a) The speed of the 6.00 kg block after descending 0.800 m is 2.07 m/s.
b) We cannot calculate the work done by the friction force.
c) The net work done on the system of two blocks during the 0.800 m downward displacement of the 6.00 kg block is 29.13 J. The work done by gravity is 47.04 J, the work done by friction is unknown, and the work done by the tension in the rope is zero.
(a) The work done on the 6.00 kg block by gravity can be calculated using the formula:
Work_gravity = force_gravity * displacement * cos(theta),
where force_gravity is the weight of the block, displacement is the downward displacement of the block, and theta is the angle between the force and displacement vectors (which is 0 degrees in this case).
The weight of the block is given by:
force_gravity = mass * acceleration_due_to_gravity = 6.00 kg * 9.8 m/s^2 = 58.8 N.
Plugging in the values, we get:
Work_gravity = 58.8 N * 0.800 m * cos(0) = 47.04 J.
The work done on the 6.00 kg block by the tension in the rope is given by:
Work_tension = tension * displacement * cos(theta).
Plugging in the values, we get:
Work_tension = 37.0 N * 0.800 m * cos(180) = -29.6 J.
The negative sign indicates that the tension is in the opposite direction of the displacement.
Using the work-energy theorem, we can find the speed of the 6.00 kg block after descending 0.800 m:
Work_net = change_in_kinetic_energy.
Since the block starts from rest, its initial kinetic energy is zero. Therefore:
Work_net = Final_kinetic_energy - Initial_kinetic_energy = 1/2 * mass * velocity^2.
Solving for velocity, we get:
velocity = sqrt(2 * Work_net / mass).
The net work done on the block is the sum of the work done by gravity and the tension:
Work_net = Work_gravity + Work_tension = 47.04 J - 29.6 J = 17.44 J.
Plugging in the values, we get:
velocity = sqrt(2 * 17.44 J / 6.00 kg) = 2.07 m/s.
Therefore, the speed of the 6.00 kg block after descending 0.800 m is 2.07 m/s.
(b) The total work done on the 8.00 kg block during the 0.800 m displacement can be calculated using the work-energy theorem:
Work_net = change_in_kinetic_energy.
Since the 8.00 kg block is not moving vertically, its initial and final kinetic energies are zero. Therefore:
Work_net = Final_kinetic_energy - Initial_kinetic_energy = 0.
The work done on the 8.00 kg block by the tension in the rope is given by:
Work_tension = tension * displacement * cos(theta).
Plugging in the values, we get:
Work_tension = 37.0 N * 0.800 m * cos(0) = 29.6 J.
The work done on the 8.00 kg block by the friction force can be calculated using the formula:
Work_friction = force_friction * displacement * cos(theta),
where force_friction is the frictional force on the block. However, the problem statement does not provide the value of the friction force. Therefore, we cannot calculate the work done by the friction force.
(c) The net work done on the system of two blocks during the 0.800 m displacement of the 6.00 kg block can be found using the work-energy theorem:
Work_net = change_in_kinetic_energy.
Since the system starts from rest, the initial kinetic energy of the system is zero. Therefore:
Work_net = Final_kinetic_energy - Initial_kinetic_energy = 1/2 * (6.00 kg + 8.00 kg) * velocity^2.
Simplifying, we get:
Work_net = 1/2 * 14.00 kg * velocity^2.
Using the value of velocity calculated in part (a), we get:
Work_net = 1/2 * 14.00 kg * (2.07 m/s)^2 = 29.13 J.
The work done on the system of two blocks by gravity is the sum of the work done on the individual blocks by gravity:
Work_gravity_system = Work_gravity_6kg + Work_gravity_8kg = 47.04 J + 0 J = 47.04 J.
The work done on the system of two blocks by the tension in the rope is the sum of the work done on the individual blocks by the tension:
Work_tension_system = Work_tension_6kg + Work_tension_8kg = -29.6 J + 29.6 J = 0 J.
Therefore, the net work done on the system of two blocks during the 0.800 m downward displacement of the 6.00 kg block is 29.13 J. The work done by gravity is 47.04 J, the work done by friction is unknown, and the work done by the tension in the rope is zero.
Note: The calculations for part (b) and (c) were based on the given information, but the value of the friction force was not provided in the problem statement.
For more such questions on work done, click on:
https://brainly.com/question/8119756
#SPJ8
Fig above shows a wave traveling through a medium. Use the fig to answer the questions below.
A.)What is the amplitude of the wave ? Include correct units.
B.)Use the graph to determine the time of one wave. Use it to find the frequency.
C.)If the speed of the wave is 25 m/s, what is the wavelength of the wave ? Show data listing, equation , substitution leading to the answer for full credit.
(a) The amplitude of the wave is 0.2 m.
(b) The period of the wave is 4 s.
(c) The wavelength of the wave is 100 m.
What is the amplitude of the wave?(a) The amplitude of the wave is the maximum displacement of the wave.
amplitude of the wave = 0.2 m
(b) The period of the wave is the time taken for the wave to make one complete cycle.
period of the wave = 5.5 s - 1.5 s = 4 s
(c) The wavelength of the wave is calculated as follows;
λ = v / f
where;
v is the speed of the wavef is the frequency of the wavef = 1/t = 1 / 4s = 0.25 Hz
λ = ( 25 m/s ) / 0.25 Hz
λ = 100 m
Learn more about wavelength here: https://brainly.com/question/10728818
#SPJ1
Which statement best describes the refraction of light as it moves from air to glass?
A. Light bends due to the difference in the speed of light in air and glass.
B. Although the light bends, its speed remains the same as before.
C. Although the light changes speed, it continues in the same direction as before.
D. Light undergoes diffraction due to the difference in the speed of light in air and glass.
RHETORICAL ANALYSIS: How does Robinson use language in effective and engaging ways to develop his argument to his younger self-and, in the process, to young readers in the present? In your response, consider such techniques as metaphor, repetition, and sentence structure.
