During excitation-contraction coupling in cardiac contractile myocytes, the process C occurs and not A and B.
Because this is what is known as calcium-induced calcium release, which occurs when calcium binds to the RyR and opens this channel, option c is the correct one.
Option a, is wrong since there are no neuromuscular connections in this situation because action potentials in cardiac myocytes are initiated by cardiac conducting system cells and spread through gap junctions.
Option b, is erroneous since the SA node contains amusing channels that induce the SA node to depolarize (or hyperpolarize), but not the heart contractile myocytes.
To know more about excitation-contraction coupling, visit,
https://brainly.com/question/13169862
#SPJ4
two normal individuals have a child who has cystic fibrosis, an autosomal recessive disease. what were the chances of this happening? (if necessary, draw a punnett square to determine the answer.)
the chances of two normal individuals having a child with cystic fibrosis is 25% or 1 in 4.
In order for two normal individuals to have a child with cystic fibrosis, both parents must be carriers of the recessive cystic fibrosis gene. Let's represent the normal gene as "A" and the cystic fibrosis gene as "a".
When two carriers of the cystic fibrosis gene have a child, the Punnett square for the cross would be:
A A
A AA AA
a Aa Aa
As you can see, in this case, each parent has one normal allele (A) and one cystic fibrosis allele (a). When these gametes combine, there is a 25% chance (1 in 4) that the child will inherit two copies of the cystic fibrosis allele (aa), and therefore have cystic fibrosis.
for such more questions on cystic fibrosis
https://brainly.com/question/2290129
#SPJ11
the life cycle of a human begins with the production of gametes by meiosis and the consecutive growth of the organism because of
Answer:
mitosis.
Explanation:
Human somatic cells have 46 chromosomes, 23 from each parent.
The life cycle of a human begins with the production of gametes by meiosis and the consecutive growth of the organism because of mitosis.
What is the life cycle of a human being?
A human life cycle is a period that begins with the formation of gametes through the method of meiosis and is completed with the generation of the following generation. Mitosis is the mechanism of cell division that enables organisms to develop from a single cell to a multicellular organism as well as aids in the restoration of tissues. The human life cycle.
The human life cycle is divided into the following stages:
Gametogenesis: The production of gametes, also known as gametogenesis, is the first step in the human life cycle. Spermatogenesis produces sperm in males, whereas oogenesis produces ova in females.
Fertilization: The fertilization stage, which takes place when the sperm and egg merge to form a zygote, follows gametogenesis. The zygote, which is the initial cell of the fresh organism, results from this union.
Embryonic Development: The period from fertilization to the end of the eighth week of pregnancy is known as embryonic development. During this stage, the zygote is formed into a blastocyst and then into an embryo, which will grow into a fetus.
Fetal Development: Fetal development takes place between the ninth week of pregnancy and birth. During this time, the fetus grows and evolves to become a human baby. At the conclusion of this stage, the baby is delivered via birth.
To know more about mitosis click here:
brainly.com/question/26678449
#SPJ11
Can anyone help me out with this?
Taxonomy refers to the classification of different organisms into different categories according to their characteristics and relationship. Categories are species, genus, family, order, class, phylum, kingdom, domain.
What is taxonomy?
Taxonomy is the study of different organisms and their classification into different categories. These classifications are done according to the organisms' morphological and molecular characteristics and evolutionary relationships. Finally, a binomial name is assigned to each of them.
The classification categories are:
Domains are the highest taxonomic category in which living beings can be grouped or divided. There are three domains: archaea, bacteria, and eukarya.The archaea domain is composed of prokaryotic unicellular The bacteria domain is composed of a wide group of unicellular prokaryotic microorganisms.The eukarya domain is composed of unicellular or pluricellular organisms with eukaryotic cells.Kingdom: Includes different phyla closely related. The bacteria domain includes the Eubacteria kingdom. The archaea domain includes the archaebacteria kingdom. The eukarya domain is divided into four kingdoms: Protist, Fungi, Plantae, and Animalia. Phylum: Includes different classes closely related.Class: Includes different orders closely relates.Order: Includes different families closely relatedFamily: Includes different genera closely relatesGenus: Includes many species.Species: Includes many subspecies.In the exposed table, from the most specific classification to the most general one,
speciesgenusfamilyorderclassphylumkingdomdomainYou can learn more abouy taxonomic classifications at
https://brainly.com/question/28389390
#SPJ1
In your own words summarize what you learned during the course of this activity. Plant, animal and algae cells
This project taught me how to correctly set a slide up for viewing. To sharpen the image coming from the ocular, I learned how and where to focus a microscope. How to see the various components of a cell by illuminating the membrane, cytoplasm, nucleus, ribosomes, lysosomes, and mitochondria with dye.
