Which type of force is needed to lift the weight?
A friction
B gravity
C pull
D push
b.gravity have a great day:)
(TCO 6) A car travelling at 70 kilometers per hour hits a block wall and comes to a complete stop. If the time for the car to reach a complete stop is 450 ms and the wall does not move, how much force was exerted on the car? The mass of the car is 1500 kg.
Answer:
F = 64800 N
Explanation:
Given that,
Initial speed of a car, u = 70 km/h = 19.44 m/s
Finally it comes to a stop, v = 0
Time,t = 450 ms
The mass of the car is 1500 kg
We need to find the force exerted on the car. The force exerted on an object is given by :
F = ma
So,
[tex]F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{1500\times (19.44-0)}{450\times 10^{-3}}\\\\F=64800\ N[/tex]
So, the required force is equal to 64800 N.
What is the resistance force when you walk up an inclined plane?
Please help quick!
The resistance force which is the type of force that oppose the motion when we walk on an inclined plane is mgcos (-).
What is Resistance force?
A Resistance force is defined as a force that acts to oppose the motion or motion of an object that is an opposing force. Resistance force opposes the moving body to move in the opposite direction. Resistive force is described as the force, or the vector sum of several forces where the direction is opposite to the motion of a body is also called friction during sliding and/or rolling.
Some examples of resistive force are friction, where an object is held back from sliding on a surface, while another form of resistive force is fluid resistance in which the object is trying to plow through a fluid material.
Thus, the resistance force which is the type of force that oppose the motion when we walk on an inclined plane is mgcos (-).
Learn more about Resistance force, here:
https://brainly.com/question/2285158
#SPJ6
Which point on the standing wave is a node?
The point on the standing wave which is referred to as a node is point B and is denoted as option B.
What is Standing wave?This is also called stationary wave and it is referred to as a combination of two waves moving in opposite directions, each having the same amplitude and frequency.
A node is referred to as a point along a standing wave where the wave has minimum amplitude which is therefore denoted as point B in the graph given below.
Read more about Amplitude here https://brainly.com/question/19036728
#SPJ1
The speed of a wave is 1500 m/s. What is the frequency of the wave if the wavelength is 2 m?
O 1502 Hz
O 750 Hz
O 375 Hz
O 300 Hz
Answer:
750 Hz
Explanation:
speed = freq * wl
1500 = f * 2
f = 750 Hz
You leave a pastry in the refrigerator on a plate and ask your roommate to take it out before youget home so you can eat it at room temperature, the way you like it. Instead, your roommateplays video games for hours. When you return, you notice that the pastry is still cold, but thegame console has become hot. Annoyed, and knowing that the pastry will not be good if it ismicrowaved, you warm up the pastry by unplugging the console and putting it in a clean trashbag (which acts as a perfect calorimeter) with the pastry on the plate. After a while, you find thatthe equilibrium temperature is a nice, warmTeq.. You know that the game console has a mass ofm1. Approximate it as having a uniform initial temperature ofT1. The pastry has a mass ofm2and a specific heat ofc2, and is at a uniform initial temperature ofT2. The plate is at the sameinitial temperature and has a mass ofm3and a specific heat ofc3. What is the specific heat ofthe console
Answer:
[tex]c_{e1} = \frac{(m_2 c_{e2} \ + m_3 c_{e3} ) \ (T_{Teq} - T_2) }{m_1 (T_1 - T_{eq}) }[/tex]
Explanation:
This is a calorimeter problem where the heat released by the console is equal to the heat absorbed by the cupcake and the plate.
Q_c = Q_{abs}
where the heat is given by the expression
Q = m c_e ΔT
m₁ c_{e1) (T₁-T_{eq}) = m₂ c_{e2} (T_{eq} -T₂) + m₃ c_{e3} (T_{eq}- T₁)
note that the temperature variations have been placed so that they have been positive
They ask us for the specific heat of the console
[tex]c_{e1} = \frac{(m_2 c_{e2} \ + m_3 c_{e3} ) \ (T_{Teq} - T_2) }{m_1 (T_1 - T_{eq}) }[/tex]
Which statement best explains the difference between longitudinal and transverse waves?
A: Longitudinal waves have troughs, while transverse waves have crests.
B: Longitudinal waves transfer energy while transverse waves do not
C: Longitudinal waves produce energy, while transverse waves consume energy
D: Particles in longitudinal waves travel in the direction of the wave, while particles in transverse waves travel perpendicular to the wave.
pls put the letter in the answer
Answer:
the answer here would be A
The statement that best explains the difference between longitudinal and transverse waves is D: Particles in longitudinal waves travel in the direction of the wave, while particles in transverse waves travel perpendicular to the wave. The correct option is D.