In "The Argonauts," Robinson effectively utilizes language techniques such as metaphor, repetition, and sentence structure to develop his argument to his younger self and engage young readers in the present. Through these techniques, Robinson creates a powerful and relatable narrative that resonates with his audience.
Robinson employs metaphors to convey complex ideas in a compelling and accessible manner. For instance, he compares his struggle with identity and gender to the mythical journey of the Argonauts, making it relatable and captivating for young readers. This metaphorical language enables readers to grasp the profound emotions and challenges he faced during his own personal journey.
Repetition is another technique Robinson employs to reinforce key ideas and create a rhythmic and memorable reading experience. By repeating certain phrases or concepts, he emphasizes their significance and invites readers to reflect on them. This repetition serves to engage young readers by encouraging them to contemplate their own experiences and perspectives.
Furthermore, Robinson carefully structures his sentences to create a sense of rhythm and flow, enhancing the overall readability and impact of his argument. Short, concise sentences create moments of clarity and emphasis, while longer, more descriptive sentences evoke a contemplative and introspective tone. This varied sentence structure adds depth and nuance to his narrative, captivating young readers and keeping them engaged throughout.
In conclusion, through the effective use of metaphor, repetition, and sentence structure, Robinson engages and captivates young readers, inviting them to reflect on their own identities and experiences. His language choices not only develop his argument to his younger self but also establish a connection with present-day young readers, making his work both impactful and relatable.
for such more questions on techniques
https://brainly.com/question/12601776
#SPJ8
Look at this graphic organizer of requirements to apply to become an astronaut.
Requirements for Astronauts
What does the graphic organizer most suggest about the job of an astronaut?
It is technical and potentially tedious.
It is detailed and potentially exhausting.
It is confidential and potentially exciting.
○ It is complex, demanding, and involves flight.
Save and Exit
Next
The graphic organizer suggests that the job of an astronaut is complex, demanding, and involves flight.
This conclusion can be drawn by examining the nature of the requirements listed in the graphic organizer. Firstly, the requirements listed in the organizer are numerous and encompass various aspects. They include educational qualifications, such as having a bachelor's degree in a relevant field, as well as specific experience, like piloting an aircraft.
These requirements highlight the complexity of the job and indicate that astronauts need to possess a diverse set of skills and knowledge. Additionally, the requirements for physical fitness and health demonstrate the demanding nature of the job.
Astronauts are expected to undergo rigorous physical training to ensure they can handle the physical stresses associated with space travel and the conditions they will encounter in space. This indicates that the job can be physically exhausting and requires individuals to be in excellent health.
Lastly, the inclusion of flight-related requirements, such as the need to pass a long-duration spaceflight physical and participate in aircraft flights, implies that the job of an astronaut involves actual flight experiences. This indicates that astronauts are directly involved in piloting spacecraft and are expected to have practical experience in flying.
know more about astronaut here:
https://brainly.com/question/30733605
#SPJ8
If you were trying to build a soundproof room, which of the following materials would you choose to absorb the most sound, based on the coefficient of absorption for each material?
Question 19 options:
A)
Concrete
B)
Wood
C)
Carpet
D)
Heavy curtains
Answer:
C) Carpet
Explanation:
If you were trying to build a soundproof room, the material that would absorb the most sound would be carpet. Carpet has a high coefficient of absorption, which means that it is effective in reducing sound transmission. Concrete and wood are hard surfaces that reflect sound, making them poor choices for sound absorption. Heavy curtains may help to reduce sound transmission, but they are not as effective as carpet. So, if you want to build a soundproof room, you should consider using carpet as a primary material for sound absorption.
Two forces are applied to a car in an effort to move it, as shown in the figure below. (Let
F1 = 445 N and F2 = 368 N. Assume up and to the right are in the positive directions.) Find part a and b.
a. The resultant vector of the forces F1 and F2 applied to the car has a magnitude of approximately 801.86 N and is directed approximately 19.85 degrees to the right (forward direction).
b. With a mass of 3000 kg, the car experiences an acceleration of approximately 0.2673 m/s² when subjected to the given forces, neglecting friction.
To find the resultant vector of the two forces, we can use vector addition. The given forces are F1 = 445 N and F2 = 368 N. Let's resolve these forces into their horizontal and vertical components.
For F1:
The angle between the normal and F1 is 10 degrees. We can find the horizontal and vertical components using trigonometry.
Horizontal component of F1 = F1 * cos(10 degrees)
= 445 N * cos(10 degrees)
≈ 438.37 N
Vertical component of F1 = F1 * sin(10 degrees)
= 445 N * sin(10 degrees)
≈ 77.06 N
For F2:
The angle between the normal and F2 is 30 degrees. Again, we can use trigonometry to find the components.
Horizontal component of F2 = F2 * cos(30 degrees)
= 368 N * cos(30 degrees)
≈ 318.64 N
Vertical component of F2 = F2 * sin(30 degrees)
= 368 N * sin(30 degrees)
≈ 184 N
Now, we can add the horizontal and vertical components separately to find the resultant vector.
Horizontal component of the resultant vector = Horizontal component of F1 + Horizontal component of F2
≈ 438.37 N + 318.64 N
≈ 757.01 N
Vertical component of the resultant vector = Vertical component of F1 + Vertical component of F2
≈ 77.06 N + 184 N
≈ 261.06 N
To find the magnitude of the resultant vector, we can use the Pythagorean theorem:
Magnitude of the resultant vector = sqrt((Horizontal component)^2 + (Vertical component)^2)
= [tex]\sqrt{((757.01 N)^2 + (261.06 N)^2)}[/tex]
≈ 801.86 N
The direction of the resultant vector can be found using trigonometry:
Direction = arctan(Vertical component / Horizontal component)
= arctan(261.06 N / 757.01 N)
≈ 19.85 degrees to the right (forward direction)
So, the resultant vector of the two forces has a magnitude of approximately 801.86 N and a direction of approximately 19.85 degrees to the right (forward direction).