For example, the cell inside the leaves known as Palisade Mesophy is in charge of producing food through photosynthesis through a process known as photosynthesis, and as a result, they also produce oxygen that we require. Cells make up all living things, both fauna and flora, including us people.This project taught me how to correctly set a slide up for viewing. To sharpen the image coming from the ocular, I learned how and where to focus a microscope. How to see the various components of a cell by illuminating the membrane, cytoplasm, nucleus, ribosomes, lysosomes, and mitochondria with dye.
Learn more about cells
https://brainly.com/question/18343647
#SPJ1
explain the experimental observations regarding the molecular structure of dna. what was the percentage increase in the overall hyperchromic effect? give a qualitative answer regarding the purity of the dna.
A low increase in the hyperchromic effect may indicate that the DNA sample is relatively pure and well-structured, whereas a high increase in the hyperchromic effect may suggest that the DNA sample is impure or has structural abnormalities.
The molecular structure of DNA was first elucidated through a series of experimental observations, including X-ray crystallography studies by Rosalind Franklin and Maurice Wilkins, and model-building studies by James Watson and Francis Crick.
One key observation that helped elucidate the structure of DNA was the hyperchromic effect. When DNA is exposed to increasing levels of UV light, the absorption of light by the DNA molecules increases, causing a measurable increase in the overall absorption of light (i.e., the hyperchromic effect).
The percentage increase in the overall hyperchromic effect can vary depending on the purity and structure of the DNA sample being studied, as well as the wavelength and intensity of the UV light used.
In general, however, a higher percentage increase in the hyperchromic effect indicates a higher degree of DNA denaturation or unfolding, which can be indicative of impurities or structural abnormalities in the DNA sample.
To know more about hyperchromic effect here
https://brainly.com/question/14776700
#SPJ4
Joaquin is studying the environmental impacts in a region. What type of
environmental impact is Joaquin MOST likely looking for?
(1 point)
A. an exceptionally good soybean crop
B. a sudden change in the weather
C. a new type of vegetable introduced to a community
D. a stream polluted by pesticides from a commercial farm
Answer: a sudden change in the weather
Explanation:
carbohydrates are used by the body primarily for group of answer choices short-term energy. antioxidants. tissue growth and healing. sustained energy.
Carbohydrates are used by the body primarily for short-term energy.
When consumed, carbohydrates are broken down into glucose, which is the primary fuel source for the body's cells. Glucose can be quickly and easily metabolized to produce ATP, the molecule that cells use to store and transport energy. This makes carbohydrates an excellent source of energy for activities that require immediate energy, such as exercise, as well as for supporting essential bodily functions such as brain and organ function. However, carbohydrates can also be stored in the body in the form of glycogen and used to provide sustained energy for longer periods of time.
To know more about Carbohydrates click here:
brainly.com/question/13804883
#SPJ4
So, what is natural selection? Natural selection is the process by which traits become more or less common in a population, based on the reproductive success, over many generations, of individuals carrying the traits. It is very important to note that natural selection occurs to populations of organisms, not to individuals. However, it is the adaptations of individuals that can lead to shifts in populations. But how? If individuals are well adapted to current conditions, they will have greater fitness and reproductive success. If individuals are not well adapted to current conditions, they will have lower fitness and reproductive success. Traits that cause lower fitness and reproductive success will become increasingly rare, and the underlying genes can eventually be lost from the population’s gene pool. It is very important to note that natural selection can only work on existing variation within a population. Such variations often arise by mutation, a change in some part of the genetic code for a trait. Mutations arise by chance and without foresight for the potential advantage or disadvantage of the mutation. In other words, variations do not arise because they are needed.
Natural selection is the process through which features spread or diverge within a population based on the reproductive success of individuals with those traits over many generations.
What method does natural selection use?Natural selection is the method by which populations of living things adapt and transform. Because a population's members are naturally diverse, each individual is unique in certain aspects.This variety indicates that some people have characteristics that are more environment-appropriate than others.
