 (1e-1.6t) Where I is in Amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 2 cm and consists of a total N = 3500 turns of conducting wire. n turns/m ******************®®®® R O ooooooo oooooooo N turns What EMF (in Volts) is induced in the coil by the changing current at t = 1.5 s?

Answers

At t = 1.5 s, the changing current in the solenoid induces an EMF (electromotive force) of approximately 7.91 V in the coaxial coil.

To calculate the induced EMF in the coil, we need to determine the magnetic flux through the coil and then apply Faraday's law of electromagnetic induction.

1. Magnetic flux through the coil:

The magnetic flux through the coil is given by the equation Φ = B · A · N, where B is the magnetic field, A is the area of the coil, and N is the number of turns.

The magnetic field inside a solenoid is given by the equation B = μ₀ · n · I, where μ₀ is the permeability of free space, n is the number of turns per meter, and I is the current flowing through the solenoid.

Substituting the given values, the magnetic field inside the solenoid is B = (4π × 10⁻⁷ T·m/A) · (4000 turns/m) · [50 (1e^(-1.6 × 1.5)) A].

The area of the coil is A = π · R², where R is the radius of the coil.

2. EMF induced in the coil:

According to Faraday's law of electromagnetic induction, the induced EMF in the coil is given by the equation ε = -dΦ/dt, where ε is the induced EMF and dΦ/dt is the rate of change of magnetic flux.

To find the rate of change of magnetic flux, we need to differentiate the magnetic flux equation with respect to time. Since the magnetic field inside the solenoid is changing with time, we also need to consider the time derivative of the magnetic field.

Finally, substitute the values at t = 1.5 s into the derived equation to calculate the induced EMF in the coil.

By following these steps, we find that at t = 1.5 s, the changing current in the solenoid induces an EMF of approximately 7.91 V in the coaxial coil.

To know more about induced EMF refer here:

https://brainly.com/question/30891425#

#SPJ11

Other Questions
It is assumed that more intelligent people excel when quick choices are required because of? Problem solving frameworks Conduct research to identify and summarise and explain the following problem-solving frameworks used in nursing care: HEIDIE . TIME Your answer should be between 300-400 words in length, Which of the following were NOT structural weaknesses in the American economic system?Which of the following were NOT structural weaknesses in the American economic system?Banks lent money to people who speculated in stocks.Few regulations were placed on banksBanks operated without guarantees to their customersBanks kept a lot of cash on hand in times of panic. A car goes about 7 1/2 miles per gallon. Its gas tank holds 25 gallons. Out of which 2 1/2 are reseve. About how many miles wil the car go without using the reseve (1) Using Wilson's Theorem, prove that if p and p +2 are a pair of twin primes, then4[(p-1)+1] + p = 0 (mod p(p + 2)).(You should show your work.)(2) Use Fermat's method to write 10541 as a product of two smallerpositive integers. (You should show your work.) The ISO 9000 standard has a number of requirements that must be addressed by the processes of a company in order to achieve certification. These are outlined on pp. 251-261 in our text. Pick one that strikes you as "different" than what is typically done in companies where you have worked that, if adopted, would improve the management of a company and the ability of the company to satisfy its customers. Discuss the issues that you have observed and how things would be different for the company if they adopted and complied with this quality management standard. Switch Si is closed. Switch S2 has been in position a for a long time. It is now switched to position b. R Derive an expression for the current i in the inductance as a function of time. Show all your work and box your answer. 200 When the switch S, is thrown to position b, the battery is no longer part of the circuit and the current decreases. Find the foci for each equation of an ellipse.16 x+4 y=64 how does Comparative Advantage Theory explain the motivation of international business ?Expert Answer A uniform solid disk of radius R=1.60 m starts from rest at the top of a 30.0 inclined plane androlls without slipping. The angular velocity of the disk at the bottom of the incline is 5.35 rad/s. Find the acceleration of the center of mass down the incline. Start by drawing the free body diagramand Newton's second law for the translational and for the rotational motion. Why do you think ICD 9 was change to ICD 10? How many codes werein ICD 9 versus ICD 10. An accelerating voltage of 2.45 x 10 V is applied to an electron gun, producing a beam of electrons originally traveling horizontally north in vacuum toward the center of a viewing screen 36.6 cm away. (a) What is the magnitude of the deflection on the screen caused by the Earth's gravitational field? (b) What is the direction of the deflection on the screen caused by the Earth's gravitational field? O up O down O east O west (c) What is the magnitude of the deflection on the screen caused by the vertical component of the Earth's magnetic field, taken as 20.0 T down? mm (d) What is the direction of the deflection on the screen caused by the vertical component of the Earth's magnetic field, taken as 20.0 T down? O north O south O east O west (e) Does an electron in this vertical magnetic field move as a projectile, with constant vector acceleration perpendicular to a constant northward component of velocity? Yes O No (f) Is it a good approximation to assume it has this projectile motion? Yes O No Explain. Exercise 1 Underline the specific clue word or words. Using the context of the italicized word, define the word.Although he delayed his research for a week, Miguel finally started to work seriously when he realized his group might get an "incomplete" for the project as a result of his dilatory practices. Infrared spectroscopyA.Uses more energy than UV-VisibleB.Deals with electronic transitionsC.Has higher absorptivity than UV-VisibleD.Has longer wavelengths than UV-Visible 5. Find the directional derivative of f at the given point in the indicated direction (a) f(x, y) = ye*, P(0,4), 0 = 2/3 (b) (x, y) = y/x, P(1,2), u = // (2i + 3j) P(3,2,6), (c) (x, y, z) = xyz, v=li2j+2k Write an article analysis of " To combine or not to combine? Applying protection motivation theory and the theory of reasoned action to explain and predict intention to reduce meat consumption" by Chen, 2021 in 1500- 2000 words. Francesca is frustrated trying to learn to tie her shoelaces. According to Vygotsky, should the parents get involved, or should they let her try to master this task on her own? If they decide to get involved, what should her parents do? Figure P31.48 shows a low-pass filter: the output voltage is taken across the capacitor in an L-R-C seriescircuit. Derive an expression for Vout / Vs, the ratio of the output and source voltage amplitudes, as a function of the angular frequency of the source. Show that when is large, this ratio is proportional to -2 and thus is very small, and show that the ratio approaches unity in the limit of small frequency. When Fred met Norris on his campus tour, Norris was friendly to him and showed him several different parts of campus, mentioning they should hang out, and maybe take a class together. When Fred moved in, he heard repeated stories about how Norris used freshman for money, and to do his coursework for him. However, Fred argued that Norris is still a nice person, and just "misunderstood." His refusal to see that his initial impression of Norris was mistaken is most likely due to the ___a. halo effect b. phi phenomenon c. primacy effect d. recency effect The red-shift of a galaxy observed by us corresponds to a speed of 50000 km/s. How far is the galaxy from us approximately? Steam Workshop Downloader