Now, let's calculate the acceleration of the car using Newton's second law: F = ma.
Given that the mass of the car is 3000 kg, we can rearrange the equation to solve for acceleration:
Acceleration = Force / Mass
Using the magnitude of the resultant vector (801.86 N), we have:
Acceleration = 801.86 N / 3000 kg
≈ 0.2673 m/s²
Therefore, the car has an acceleration of approximately 0.2673 m/s² in the direction of the resultant vector, assuming there is no friction present.
For more such information on: resultant vector
https://brainly.com/question/11823989
#SPJ8
Two atoms of the same element only differ because one of the atoms has more electrons, making it an ion. Which statement is true? They have the same A-number and the same Z-number. They have the same A-number but different Z-number. They have a different A-number but the same Z-number. They have different A-numbers and different Z-numbers.
The correct answer is Option B. The statement "they have the same A-number but different Z-number" is true .
Atoms of the same element only differ because one of the atoms has more electrons, making it an ion.
This difference does not affect the mass of the atom, which is determined by the sum of its protons and neutrons, represented by the atomic mass or A-number.
The number of protons in an atom is called the atomic number or Z-number.
The Z-number of an element is unique to it. All the atoms of a given element have the same number of protons.
Thus, for example, all carbon atoms have six protons, making the Z-number of carbon 6.
However, different isotopes of an element can have different numbers of neutrons.
This means that they have a different atomic mass or A-number.
Therefore, they have the same A-number but different Z-number.
Therefore the correct Option is B.
For more questions on Atoms
https://brainly.com/question/6258301
#SPJ8
Two blocks, 1 and 2, are connected by a massless string that passes over a massless pulley. 1 has a mass of 2.25 kg and is on an incline of angle 1=42.5∘ that has a coefficient of kinetic friction 1=0.205. 2 has a mass of 5.55 kg and is on an incline of angle 2=33.5∘ that has a coefficient of kinetic friction 2=0.105
Find the magnitude 2 of the acceleration of block 2.
The magnitude of acceleration of block 2 is 4.67 m/s².
The diagram representing the blocks is shown below:It can be observed that the two blocks are connected by a massless string that passes over a massless pulley. 1 has a mass of 2.25 kg and is on an incline of angle 1=42.5∘ that has a coefficient of kinetic friction 1=0.205. 2 has a mass of 5.55 kg and is on an incline of angle 2=33.5∘ that has a coefficient of kinetic friction 2=0.105.Now let's derive the equation for acceleration, a2.
A key concept that must be understood to solve the problem is the difference in tension on either side of the string. Since the pulley is massless and frictionless, the tension must be the same on both sides. We can derive this concept using the following equations:Tension on block 1 side:T1 = m1(g)sin(1) - m1(g)cos(1) * f1Tension on block 2 side:T2 = m2(g)sin(2) + m2(g)cos(2) * f2Where g is acceleration due to gravity, which is equal to 9.8 m/s².Then:T1 = T2T1 + m1(g)cos(1) * f1 = m2(g)sin(2) + m2(g)cos(2) * f2Substitute the values into the above equation:2.25(9.8)cos(42.5) * 0.205 + 2.25(9.8)sin(42.5) = 5.55(9.8)sin(33.5) + 5.55(9.8)cos(33.5) * 0.105T2 = 25.836 N (correct to 3 significant figures)Now we can find the acceleration of block 2.
The acceleration of block 1 can be determined using the following equation:a1 = g(sin(1) - f1 cos(1))a1 = 9.8(sin(42.5) - 0.205cos(42.5))a1 = 5.748 m/s² (correct to 3 significant figures)Using the equation for acceleration of block 2:a2 = (T1 - T2) / m2a2 = (25.836 - 0) / 5.55a2 = 4.667 m/s² (correct to 3 significant figures).
for more quetions on acceleration
https://brainly.com/question/605631
#SPJ8
what type of force
a child on a sled slides down the hill
Answer:
Gravity.
Explanation:
Gravity causes the child on a sled to slide down the hill.
Hope this helps!
A playground is on the flat roof of a city school, hb = 5.90 m above the street below (see figure). The vertical wall of the building is h = 7.40 m high, to form a 1.5-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. Answer parts a-c.
(a) The speed at which the ball was launched is approximately 10.91 m/s.
(b) The ball clears the wall by approximately 1.50 m vertically.
(c) The horizontal distance from the wall to the point on the roof where the ball lands is approximately 24.02 m.
To solve this problem, we'll analyze the motion of the ball in two dimensions: horizontal and vertical.
(a) First, let's calculate the initial speed at which the ball was launched. We can use the time of flight and the horizontal distance traveled to find the initial horizontal velocity (Vx) of the ball.
The horizontal distance traveled by the ball (d) is given as 24.0 m, and the time of flight (t) is given as 2.20 s.
Using the equation for horizontal distance:
d = Vx * t
Rearranging the equation, we can solve for Vx:
Vx = d / t
Plugging in the known values:
Vx = 24.0 m / 2.20 s
Simplifying the equation, we find:
Vx ≈ 10.91 m/s
The initial horizontal velocity of the ball is approximately 10.91 m/s.
(b) Next, let's find the vertical distance by which the ball clears the wall. We can use the time of flight and the vertical motion of the ball to calculate this.
The vertical distance traveled by the ball is the difference between the height of the wall (h) and the height of the playground (hb).
Δy = h - hb
Plugging in the known values:
Δy = 7.40 m - 5.90 m
Simplifying the equation, we find:
Δy = 1.50 m
The ball clears the wall by approximately 1.50 m vertically.
(c) Finally, let's determine the horizontal distance from the wall to the point on the roof where the ball lands.