Why is natural selection used as a name?The process of choosing organisms with particular qualities is known as "natural selection," in contrast to "artificial selection," such as when people raise sheep to make them more woolly and docile.
To know more about reproductive visit:-
https://brainly.com/question/7464705
#SPJ1
quyizlet red blood cells, white blood cells and platelets are all formed elements of blood group of answer choices true no answer text provided. no answer text provided. false
The statement is red blood cells, white blood cells and platelets are all formed elements of blood is true.
Blood is made up of two main factors tube and forming rudiments. Tube is the liquid part of blood, while forming factors are the cellular element. Red blood cells, white blood cells and platelets.
Red blood cells are responsible for transporting oxygen from the lungs to the apkins of the body. They're double- sided concave discs filled with hemoglobin, an oxygen- binding protein.
White blood cells play an important part in the vulnerable system. They're involved in feting and fighting infections and other foreign substances in the body. formerly produced, these cells are released into the bloodstream to perform their separate functions.
Learn more about Blood cells
https://brainly.com/question/17890844
#SPJ4
you have a mystery hormone (agonist), and to test the nature of the agonist you add it to a dish of cultured liver cells. shortly afterward you observe an increase in protein kinase activity. in a second experiment, you find the kinase is inhibited if you add an adenylate cyclase inhibitor to the cells prior to adding your mystery agonist. which kind of receptor system is the agonist signaling through?
The receptor system is the agonist signalling through a G-protein coupled receptor (GPCR) system.
What are G protein-coupled receptor systems?G protein-coupled receptors (GPCRs) аre а fаmily of membrаne proteins thаt plаy а criticаl role in numerous physiologicаl аnd pаthophysiologicаl processes. They аre one of the most importаnt clаsses of drug tаrgets аnd аre involved in vаrious cellulаr signаling pаthwаys.
G protein-coupled receptors аct аs а switch thаt is turned on when а ligаnd (such аs а hormone, neurotrаnsmitter, or drug) binds to the receptor. This binding cаuses а conformаtionаl chаnge in the receptor, which аctivаtes аn intrаcellulаr signаling pаthwаy through the аssociаted G protein. This signаl is then аmplified аnd pаssed on to downstreаm signаling effectors such аs enzymes, ion chаnnels, or trаnscription fаctors. These G protein-coupled receptor systems аre involved in vаrious cellulаr functions including cell proliferаtion, differentiаtion, аpoptosis, аnd cell migrаtion.
Learn more about G protein-coupled receptors: https://brainly.com/question/30023541
#SPJ11
expressed in nerve cells. based on the diagram, which of the following most likely contributes to the specific expression pattern of gene x ? responses expression of gene x produces large amounts of trna but undetectable amounts of mrna. expression of gene x produces large amounts of trna but undetectable amounts of mrna. the general transcription factors inhibit the activation of gene x in liver cells by blocking the activator from binding to rna polymerase ii. the general transcription factors inhibit the activation of gene x in liver cells by blocking the activator from binding to rna polymerase ii. the activator is a sequence-specific dna-binding protein that is present in some tissues but not in other tissues. the activator is a sequence-specific dna-binding protein that is present in some tissues but not in other tissues. the enhancer is a unique dna segment that is added to the nuclear dna
The specific expression pattern of gene X in nerve cells is likely contributed by the presence of a sequence-specific DNA-binding activator that is not present in other tissues. This activator helps regulate the expression of gene X by enabling RNA polymerase II to bind effectively and allowing transcription to occur in a tissue-specific manner.
The specific expression pattern of gene X in nerve cells is most likely due to the presence of a sequence-specific DNA-binding protein. This activator is present in some tissues, such as nerve cells, but not in others, like liver cells. The activator's function is to bind to a particular DNA sequence and facilitate the transcription process by enabling RNA polymerase II to bind effectively.
In the case of gene X, its expression produces large amounts of tRNA but undetectable amounts of mRNA, suggesting that the activator plays a crucial role in the regulation and selective expression of this gene.
Additionally, general transcription factors can inhibit the activation of gene X in liver cells by blocking the activator from binding to RNA polymerase II. This further supports the importance of the activator in the tissue-specific expression of gene X.