What is a wave?A wave is a disturbance that propagates through space and time, transferring energy without transferring matter. Waves can be found in various forms, such as sound waves, light waves, and water waves.
A transverse wave is a type of wave where the particles of the medium vibrate perpendicular to the direction of wave propagation.
In other words, the motion of the particles is at right angles to the direction of the energy transfer. A common example of transverse waves is light waves.
A longitudinal wave is a type of wave where the particles of the medium vibrate parallel to the direction of wave propagation. The motion of the particles is in the same direction as the energy transfer. An example of longitudinal waves is sound waves.
In a longitudinal wave, particles in the medium oscillate back and forth along the direction of the wave, creating areas of compression and rarefaction. In a transverse wave, particles in the medium oscillate up and down, creating crests and troughs.
Therefore, the correct statement is Particles in longitudinal waves travel in the direction of the wave, while particles in transverse waves travel perpendicular to the wave(D).
To know more about the amplitude of a wave click:
https://brainly.com/question/29775285
#SPJ3
Before we make measurements, let's make sure we understand the circuit. 1. Select all of the following that correctly describe what a volt meter and ammeter measure. Select all that apply: A volt meter measures the potential difference (or voltage) across a circuit element. A volt meter measures the potential difference (or voltage) passing through a circuit element. A ammeter measures the electric current passing through a circuit element. A ammeter measures the electric current across a circuit element.
Answer:
the correct answers are a and c
Explanation:
In an electrical circuit there are two important quantities to measure, such as voltage and current.
Voltage is the potential difference between two points in a circuit
current is the number of electrons you pass through a given point per unit of time.
Now let's analyze each answer
a) true. The potential difference across an element
b) False. The potential difference is u field there is no physical entity that moves
c) True. The current is electrons in motion and these pass through the given element
d) False. There is a physical quantity that passes through the point
the correct answers are a and c
A disk of a radius 50 cm rotates at a constant rate of 100 rpm. What distance in meters will a point on the outside rim travel during 30 seconds of rotation?
Answer:
the distance in meters traveled by a point outside the rim is 157.1 m
Explanation:
Given;
radius of the disk, r = 50 cm = 0.5 m
angular speed of the disk, ω = 100 rpm
time of motion, t = 30 s
The distance in meters traveled by a point outside the rim is calculated as follows;
[tex]\theta = \omega t\\\\\theta = (100 \frac{rev}{\min} \times \frac{2\pi \ rad}{1 \ rev} \times \frac{1\min}{60 s} ) \times (30 s)\\\\\theta = 100 \pi \ rad\\\\d = \theta r\\\\d = 100\pi \ \times \ 0.5m\\\\d = 50 \pi \ m = 157.1 \ m[/tex]
Therefore, the distance in meters traveled by a point outside the rim is 157.1 m
A 5kg block rests on a 30° incline. The coefficient of static friction between the block and the incline is 0.20. How large a horizontal force must push on the block if the block is to be on the verge of sliding. a) up the incline, b) down the incline ?
Answer:
Hope It Help
Explanation:
That's all I know
Which statement correctly describes the organization of cells, tissues, organs, and organ systems within a human body?
A.
Specialized organs work together in organ systems to form cells that come together in tissues.
B.
Specialized cells work together in organs to form tissues that come together in organ systems.
C.
Specialized cells work together in tissues to form organs that come together in organ systems.
D.
Specialized tissues work together in organ systems to form cells that come together in organs.
What process changes a liquid to a solid?
A. Evaporation
B. Melting
C. Adding heat
D. Freezing
Thank you!!!<3
Answer:
D. Freezing?
Explanation:
Get water, put it in the freezer, turns into ice after a few hours.
8. Before leaving the ground an airplane traveling with constant acceleration makes a run on the
runway of 1800 meters in 12 seconds. Determine:
a. Acceleration
b. Speed at which it leaves the ground
c. Distance traveled during the first and twelfth seconds
Answer:
[tex]\color{Blue}\huge\boxed{Answer} [/tex]
B. Speed at which it leaves the ground5.) This car battery
measures at 12.6 V
with a voltmeter. If it
produces 0.53 A of current for
a vehicle's headlight when
connected, what is the
resistance of the headlight
bulb?