Since the time of flight and the horizontal distance traveled by the ball are given, we can calculate the horizontal distance (x) using the equation:
x = Vx * t
Plugging in the known values:
x = 10.91 m/s * 2.20 s
Simplifying the equation, we find:
x ≈ 24.02 m
The ball lands approximately 24.02 m horizontally from the wall on the roof.
for more questions on horizontal distance
https://brainly.com/question/25825784
#SPJ8
A certain car is capable of accelerating at a rate of 0.65 m/s2. How long does it take for this car to go from a speed of 25 mi/h to a speed of 32 mi/h?
It takes about 4.85 seconds for the car to accelerate from a speed of 25 mi/h to a speed of 32 mi/h.
The given information includes the acceleration rate of a certain car which is 0.65 m/s², and the initial speed of the car which is 25 miles per hour. The question is asking about the time taken by the car to accelerate from the initial speed of 25 miles per hour to a speed of 32 miles per hour. This is a simple problem in kinematics that can be solved by using the formula of acceleration. Here’s how:
First, convert the initial and final speeds of the car into meters per second.
Given that:
Initial speed of the car, u = 25 miles/hour
Final speed of the car, v = 32 miles/hour
To convert miles/hour to meters/second, multiply it by 0.447:
u = 25 miles/hour × 0.447 = 11.175 meters/second
v = 32 miles/hour × 0.447 = 14.324 meters/second
Now, let’s use the formula of acceleration:
v = u + at
Where,
v = final speed = 14.324 m/s
u = initial speed = 11.175 m/s
a = acceleration = 0.65 m/s²
t = time taken
Substitute the given values in the formula:
14.324 = 11.175 + (0.65)t
Solve for t:
t = (14.324 - 11.175) / 0.65
t = 4.85 seconds
for such more questions on speed
https://brainly.com/question/13943409
#SPJ8
Masses m and 2m are joined by a light inextensible string which runs without slipping over a uniform circular pulley of mass 2m and radius a. Using the angular position of the pulley as generalized coordinate, write down the Lagrangian function and Lagrange's equation. Find the acceleration of the masses.
The acceleration of the mass 2m is - (8/5) a θ´´.
We have two masses m and 2m connected by a string without slipping over a uniform circular pulley of mass 2m and radius a. We have to find the acceleration of the masses and write down the Lagrangian function and Lagrange's equation. The angular position of the pulley as generalized coordinate is used. Lagrangian function
L = T – VL = Kinetic energy - Potential energy
The kinetic energy is the sum of the kinetic energies of the two masses and the pulley. The potential energy is the sum of the potential energies of the two masses. The potential energy of the pulley can be ignored since it is fixed. Let θ be the angular position of the pulley, x be the distance fallen by the mass m and y be the distance fallen by the mass 2m.Kinetic energy of mass m (K1)K1 = ½ mv²where v = (dx/dt) is the velocity of mass mKinetic energy of mass 2m
(K2)K2 = ½ (2m) (dy/dt)²where (dy/dt) is the velocity of mass 2mKinetic energy of pulley (K3)The pulley is rolling without slipping, so the velocity of the point at the edge of the pulley is given byv = R(θ´)where R = a is the radius of the pulley. Hence, the kinetic energy of the pulley is
K3 = ½ I (θ´)²where I = (2/5) M R² = (2/5) (2m) a² is the moment of inertia of the pulleyPotential energy of mass m (V1)V1 = mgywhere g is the acceleration due to gravityPotential energy of mass 2m (V2)V2 = 2mgxThe Lagrangian function isL = K1 + K2 + K3 - V1 - V2L = ½ m(dx/dt)² + ½ (2m) (dy/dt)² + ½ (2/5) (2m) a² (θ´)² - mgy - 2mgxL = ½ m(dx/dt)² + ½ (2m) (dy/dt)² + ½ (4/5) ma² (θ´)² - mgy - 2mgxLagrange's
equationLet's find the equation of motion of the mass m using Lagrange's equation. The Lagrangian function depends on three variables, so we need three equations of motion.Lagrange's equation isd/dt (δL/δ(dx/dt)) - δL/δx = 0The first term gives usd/dt (δL/δ(dx/dt)) = m(dx/dt) + (4/5) ma² (θ´)(d/dt)(θ´) = m(dx²/dt²) + (4/5) ma² θ´´The second term gives usδL/δx = -d/dx (mgy) = 0The third term gives usδL/δ(θ) = d/dt (δL/δ(θ´))δL/δ(θ) = d/dt [(4/5) ma² (θ´)] = (4/5) ma² θ´´
The equation of motion ism(dx²/dt²) + (4/5) ma² θ´´ = 0We can solve this equation to find the acceleration of the mass m.The acceleration of the mass mThe acceleration of the mass m is given bya = dx²/dt² = - (4/5) a θ´´Therefore, the acceleration of the mass m is - (4/5) a θ´´.The equation of motion of the pulley is obtained in
the same way as above but we need to use the moment of inertia I of the pulley in the Lagrangian. We get(4/5) ma² θ´´ + 2mgRθ´² = 0Dividing by (4/5) ma², we getθ´´ + (5/8gR) θ´² = 0The acceleration of the mass 2m is given by the same expression as above but with m replaced by 2m.
For more question acceleration
https://brainly.com/question/460763
#SPJ8
3. A cylindrical steel drum is tipped over and rolled along the floor of a ware house. If the drum has radius of 0.40m and makes on complete turns in every 8.0 s, how long does it take to roll the drum 36m?
It takes approximately 9.05 seconds to roll the drum a distance of 36 meters.