For more such questions on gene X, click on:
https://brainly.com/question/14451159
#SPJ11
A rich variety of genetic material in an ecosystem
4. increase the chances that some organisms will survive change. The diversity of all living things, including the various types of plants, animals, and microorganisms.
As well as the genetic material they carry and the ecosystems they generate, is known as biodiversity.
Three layers are typically used to examine biodiversity: genetic diversity, species diversity, and ecological diversity. The complexity of life on Earth is a result of the interaction between these three levels.
Saving habitats and ecosystems rather than attempting to save a single species is the greatest method to conserve biodiversity.
One endangered species, such as the blue whale, bilbies, or koala, is the focus of several high-profile conservation projects. But no living thing exists in isolation. If a species is endangered, its habitat probably suffers from similar threats.
The complete question is:
A rich variety of genetic material in an ecosystem will:
1. reduce the biodiversity of the ecosystem
2. decrease the carrying capacity of the ecosystem
3. reduce the likelihood of future medical discoveries
4. increase the chances that some organisms will survive change.
Learn more about biodiversity here:
https://brainly.com/question/23101752
#SPJ1
EMERGENCY PLS ILL MARK U BRAINLIST
Answer:
D. Costal areas near the Gulf stream are warmer than inland areas at the same latitude
Explanation:
This is correct because the warm water of the Gulf stream heats the air above it, which then warms the adjacent land. This effect is particularly noticeable in winter when the Gulf Stream helps to moderate temperatures along the eastern coast of North America and western coast of Europe.
so D. Is correct.
insulin resistance is when: group of answer choices insulin levels in the blood are too low. the glut 4 transporters are not being signaled effectively by the insulin in the blood. insulin stops being produced by the pancreas. the cells stop making glut 4 transporters.
Insulin resistance occurs when GLUT4 transporters are not being signaled effectively by insulin in the blood.
Insulin resistance is a condition in which cells in the body become less sensitive to the hormone insulin, which plays an important role in regulating blood sugar levels. Insulin is produced by the pancreas and helps transport glucose from the blood into cells.
The GLUT4 transporter is responsible for moving glucose from the blood into cells and is activated by insulin signaling. When insulin resistance occurs, GLUT4 transporters are not effectively signaled by insulin.
Which means glucose absorption is reduced and blood sugar can rise. Insulin resistance is a major factor in the development of type 2 diabetes, as it can lead to chronically high blood sugar and a host of other metabolic complications.
Learn more about Insulin
https://brainly.com/question/28209571
#SPJ4
in humans the allele for free earlobes is dominant over the allele for attached earlobes. the allele for dark hair is dominant over te allele for light hair. two parents are hewterozygous for both the earlobe and hair genes and they are curious what traits their child might have. which genotypes in the punnet square represent children with the free earlobes and dark hair phenotype
The parents being heterozygous for both the earlobe and hair genes means that they both have one dominant and one recessive allele for each trait.
Let's represent the dominant alleles for free earlobes and dark hair with 'F' and 'D', respectively, and the recessive alleles for attached earlobes and light hair with 'f' and 'd', respectively.
The possible genotypes of the parents are:
FfDd (Parent 1)
FfDd (Parent 2)
Using a Punnett square, we can find the genotypes and phenotypes of their potential offspring.
F f
D FD fD
d Fd fd
The genotypes in the Punnett square that represent children with the free earlobes and dark hair phenotype are FD and fD. This is because both of these genotypes have at least one dominant allele for both traits.
Therefore, the possible genotypes of the offspring with the free earlobes and dark hair phenotype are FDFD, FfD, FDf, and fDf.
It is important to note that the probability of each genotype occurring is 1/4 or 25%. The phenotype ratio of this cross would be 9:3:3:1, with 9 offspring having both dominant traits, 3 offspring having one dominant and one recessive trait, 3 offspring having the other dominant and recessive trait, and 1 offspring having both recessive traits.
To learn more about dominant alleles refer to:
brainly.com/question/2717245
#SPJ4
According to the author of the article, how will Americans manage to preserve their privacy despite technology innovations? Do you agree with the author’s suppositions about the American moral character?
The most significant and successful privacy technology is undoubtedly encryption. Anything that is encrypted is rendered unintelligible to all save the one who has the key needed to decode it.