Answer:
R =V/ I =12.6 ÷ 0.53= 27.77 ohm
2) __________ are chemical messengers produced by the endocrine system and released into the bloodstream.
BRAINLIEST!
NO FILE HOSTING LINKS!!!
Answer:
Hormones
Explanation:
The glands that make up the endocrine system produce chemical messengers called hormones that travel through the blood to other parts of the body. Important endocrine glands include the pituitary, thyroid, parathyroid, thymus, and adrenal glands
Determine the kinetic energy of a 2000 kg roller coaster car that is moving at the speed of 10 ms
Answer:
[tex]\boxed {\boxed {\sf 100,000 \ Joules}}[/tex]
Explanation:
Kinetic energy is energy due to motion. The formula is half the product of mass and velocity squared.
[tex]E_k= \frac{1}{2} mv^2[/tex]
The mass of the roller coaster car is 2000 kilograms and the car is moving 10 meters per second.
m= 2000 kg s= 10 m/sSubstitute these values into the formula.
[tex]E_k= \frac{1}{2} (2000 \ kg ) \times (10 \ m/s)^2[/tex]
Solve the exponent.
(10 m/s)²= 10 m/s * 10 m/s= 100 m²/s²[tex]E_k= \frac{1}{2} (2000 \ kg ) \times (100 \ m^2/s^2)[/tex]
Multiply the first two numbers together.
[tex]E_k= 1000 \ kg \times (100 \ m^2/s^2)[/tex]
Multiply again.
[tex]E_k= 100,000 \ kg*m^2/s^2[/tex]
1 kilogram square meter per square second is equal to 1 Joule. Our answer of 100,000 kg*m²/s² is equal to 100,000 Joules.[tex]E_k= 100,000 \ J[/tex]
The roller coaster car has 100,000 Joules of kinetic energy.
determine the total voltage in the circuit below the ammeter is reading 4 A
Answer:
6 V.
Explanation:
We'll begin by calculating the equivalent resistance of the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 3 Ω
Resistor 2 (R₂) = 3 Ω
Equivalent Resistance (R) =?
Since the two resistor are in parallel connection, the equivalent resistance can be obtained as:
R = (R₁ × R₂) / (R₁ + R₂)
R = (3 × 3) / (3 + 3)
R = 9/6
R = 1.5 Ω
Finally, we shall determine the total voltage in the circuit. This can be obtained as follow:
Current (I) = 4 A
Equivalent Resistance (R) = 1.5 Ω
Total voltage (V) =?
V = IR
V = 4 × 1.5
V = 6 V
Thus, the total voltage in the circuit is 6 V
An object has 4J of kinetic energy and 16J of potential energy. How much mechanical energy does it have?
A. 64J
B. 12J
C. 20J
D. 4J
Answer: C. 20J
Explanation: im pretty sure sorry if im wrong :(
follow the chain of energy from a plant to a person riding a skateboard. explain what type of energy is being used at each step.
PLEASE HELP!!!!
Answer:
Answer is in a photo. I can only upload it to a file hosting service. link below!
bit
.ly
/3a
8Nt8
12. A glass plate 1 cm thick, of refractive index 1.50, is placed
between a point source of light of wave length 6000 Å and a
screen. The distance from the source to the screen is 4 cm.
How many waves are there between the source and the
screen?
Answer:
7
Explanation:
The light travels a total of 4 cm to the screen, of that, 3 cm is in air and 1 cm is in the glass plate.
The total number of wavelengths of light between the source and screen is just the number of wavelengths in air plus the number in the glass.
To determine the number of wavelengths in air, divide the thickness of air (3 cm) by the wavelength of the light (6000 Angstroms), converting units as needed.
The refractive index of the glass is 1.5. That means that the velocity of propagation of the light in the glass is 2/3 of what it is in air, and so the wavelength of the light in glass is 2/3 of what it is in air. So, divide the thickness of glass (1 cm) by the wavelength of the light in glass (6000 * 2/3).
Add the two values for the final answer
Calculate the speed of an object that travels 75m in 15s.
represent 11 by 9 on a number line
One of the scientists suggests that he can build a
cooling system for the theoretical photovoltaic cells
Experiment 2, which will keep the cells 1°C cooler
dan normal but decrease their efficiency by 1%. The
teoretical photovoltaic cells capturing which frequency
ranges
, if any, would benefit from this cooling system?