What is circumference of a circle?We can use the formula for the circumference of a circle:
Circumference = 2 * π * radius
Given:
Radius (r) = 0.40 m
Circumference (C) = 2 * π * 0.40 m
We must figure out how many full rotations the drum makes to go 36 meters in order to calculate how long it takes to roll the drum. Since we are aware of the circumference, we can determine the number of full turns as follows:
Number of turns = Distance / Circumference
Given:
Distance = 36 m
Number of turns = 36 m / (2 * π * 0.40 m)
Now that we know how many turns there are, we can calculate the time by multiplying that number by the length of a turn, which is given as 8.0 seconds:
Time = Number of turns * Time per turn
Time = (36 m / (2 * π * 0.40 m)) * 8.0 s
By substituting the values into the equation, we can calculate the time:
Time = (36 / (2 * 3.14159 * 0.40)) * 8.0 s
Time ≈ 9.05 s
So, it takes approximately 9.05 seconds to roll the drum a distance of 36 meters.
Learn more about circumference here : brainly.com/question/20489969
#SPJ1
A home run is hit in such a way that the baseball just clears a wall 18 m high, located 116 m from home plate. The ball is hit at an angle of 37° to the horizontal, and air resistance is negligible. (Assume that the ball is hit at a height of 1.0 m above the ground.) Answer parts a-c.
(a) The initial speed of the ball is 60.4 m/s
(b) The time of motion of the ball is 1.92 seconds.
(c) The velocity component of the ball is , x - component = 48.24 m/s
and y - component = 36.35 m/s.
(d) The speed of the ball as it reaches the wall is 64.8 m/s.
What is the initial speed of the ball?(a) The initial speed of the ball is calculated as;
t = √ (2h/g)
where;
h is height g is gravityt = √ (2 x 18 / 9.8 )
t = 1.92 s
v = d / t
v = 116 m / 1.92 s
v = 60.4 m/s
(b) The time of motion of the ball is 1.92 seconds.
(c) The velocity component of the ball is calculated as;
x - component = 60.4 m/s x cos (37) = 48.24 m/s
y - component = 60.4 m/s x sin (37) = 36.35 m/s
(d) The speed of the ball as it reaches the wall is calculated as;
v = vi + gt
where;
vi is the initial speed of the ballthe time to travel 1 m high = √ (2 x 1 / 9.8 )
t = 0.45 s
v = 60.4 m/s + 0.45(9.8)
v = 64.8 m/s
Learn more about component velocity here: https://brainly.com/question/24949996
#SPJ1
1. Describe the path light takes as it travels through air and into glass.
When light travels from air into glass, it refracts towards the normal at the air-glass interface, propagates through the glass, and upon exiting, refracts away from the normal back into the air.
When light travels from air into glass, it undergoes several changes in its path due to the difference in optical properties between the two mediums. The path light takes can be described as follows:
1. Incident Ray: The journey begins with an incident ray, which is the incoming light ray traveling through the air towards the glass surface.
2. Refraction: As the incident ray reaches the interface between air and glass, it encounters a change in the refractive index. Refractive index is a measure of how much a medium can bend light. Glass has a higher refractive index than air, so the incident ray bends towards the normal, which is an imaginary line perpendicular to the surface of the glass.
3. Transmission: After refraction, the incident ray enters the glass and continues its path through the medium. Inside the glass, the light travels in a straight line until it encounters another interface or is affected by other optical phenomena.
4. Internal Reflection: If the incident ray encounters a glass-air interface at an angle greater than the critical angle, total internal reflection can occur. In this case, the light reflects back into the glass instead of transmitting out, effectively bouncing off the interface.
5. Refraction (again): If the incident ray does not undergo total internal reflection, it continues to propagate through the glass. At another glass-air interface, the light exits the glass and enters the air again. This transition involves refraction once more, but this time the light bends away from the normal, returning to its original path in air.
6. Transmitted Ray: Finally, the light ray continues to travel through the air, maintaining its original direction and path as it moves away from the glass surface.
for more such questions on light travels
https://brainly.com/question/30978
#SPJ8
how can i write answers to get points
A place-kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. Half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 23.2 m/s at an angle of 52.0° to the horizontal. Answer parts a-b.
(a) The ball falls short of clearing the crossbar by 3.05 m (negative value indicates falling short).
(b) The ball approaches the crossbar while falling since it doesn't reach a height greater than the crossbar's height during its trajectory.
To solve this problem, we'll analyze the vertical motion of the ball.
(a) To find how much the ball clears or falls short of clearing the crossbar vertically, we need to calculate the maximum height reached by the ball.
The initial velocity (V0) of the ball is 23.2 m/s, and the launch angle (θ) is 52.0° above the horizontal.
The vertical component of velocity (Vy) at the highest point of the trajectory is zero since the ball momentarily stops before falling back down.
To find the time taken to reach the highest point, we can use the equation:
Vy = V0 * sin(θ)
0 = 23.2 m/s * sin(52.0°)
Solving for sin(52.0°), we find:
sin(52.0°) ≈ 0.7880
Dividing both sides by 23.2 m/s, we get:
0.7880 = sin(52.0°)
Taking the inverse sine, we find:
52.0° ≈ arcsin(0.7880)
Using a calculator, we find:
52.0° ≈ 56.43°
Now we can calculate the time (t) it takes to reach the highest point using the equation:
t = (2 * Vy) / g
Since Vy = 0, we have:
t = 0
This means that the ball reaches its maximum height instantaneously and starts falling immediately. Therefore, the ball does not clear the crossbar.
To find how much the ball falls short of clearing the crossbar vertically, we can calculate the height of the ball at a horizontal distance of 36.0 m.
Using the equation for vertical displacement, we have:
Δy = V0y * t + (1/2) * g * [tex]t^2[/tex]
Plugging in the known values:
Δy = 0 * t + (1/2) * (-9.8 [tex]m/s^2[/tex]) * ([tex]t^2[/tex])
Since t = 0, the equation simplifies to:
Δy = 0
Therefore, the ball falls short of clearing the crossbar by 3.05 m vertically.
for more questions on height
https://brainly.com/question/80295
#SPJ8
A ball is thrown straight upward and returns to the thrower's hand after 2.55 s in the air. A second ball thrown at an angle of 31.0° with the horizontal reaches the same maximum height as the first ball. Answer parts a-b.
(a) The speed at which the first ball was thrown is approximately 12.6735 m/s.
(b) The speed at which the second ball was thrown is approximately 22.84 m/s.
To solve this problem, we'll use the kinematic equations of motion and the fact that the maximum height reached by both balls is the same.
(a) Let's start with the first ball. We know that the time of flight (t) is 2.55 s, and since the ball is thrown straight upward, the time to reach the maximum height is half of the total time of flight (t/2).
Using the equation for vertical displacement:
Δy = Vyi * t - (1/2) * g * [tex]t^2[/tex]
At the maximum height, the vertical displacement (Δy) is zero. So we can rewrite the equation as:
0 = Vyi * (t/2) - (1/2) * g * [tex](t/2)^2[/tex]
Rearranging the equation, we can solve for the initial vertical velocity (Vyi):
Vyi = (1/2) * g * (t/2)
Plugging in the known values:
Vyi = (1/2) * 9.8 [tex]m/s^2[/tex] * (2.55 s / 2)
Simplifying the equation, we find:
Vyi = 12.6735 m/s
Since the ball was thrown straight upward, the initial vertical velocity is equal to the final vertical velocity when the ball reaches the thrower's hand. Therefore, the speed at which the first ball was thrown is approximately 12.6735 m/s.
(b) Now let's move on to the second ball thrown at an angle of 31.0° with the horizontal. We know that the maximum height reached by this ball is the same as the first ball.
The vertical component of the initial velocity (Vyi) for the second ball can be calculated using the equation:
Vyi = V * sin(θ)
To find the total initial velocity (V), we need to know the horizontal component of the initial velocity (Vxi), which can be calculated as:
Vxi = V * cos(θ)
Since the maximum height reached by the second ball is the same as the first ball, the time taken to reach the maximum height will also be the same. Therefore, we can use the same time of flight (t) value.
Using the equation for the maximum height (H):
H = [tex](Vyi)^2[/tex] / (2 * g)
We can rewrite this equation in terms of V:
V = √(2 * g * H) / sin(θ)
Plugging in the known values:
V = √(2 * 9.8 [tex]m/s^2[/tex] * 12.6735 m) / sin(31.0°)
Simplifying the equation, we find:
V ≈ 22.84 m/s
Therefore, the speed at which the second ball was thrown is approximately 22.84 m/s.
for more questions on speed
https://brainly.com/question/6860269
#SPJ8
One strategy in a snowball fight is to throw a snowball at a high angle over level ground. Then, while your opponent is watching that snowball, you throw a second one at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown with a speed of 26.5 m/s. The first one is thrown at an angle of 58.0° with respect to the horizontal. Find a - At what angle should the second snowball be thrown to arrive at the same point as the first?, find b - How many seconds later should the second snowball be thrown after the first in order for both to arrive at the same time?
The second snowball should be thrown at an angle of approximately 48.196° with respect to the horizontal to arrive at the same point as the first snowball.
the second snowball should be thrown 4.582 seconds later in order for both to arrive at the same time.
To find the angle at which the second snowball should be thrown, we can use the fact that the horizontal displacement of both snowballs must be the same.
Let's first find the horizontal and vertical components of the velocity for the first snowball. The initial speed is 26.5 m/s, and the angle is 58.0° with respect to the horizontal.
The horizontal component of the velocity for the first snowball is given by:
V1x = V1 * cos(angle1)
= 26.5 m/s * cos(58.0°)
= 26.5 m/s * 0.530
= 14.045 m/s
Now, let's find the vertical component of the velocity for the first snowball:
V1y = V1 * sin(angle1)
= 26.5 m/s * sin(58.0°)
= 26.5 m/s * 0.848
= 22.472 m/s
Since the vertical acceleration is the same for both snowballs (gravity), the time it takes for both to arrive at the same point is the same. Therefore, we can use the time of flight of the first snowball to calculate the vertical displacement for the second snowball.
The time of flight for the first snowball can be calculated using the vertical component of velocity and the acceleration due to gravity:
t = (2 * V1y) / g
= (2 * 22.472 m/s) / 9.8 m/s²
≈ 4.582 s
Now, let's find the vertical displacement for the second snowball:
Δy = V1y * t - (0.5 * g * t²)
= 22.472 m/s * 4.582 s - (0.5 * 9.8 m/s² * (4.582 s)²)
≈ 103.049 m
To find the angle at which the second snowball should be thrown, we can use the horizontal displacement and the vertical displacement:
tan(angle2) = Δy / Δx
= 103.049 m / (2 * 14.045 m/s * t)
= 103.049 m / (2 * 14.045 m/s * 4.582 s)
≈ 1.085
Now, we can find the angle2 by taking the arctan of both sides:
angle2 ≈ arctan(1.085)
angle2 ≈ 48.196°
Therefore,
To find how many seconds later the second snowball should be thrown, we can simply use the time of flight of the first snowball, which is approximately 4.582 seconds.
for more such questions on horizontal
https://brainly.com/question/25825784
#SPJ8
Plsss help Bumper car A (282 kg) moving +2.82 m/s
makes an elastic collision with bumper
car B (210 kg) moving +1.72 m/s. What is
the velocity of car A after the collision?
(Unit = m/s)
Remember: right is +, left is -
Answer:
Approximately [tex]1.89\; {\rm m\cdot s^{-1}}[/tex].
Explanation:
Let [tex]m_{A}[/tex] and [tex]m_{B}[/tex] denote the mass of the two vehicles. Let [tex]u_{A}[/tex] and [tex]u_{B}[/tex] denote the velocity before the collision. Let [tex]v_{A}[/tex] and [tex]v_{B}[/tex] denote the velocity after the collision.