Do we have privacy with technology?According to the ACLU, a person's digital looks now contain a lot more information about them, including their private lives. Also, when the government has access to information, a person loses authority over their information as well as their privacy.
What does "privacy protection" mean when using the Internet of Things?In the context of the Internet of Things (IoT), where almost any tangible or intangible institution or object may be assigned an individual identifier and the capability to converse autonomously over a network, Internet of Everything private information refers to the special factors necessary to protect the data of people from exposed in the IoT environment.
To know more about successful visit:
https://brainly.com/question/12374743
#SPJ1
Which aspect of Mundra’s culture is revealed in Paragraph 10?
A bride becomes a permanent and respected member of her husband’s family.
Children distance themselves from their parents after marriage.
Women without support from parents or a husband become outcasts in society.
Women shoulder the responsibility of caring for their parents.
The Florida panther prefers to prey on wild hogs and deer. As agriculture and housing spread throughout the state, Florida panthers began to prey on livestock. What MOST LIKELY explains why the Florida panthers began to eat domesticated animals?
The increased amount of open space allowed the panthers more access to varieties of food sources.
Many domesticated animals became wild, allowing the panthers easier access to them.
Loss of habitat forced the panthers to look close to home for alternative food sources.
Increasing numbers of other predators depleted the deer population, forcing the panthers to hunt new animals.
Option D is Increasing numbers of other predators depleted the deer population, forcing the panthers to hunt new animals are the Florida panthers began to eat domesticated animals.
Panthers are attractive cats that play a significant role in the ecosystems and food chains of Florida. They might support the preservation of some native species and the management of pest species like wild hogs. They offer fantastic opportunity to see animals in various locations.
These large cats are highly agile and can move through a forest covertly, climb trees, and decend a slope with ease. Their rear limbs are longer than their forelimbs as a jumping adaption. The colour of its fur provides great concealment in a variety of settings.
As a panther bounty was created in 1832, Florida panthers became the object of fierce hunting. By the middle of the 1950s, the species was considered to be dangerous to humans, cattle, and game animals. The primary risks to the remaining panther population at the moment are habitat loss, fragmentation, and degradation.
Learn more about panthers here
https://brainly.com/question/27899623
#SPJ1
What is the name of letter G?
(This is a neuron figure / & is anatomy and physiology)
Answer:
This is the "Myelin sheath", it is used for faster transmission of impulses.
the heart has to be able to regulate its contractions. heart muscle, unlike skeletal muscle, cannot go into a tetanus. this is because group of answer choices
Heart muscles, unlike skeletal muscles, cannot undergo tetanus, because of option B: longer refractory period.
Skeletal muscle's refractory period is considerably shorter than that of cardiovascular muscle. Tetanus is therefore prevented, and between each contraction there is ample time for the heart chamber to fill back up with blood before the next one.
The anaerobic bacterium Clostridium tetani produces tetanus toxin, also known as tetanospasmin, which causes infection by contaminating wounds and results in muscle stiffness and spasms.
Heart muscle differs from skeletal muscle in that it contracts rhythmically and involuntarily. The rhythmic contraction of the cardiac muscle is managed by the sinoatrial node, the heart's pacemaker.
To know more about refractory period, refer:
https://brainly.com/question/30630294
#SPJ4
Complete question is:
The heart has to be able to regulate its contractions. Heart muscle, unlike skeletal muscle, cannot go into a tetanus. This is because ? group of answer choices
greater strength
longer refractory period
greater control
sufficient elasticity
hemophilia is a disorder in which the blood does not form clots. it is caused by an x-linked, recessive allele (h). if the father has hemophilia and the mother is a carrier, what percentage of their children will not have hemophilia?
A sex-linked recessive condition, hemophilia. The X chromosome is home to the hemophilia-causing defective gene. Men have a single X and a single Y chromosome.
Hence, a guy will develop hemophilia if he carries the hemophilia gene on his single X chromosome. An genetic bleeding ailment called hemophilia typically causes the blood to clot improperly. This may result in both spontaneous bleeding and bleeding after injury or surgery. Blood includes a variety of clotting proteins that can aid in halting bleeding.
Learn more about X chromosome
https://brainly.com/question/30755774
#SPJ4
Why does the axillary lymph node swell when injured on the left hand?