Answer: SORRY
SORRY AM DOING IT FOR POINTS
Explanation:
a car is traveling with a velocity of 40 m/s and has a mass of 1120kg the car has kinetic energy
A house is lifted from its foundations onto a truck for relocation. The house is pulled upward by a net force of 2850 N. This force causes the house to move from rest to an upward speed of 15 cm/s in 5.0 s. What is the mass of the house?
Answer:
m = 95000 kg
Explanation:
Given that,
Net force acting on the house, F = 2850 N
Initial speed, u = 0
Final speed, v = 15 cm/s = 0.15 m/s
We need to find the mass of the house. Let the mass be m. We know that the net force is given by :
F = ma
Where
a is the acceleration of the house.
So,
[tex]F=m\dfrac{v-u}{t}\\\\m=\dfrac{Ft}{(v-u)}\\\\m=\dfrac{2850\times 5}{(0.15-0)}\\\\m=95000\ kg[/tex]
So, the mass of the house is equal to 95000 kg.
1. Fill in the blanks. (3 pts)
a.
is the amount of matter in an object.
b.
is the unit of measurement for force.
c.
p = m* v is
Answer:
a) mass
b) Newtons
c) momentum formula where p stands for momentum, m stands for mass, and v stands for velocity
Hope this helps!
Answer:
a mass
b acceleration
mass is the matter in an object
force is a pull or push of an object or body
What structure is represented by the letter
C?
PLEASE HELP!!!!!
Choose 1 answer:
А
Lysosome
B
Nucleus
C
Vacuole
D
Mitochondria
A car travelling at 25 m/s has momentum 20,000 Kgm/s, calculate the mass of the car.
[tex] \Large {\underline { \sf {Required \; Solution :}}}[/tex]
We have ―
Velocity of the car, v = 25 m/sMomentum of the car, P = 20,000 kg.m/sWe have been asked to calculate the mass of the car, m.
[tex]\qquad\implies\boxed{\red{\sf{ P = mv}}}\\[/tex]
P denotes momentumm denotes massv denotes velocity[tex] \quad \twoheadrightarrow\sf { 20000 = 25m} \\ [/tex]
[tex] \quad \twoheadrightarrow\sf { \cancel{\dfrac{20000}{25}} = m} \\ [/tex]
[tex]\quad\twoheadrightarrow\boxed{\red{\sf{ m = 800 \; kg}}}\\[/tex]
Therefore, mass of the car is 800 kg.
describe the human condition before Science and technology was practice.
A disk of radius 25 cm spinning at a rate of 30 rpm slows to a stop over 3 seconds. What is the angular acceleration? B. How many radians did the disk turn while stopping ? C. how many revolutions?
Answer:
A. The angular acceleration of the disk is -1.047 radians per square second.
B. The disk turns 4.715 radians while stopping.
C. The disk did 0.750 revolutions while stopping.
Explanation:
A. In this case, the disk is deceleration at a constant rate. Hence, the angular acceleration experimented by the object ([tex]\alpha[/tex]), in radians per square second, can be found by means of this kinematic expression:
[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex] (1)
Where:
[tex]\omega_{o}[/tex] - Initial angular speed, in radians per second.
[tex]\omega[/tex] - Final angular speed, in radians per second.
[tex]t[/tex] - Time, in seconds.
If we know that [tex]\omega_{o} \approx 3.142\,\frac{rad}{s}[/tex], [tex]\omega = 0\,\frac{rad}{s}[/tex] and [tex]t = 3\,s[/tex], then the angular acceleration of the disk is:
[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex]
[tex]\alpha = -1.047\,\frac{rad}{s^{2}}[/tex]
The angular acceleration of the disk is -1.047 radians per square second.
B. The change in position of the disk ([tex]\Delta \theta[/tex]), in radians, is determined by the following kinematic formula:
[tex]\Delta \theta = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot \alpha}[/tex] (2)
If we know that [tex]\omega_{o} \approx 3.142\,\frac{rad}{s}[/tex], [tex]\omega = 0\,\frac{rad}{s}[/tex] and [tex]\alpha = -1.047\,\frac{rad}{s^{2}}[/tex], then the change in position is:
[tex]\Delta \theta = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot \alpha}[/tex]
[tex]\Delta \theta = 4.715\,rad[/tex]
The disk turns 4.715 radians while stopping.
C. A revolution equals 2π radians, then, then number of revolutions done by the disk while stopping is found by simple rule of three:
[tex]\Delta \theta = 4.715\,rad \times \frac{1\,rev}{2\pi\, rad}[/tex]
[tex]\Delta \theta = 0.750\,rev[/tex]
The disk did 0.750 revolutions while stopping.