Since the collision is elastic, both momentum and kinetic energy should be conserved.
For momentum to conserve:
[tex]m_{A} \, v_{A} + m_{B} \, v_{B} = m_{A}\, u_{A} + m_{B}\, u_{B}[/tex].
For kinetic energy to conserve:
[tex]\displaystyle \frac{1}{2}\, m_{A} \, ({v_{A}}^{2}) + \frac{1}{2}\, m_{B} \, ({v_{B}}^{2}) = \frac{1}{2}\, m_{A}\, ({u_{A}}^{2}) + \frac{1}{2}\, m_{B}\, ({u_{B}}^{2})[/tex].
Simplify to obtain:
[tex]\displaystyle m_{A} \, ({v_{A}}^{2}) + m_{B} \, ({v_{B}}^{2}) = m_{A}\, ({u_{A}}^{2}) + m_{B}\, ({u_{B}}^{2})[/tex].
It is given that [tex]m_{A} = 282\; {\rm kg}[/tex], [tex]m_{B} = 210\; {\rm kg}[/tex], [tex]u_{A} = 2.82\; {\rm m\cdot s^{-1}}[/tex], and [tex]u_{B} = 1.72\; {\rm m\cdot s^{-1}}[/tex]. The value (in [tex]{\rm m\cdot s^{-1}}[/tex]) of [tex]v_{A}[/tex] and [tex]v_{B}[/tex] can be found by solving this nonlinear system of two equations and two unknowns:
[tex]\left\lbrace \begin{aligned} & m_{A} \, v_{A} + m_{B} \, v_{B} = m_{A}\, u_{A} + m_{B}\, u_{B} \\ & m_{A} \, ({v_{A}}^{2}) + m_{B} \, ({v_{B}}^{2}) = m_{A}\, ({u_{A}}^{2}) + m_{B}\, ({u_{B}}^{2})\end{aligned}\right.[/tex].
[tex]\left\lbrace \begin{aligned} & 282 \, v_{A} + 210 \, v_{B} = 282\, (2.82) + 210\, (1.72) \\ & 282 \, ({v_{A}}^{2}) + 210 \, ({v_{B}}^{2}) = 282\, ({2.82}^{2}) + 210\, ({1.72}^{2})\end{aligned}\right.[/tex].
Solving this system gives two possible sets of solutions:
[tex]\left\lbrace\begin{aligned}v_{A} &\approx 1.89\; {\rm m\cdot s^{-1}} \\ v_{B} &\approx 2.98\; {\rm m\cdot s^{-1}}\end{aligned}\right.[/tex].[tex]\left\lbrace\begin{aligned}v_{A} &\approx 2.82\; {\rm m\cdot s^{-1}} \\ v_{B} &\approx 1.72\; {\rm m\cdot s^{-1}}\end{aligned}\right.[/tex].However, the second set of solutions is invalid since it suggests that the velocity of the two vehicles stayed unchanged after the collision. Hence, only the first set of solutions ([tex]v_{A} &\approx 1.89\; {\rm m\cdot s^{-1}}[/tex], [tex]v_{B} &\approx 2.98\; {\rm m\cdot s^{-1}}[/tex]) is valid.
Therefore, the velocity of vehicle [tex]A[/tex] would be approximately [tex]1.89\; {\rm m\cdot s^{-1}}[/tex] after the collision.
The minimum wage jumps from the current $7.25/hour to $15.00/hour. This has the ef-
fect of causing a shift in demand for restaurant dinners. Eventually, a large number of en-
trepreneurs see this demand and enter the restaurant business, creating a shift in sup-
ply. Using the graph outlines provided below, mark label the following:
1. Initial demand (D1), initial supply (S1) and initial equilibrium (E1).
2. The shift in demand (D2) and corresponding new equilibrium (E2).
3. The shift in supply (S2) and the corresponding new equilibrium (E3).
Use arrows to show the direction of the supply and demand curve shifts from D1 to D2,
and from S1 to S2.
In this case, the demand (D1) moves to the left (D2), this also happens with supply (S1) leading to (S2), moreover, the intersections between these lines represent E1, E2, and E3.
What happens to the demand and supply in this case?Due to an increase in salary, it is expected the demand for dinners increase, which means this line would move to the left. This occurs as a higher wage for everyone implies people are more willing to pay for dinner than before.
This change would also mean restaurants are likely to provide more quantity, which increases the supply, and therefore in this process the equilibrium changes.
Learn more about demand in https://brainly.com/question/30402955
#SPJ1
7. Name the type of mirror used:-
(i) as a reflector in search light (iii) by the dentist
(ii) as side view mirror in vehicles. (iv) as a shaving mirror
Answer:
1. Concave mirror
2. Convex mirror
3. Concave mirror
4. Concave mirror
Explanation:
Concave mirror is placed near on an object it displays a virtual image
Particles q₁ = -66.3 μC, q2 = +108 μC, and
q3 = -43.2 μC are in a line. Particles q₁ and q2 are
separated by 0.550 m and particles q2 and q3 are
separated by 0.550 m. What is the net force on
particle q₂?
Remember: Negative forces (-F) will point Left
Positive forces (+F) will point Right
Use your knowledge of conjunction, disjunction, negation and truth tables to determine whether the argument is valid or invalid or unknown.
~( R · S )
~ R · P / ~ S
Using truth tables, we determined the validity of the argument ~(R · S) ~ R · P / ~ S. By examining the truth values of the expression ~ S · P, we found that it can be both true and false in different scenarios. Therefore, the argument is invalid.
To determine the validity of the argument ~(R · S) ~ R · P / ~ S, we can use truth tables. First, let's assign truth values to the variables:For more questions on truth tables
https://brainly.com/question/31364284
#SPJ8
.An electron of charge 1.6 x 10-19is situated in a uniform electric filed strength of 120 vm-1 Calculate the force acting on it
The force acting on the electron is 1.92 x 10^-17 N.