Answer : The axillary lymph nodes are located in the armpit area and they help filter out harmful substances and fight infections. When you injure your left hand, bacteria or viruses may enter your body through the wound and cause inflammation in the nearby lymph nodes. This can lead to swelling and pain in the axillary lymph nodes on the same side as the injury. This is a common and usually harmless response of your immune system to fight off the infection However, if the swelling persists for more than a few weeks, or if you have other symptoms such as fever, night sweats, or weight loss, you should see a doctor as it could be a sign of a more serious condition
Answer:
Sometimes, removing lymph nodes can make it hard for your lymphatic system to drain properly. If this happens, lymphatic fluid can build up in the area where the lymph nodes were removed. This extra fluid causes swelling called lymphedema.
leaves are plant organs specialized for photosynthesis. through the light microscope, which organelle would be expected to be seen in greater numbers?
Photosynthesis takes place in a specialised intracellular organelle called the chloroplast in plants and algae, which emerged much later. During the day, chloroplasts carry out photosynthesis.
Organelles that may be observed under a light microscope include the nucleus, cytoplasm, cell membrane, chloroplasts, and cell wall. For the purpose of photosynthesis, leaves are specialised plant organs. This energy powers the fixation of atmospheric carbon during photosynthesis. The cell's food production is carried out by chloroplasts. Only certain protists like algae and plant cells contain the organelles. Chloroplasts are absent from animal cells. Chloroplasts function to transform solar light energy into sugars that cells can utilise.
To know more about chloroplast, click here:
https://brainly.com/question/11136550
#SPJ4
what is the function of complement proteins? bind to foreign cells and punch holes in their surfaces stimulate fever activate antibodies interfere with viral replication
Complement proteins are a group of plasma proteins that are involved in the immune response to infection. Complement proteins function to bind to foreign cells and punch holes in their surfaces.
This makes it easier for immune cells to recognize and destroy these foreign cells. Additionally, complement proteins can stimulate fever, activate antibodies, and interfere with viral replication.Complement proteins are part of the innate immune system and play an important role in the defense against bacterial infections.
When bacteria are detected in the body, complement proteins are activated and begin to coat the surface of the bacteria. This coating makes it easier for white blood cells to recognize and destroy the bacteria. Additionally, complement proteins can stimulate the immune system to produce more antibodies, which can help to neutralize the bacteria.
Complement proteins can also interfere with viral replication. When a virus infects a cell, the cell begins to produce viral particles. Complement proteins can bind to these viral particles and prevent them from entering other cells. This can help to limit the spread of the virus and prevent the infection from becoming more severe.
for more such questions protiens
https://brainly.com/question/884935
#SPJ11
A series of waves, with wavelength decreasing from left to right in the center. Above are a series of ovals labeled from left to right radio 10 superscript 3, microwave 10 superscript negative 2, TV remote 10 superscript negative 5, visible 0.5 times 10 superscript negative 6 light bulb, ultraviolet 10 superscript negative 8 sun, X-ray 10 superscript negative 10 nuclear symbol shared with next label, gamma ray 10 superscript negative 12. Above that are pictures of the named items and above that Wavelength (meters).
Order the waves from shortest wavelength (1) to longest wavelength (4).
Gamma rays:
Microwaves:
Radio:
Visible light:
Gamma rays have the shortest wavelength, followed by visible light, microwaves, and radio waves; (1) Gamma rays, (2) Visible light, (3) Microwaves, (4) Radio waves.
What are Gamma rays and Radio waves?Gamma rays are a type of electromagnetic radiation with very high energy and very short wavelength. They are a form of ionizing radiation, which means they have enough energy to remove electrons from atoms or molecules, causing them to become charged (ionized). Gamma rays are produced by the decay of radioactive atoms and by other high-energy processes such as nuclear fusion and nuclear fission.
Radio waves are a type of electromagnetic radiation with long wavelengths and low frequencies. They are a form of non-ionizing radiation, which means they do not have enough energy to remove electrons from atoms or molecules. Radio waves are produced by oscillating electric and magnetic fields and are commonly used for communication, such as in radio and television broadcasting, mobile phones, and wireless networks.
Learn more about wavelength here:
https://brainly.com/question/31143857
#SPJ1
question 8: eukaryotic transcription, rna processing, translation begins at position 100 and ends at the transcription termination site at position 5100. for the purposes of this question, ignore the process of polya tail addition. a. how many nucleotides long is the primary/immature mrna transcript transcribed from this gene? how did you figure this out?