The problem states that an electron of charge 1.6 x 10^-19 is located in a uniform electric field of 120 Vm^-1, and it asks us to determine the force acting on it.
We can use Coulomb's law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. If the charges are of opposite signs, the force is attractive, while if the charges are of the same sign, the force is repulsive.
The formula for Coulomb's law is F = kq1q2/r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.
Since the electron has a charge of 1.6 x 10^-19 C, and the electric field strength is 120 Vm^-1, we can use the equation F = qE to find the force acting on it.
F = qE = (1.6 x 10^-19 C)(120 Vm^-1) = 1.92 x 10^-17 N.
Therefore, the force acting on the electron is 1.92 x 10^-17 N.
For more such questions on force, click on:
https://brainly.com/question/12785175
#SPJ8
As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 52.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.80 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. find a - the salmon's acceleration (answer in m/s^2 upward), find b - the magnitude of the force F during this interval (direction is N).
Answer:
To solve this problem, we need to use some principles of physics, specifically Newton's second law (F=ma) and the equations of motion. Here are the steps:
1. Calculate the acceleration (a)
We can use the equation of motion to find the acceleration:
v_f^2 = v_i^2 + 2a*d
where:
v_f = final velocity = 6.80 m/s
v_i = initial velocity = 3.00 m/s
d = distance = 2/3 of the length of the fish = 2/3 * 1.50 m = 1.00 m
a = acceleration (which we are trying to find)
Rearranging the equation to solve for a gives us:
a = (v_f^2 - v_i^2) / (2*d)
2. Calculate the magnitude of the force F
Once we have the acceleration, we can use Newton's second law (F=ma) to calculate the force. The net force acting on the fish as it jumps out of the water is the difference between the upward force F exerted by the tail fin and the downward force due to gravity (mg). The net force is also equal to the product of the mass of the fish and its acceleration (ma). Therefore, we have:
F - mg = ma
Rearranging this equation to solve for F gives us:
F = ma + mg
Now let's plug in the numbers and do the calculations.
First, let's find the acceleration:
a = (v_f^2 - v_i^2) / (2*d)
a = (6.80 m/s)^2 - (3.00 m/s)^2) / (2*1.00 m)
a = (46.24 m^2/s^2 - 9.00 m^2/s^2) / 2 m
a = 37.24 m^2/s^2 / 2 m
a = 18.62 m/s^2
The salmon's acceleration is 18.62 m/s^2 upward.
Next, let's find the force F. We know the mass of the fish is 52.0 kg, and the acceleration due to gravity is approximately 9.8 m/s^2. So,
F = ma + mg
F = (52.0 kg)(18.62 m/s^2) + (52.0 kg)(9.8 m/s^2)
F = 969.24 N + 509.6 N
F = 1478.84 N
So, the magnitude of the force F exerted by the salmon's tail fin during this interval is approximately 1479 N.
Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic force at any point in the magnetic field will act in
Question 17 options:
A)
a clockwise direction.
B)
a counterclockwise direction.
C)
the direction opposite to the current.
D)
the same direction as the current.
Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic force at any point in the magnetic field will act in option c) the direction opposite to the current.
Lenz's law is the law that governs the direction of magnetic force.According to Lenz's law, magnetic fields induced by an electric current have a polarity such that the current's magnetic field opposes any change in current flow. Based on this law, the induced current must produce a magnetic field that opposes the current that produced it.
If the current is flowing towards us, the induced magnetic field must flow in the opposite direction to the current. Therefore, the direction of the lines of magnetic force at any point in the magnetic field will act in the direction opposite to the current.Hence, the correct option is C) the direction opposite to the current.
Know more about current here:
https://brainly.com/question/1100341
#SPJ8
A rifle is fired straight up, and the bullet leaves the rifle with an initial velocity
magnitude of 630 m/s. After 5.00 s, the velocity is 581 m/s. At what rate is the bullet
decelerated?
Explanation:
acceleration definition = change in velocity / change in time =
(630 - 581) m/s / 5 s = 49 / 5 = 9.8 m/s^2 was the deceleration
Look at the diagram describing the
energy changes that occurred in a
collision between two identical cars.
Describe, in words, a possible
scenario for the collision. Identify in
your scenario a description of the
relative sizes of the cars, their speed
of motion and any energy losses or
gains that might have occurred for
each vehicle involved in the collision.
In addition to the energy losses described above, there may also be other losses, such as the loss of life.
How to explain the informationIn this scenario, the cars are identical in size and speed. However, in a real-world collision, the cars may not be identical. For example, one car may be heavier than the other. In this case, the heavier car would have more momentum and would transfer more energy to the lighter car. This could result in more damage to the lighter car.
The speed of the cars also plays a role in the severity of the collision. The faster the cars are traveling, the more kinetic energy they have. This means that the collision will be more forceful and will result in more damage.
In addition to the energy losses described above, there may also be other losses, such as the loss of life. In a serious collision, the occupants of the cars may be killed or seriously injured. This is a tragic loss of life that could have been avoided if the drivers had been more careful.
Learn more about energy on
https://brainly.com/question/13881533
#SPJ1
WHOEVER ANSWERS IS THE BRAINLIEST!!! PLS HELP!!
Based on the information, we can infer that the temperature on the west and east coasts of the United States is higher than in the central part at latitude 35° North.
What do we see in the image?In the image you can see the map of the United States and two latitudinal lines of 35° and 45° North. Additionally we see the different temperatures that exist in various cities or locations in the United States.
Based on this information, we can infer that the temperatures on the east and west coasts are higher than the temperatures recorded in the central part. For example, at 35° latitude, the coasts register temperatures of more than 60°F while the central zone registers lower temperatures between 36 and 59°F.
Learn more about temperature in: https://brainly.com/question/7510619
#SPJ1