The length of the primary/immature mRNA transcript transcribed from this gene is 5000 nucleotides.
To calculate this, we need to subtract the transcription start site from the transcription termination site. The transcription start site is the position where transcription begins, which is given as 100. The transcription termination site is the position where transcription ends, which is given as 5100. Therefore, the length of the primary/immature mRNA transcript can be calculated by subtracting the transcription start site from the transcription termination site:
5100 - 100 = 5000 nucleotides
Therefore, the primary/immature mRNA transcript transcribed from this gene is 5000 nucleotides long.
Learn more about “ primary/immature mRNA “ visit here;
https://brainly.com/question/29053791
#SPJ4
Diana is moving into a new apartment. She wants to get a heavy chair up to her second-floor apartment, but it will only fit through the window.
Diana could strap the chair to her back and climb a ladder straight up to her window.
Or Diane could use a simple machine, by sliding the chair up an inclined plane to get to the window. Which of the following is a disadvantage of using an inclined plane to move the chair, instead of climbing a ladder to get to the window?
The chair will need to be moved a longer way, by Diana. Simple machines are any tools that have few or no moving parts and alter motion and the strength of a force to carry out task.
Lever, wedge, wheel and axle, pulley, and screw are examples of rudimentary machinery. It is utilised to lift heavy objects because an inclined plane has a sloping surface. Because less effort is needed to move an object up the incline on the plane than there is weight to be raised, this mechanical advantage is available.
In ramps and switchback roads, for example, where a tiny force acting over a long distance along a slope can produce a significant amount of work, the inclined plane idea is widely applied.
Learn more about motion here:
https://brainly.com/question/22810476
#SPJ1
what is the purpose of spindle fibers in a cell? group of answer choices they move cell components, like the chromosomes, to opposite ends of the cell. they anchor the nucleus to the internal membrane of the cell. they are used to distribute the cytoplasm. they hold the cell together and prevent bursting under osmotic pressure.
The purpose of spindle fibers in a cell is they move cell components, like the chromosomes, to opposite ends of the cell, option A.
The microtubules, centrosomes, and associated structures that develop during cell division, especially in eukaryotic cells, are known as spindle fibres (those with a nucleus and membrane bound organelles). You'll see that spindle fibres are used as a collective phrase and incorporate some more specific language when we get into more depth about what these terms are and how spindle fibres are significant.
Spindle fibre is the name given to the network of filaments that make up the mitotic and meiotic spindles during cell division. Spindle fibres are responsible for chromosomal movement during mitosis and meiosis cell division.
During cell division, spindle fibres make up the mitotic and meiotic spindle. They are made of microtubules and are crucial for nuclear division. During mitotic and meiotic division, they are in charge of sister chromatid segregation and chromosomal mobility.
Learn more about Spindle fibers:
https://brainly.com/question/27857017
#SPJ4
immune thrombocytopenic purpura (itp) is caused by: group of answer choices a vaccine-induced hypersensitivity reaction against platelets. viral-induced hyperproliferation of platelets. antibody destruction of platelets in the spleen. drug-induced platelet toxicity.
Itp, or immune thrombocytopenic purpura, is brought on by antibody destruction of platelets in the spleen. The correct answer is (C).
Immune thrombocytopenic purpura (ITP) is a rare autoimmune disorder in which the immune system destroys blood-clotting platelets, preventing a person's blood from properly clotting. Although the exact cause of ITP is unknown, it is thought to be caused by a malfunction of the immune system that may be brought on by viral infections.
Idiopathic thrombocytopenic purpura (ITP) is a condition characterized by a non-blanching purpuric rash brought on by idiopathic (spontaneous) thrombocytopenia. A type II hypersensitivity reaction is the cause of ITP. The production of antibodies that target and destroy platelets is the cause.
To learn more about thrombocytopenic here
https://brainly.com/question/29570999
#SPJ4
Q- Idiopathic thrombocytopenic purpura (ITP) is caused by:
a. a vaccine-induced hypersensitivity reaction against platelets.
b. drug-induced platelet toxicity.
c. antibody destruction of platelets in the spleen.
d. virus-induced hyperproliferation of platelets.
Differences in atmospheric pressure generate winds. true or false
Answer:
True
Explanation: