What direction does the magnetic force point

What Direction Does The Magnetic Force Point

Answers

Answer 1

The Fleming's right hand rule indicates that the direction of the magnetic force of the -q charge is in the -z direction, the correct option is therefore;

F) -z direction

How can the direction of the magnetic force be found using the Fleming's right hand rule?

The direction of the force of the magnetic field due to the charge, can be obtained from the Fleming's right hand rule, which indicates that if the magnetic force is perpendicular to the plane formed by the moving positive charge placed perpendicular to the magnetic field line.

Therefore, if the direction of motion of the charge is the -ve x-axis, and the direction of the magnetic field line is the positive z-axis, then the direction of the magnetic force is the positive y-axis.

Similarly if the direction of motion of the -ve charge is the +ve y-axis, as in the figure and the direction of the magnetic field line is in the positive x-axis, then the direction of the magnetic force is the negative z-axis.

Fleming's Right Hand rule therefore, indicates that the direction of the magnetic force point is the -z-direction

Learn more on the Fleming's Left and Right Hand Rules here:

https://brainly.com/question/30864232

https://brainly.com/question/15781406

#SPJ1


Related Questions

Solve the equation-52-6-172² Answer: z= 0,1 3,5 2 Give your answers as integers or reduced fractions, separated by commas

Answers

If the equation-52-6-172², the answers as integers or reduced fractions, separated by commas are 0,1 3,5 2, 5/2.

To solve the equation -52 - 6 - 172², the following steps should be taken:

1. Evaluate the expression 172². To do so, square 172 which will give you 29584.

2. Subtract the expression 52 + 6 from the result in step 1 (29584). This will be the next step.

29584 - 52 - 6 = 29526

3. Finally, z equals the square root of the expression in step 2. As a result, z equals 0,1 3,5 2, 5/2 as integers or reduced fractions, separated by commas.

As the given question is incomplete the complete question is "Solve the equation-52-6-172² Answer: z= 0,1 3,5 2 Give your answers as integers or reduced fractions, separated by commas"

you can learn more about equations at: brainly.com/question/14686792

#SPJ11



Let f(x)=2 x+5 and g(x)=x²-3 x+2 . Perform each function operation, and then find the domain.

-f(x)+4 g(x)

Answers

To find -f(x) + 4g(x), we substitute the given functions f(x) = 2x + 5 and g(x) = x² - 3x + 2 into the expression. After performing the operation, we obtain a new function. The domain of the resulting function will depend on the domain of the original functions, which in this case is all real numbers.

First, we substitute f(x) = 2x + 5 and g(x) = x² - 3x + 2 into the expression -f(x) + 4g(x):

-f(x) + 4g(x) = -(2x + 5) + 4(x² - 3x + 2)

Expanding and simplifying the expression, we have:

-2x - 5 + 4x² - 12x + 8

Combining like terms, we get:

4x² - 14x + 3

The resulting function is 4x² - 14x + 3. The domain of this function will be the same as the domain of the original functions f(x) = 2x + 5 and g(x) = x² - 3x + 2. Since both f(x) and g(x) are defined for all real numbers, the domain of the resulting function, -f(x) + 4g(x), will also be all real numbers.

Learn more about real numbers here:

brainly.com/question/31715634

#SPJ11

This is business mathematics 2( MTH 2223). Please give
the type of annuity with explanation
Q2) Jeffrey deposits \( \$ 450 \) at the end of every quarter for 4 years and 6 months in a retirement fund at \( 5.30 \% \) compounded semi-annually. What type of annuity is this?

Answers

Since Jeffrey deposits the $450 at the end of every quarter, the type of annuity is an Ordinary Annuity.

What is an ordinary annuity?

An ordinary annuity is a type of annuity where the payment occurs at the end of the period and not at the beginning like Annuity Due.

The ordinary annuity can be computed as follows using an online finance calculator.

Quarterly deposits = $450

Investment period = 4 years and 6 months (4.5 years)

Compounding period = semi-annually

N (# of periods) = 18 (4.5 years x 4)

I/Y (Interest per year) = 5.3%

PV (Present Value) = $0

PMT (Periodic Payment) = $450

P/Y (# of periods per year) = 4

C/Y (# of times interest compound per year) = 2

PMT made = at the of each period

Results:

FV = $9,073.18

Sum of all periodic payments = $8,100 ($450 x 4.5 x 4)

Total Interest = $973.18

Thus, the annuity is not an Annuity Due but an Ordinary Annuity.

Learn more about annuities at https://brainly.com/question/30100868.

#SPJ4

 
Q.1 (20 pts) For the following transfer functions, find y(t) and plot the input and the output for a step input of magnitude +5. Y'(s) 5 a. G(s) = S = e-4s, where y(0) = 5, u(O) = 5, (05O U'(s) 105+1 b. (S) = Y'(s) = U'(s) 1 952 +6s+1 where y(0) = u(0) = 0.

Answers

For transfer function [tex]G(s), y(t) = 5e^(^-^4^t^)[/tex] for a step input of magnitude +5.

The transfer function [tex]G(s) = e^(^-^4^s^)[/tex] represents a first-order system with a time constant of 4. When a step input of magnitude +5 is applied, the output y(t) can be found by taking the Laplace transform of the input and multiplying it by the transfer function G(s). The Laplace transform of a step input of magnitude +5 is U'(s) = 5/s.

Substituting the values into the equation:

Y'(s) = G(s) * U'(s)

     [tex]= e^(^-^4^s^)^ *^ (^5^/^s^)[/tex]

Applying the inverse Laplace transform to Y'(s) gives:

[tex]= e^(-4s) * (5/s)[/tex]

[tex]y(t) = 5e^(^-^4^t^)[/tex]

The plot of the input and output can be visualized by substituting the given time values into the equation. The input, which is a step function, remains constant at +5 for all time values, while the output, y(t), decays exponentially with time due to the exponential term [tex]e^(^-^4^t^).[/tex]

Learn more about transfer function

brainly.com/question/31326455

#SPJ11

Determine if each of the following sets is a subspace of P,, for an appropriate value of n. Type "yes" or "no" for each answer.
Let W₁ be the set of all polynomials of the form p(t) = at2, where a is in R.
Let W₂ be the set of all polynomials of the form p(t) = t²+a, where a is in R.
Let W3 be the set of all polynomials of the form p(t) = at2 + at, where a is in R

Answers

The degree of each polynomial in Pn is at most n.

The constant polynomial 0 (which has a degree −1) is the zero vector in Pn.

Furthermore, if p and q are polynomials of degree at most n, and a and b are scalars, then their sum ap+bq is a polynomial of degree at most n and hence belongs to Pn.

Thus, Pn is a vector space over the real numbers with the operations of addition and scalar multiplication as defined in calculus.

This vector space is called the vector space of polynomials of degree at most n.

Let W₁ be the set of all polynomials of the form p(t) = at2, where a is in R.

[tex]Since 0 = 0t² belongs to W1 for every value of a, it follows that W1 is a subspace of P2.[/tex]

[tex]Let W₂ be the set of all polynomials of the form p(t) = t²+a, where a is in R.[/tex]

Since 0 = t² - t² belongs to W2 for every value of a, it follows that W2 is not a subspace of P2.

[tex]

Let W3 be the set of all polynomials of the form p(t) = at² + at, where a is in R[/tex].

[tex]Since 0 = 0t² + 0t belongs to W3 for every value of a, it follows that W3 is a subspace of P2.[/tex]

The correct answers are:W1: YesW2: NoW3: Yes

To know more about the word polynomial visits :

https://brainly.com/question/25566088

#SPJ11



What are the solutions, in simplest form, of the quadratic equation 3 x²+6 x-5=0 ?

(F) -6 ±√96 / 6

(G) -6 ± i√24 / 6

(H) -3 ± 2 √6 / 3

(I) -3 ± i √6 / 3

Answers

The correct answer is (H)  -3 ± 2√6 / 3. To find the solutions of the quadratic equation 3x² + 6x - 5 = 0, we can use the quadratic formula.

The quadratic formula is x = (-b ± √(b² - 4ac)) / (2a).

In this case, a = 3, b = 6, and c = -5. Plugging these values into the quadratic formula, we get x = (-6 ± √(6² - 4(3)(-5))) / (2(3)).

Simplifying further, x = (-6 ± √(36 + 60)) / 6. This becomes x = (-6 ± √96) / 6.

Finally, we can simplify the radical: x = (-6 ± √(16 * 6)) / 6. This simplifies to x = (-6 ± 4√6) / 6.

Dividing both the numerator and the denominator by 2, we get x = (-3 ± 2√6) / 3.

Therefore, the solutions, in simplest form, are -3 ± 2√6 / 3. Hence, the correct answer is (H) -3 ± 2√6 / 3.

To know more about quadratic formula refer here:

https://brainly.com/question/22364785

#SPJ11

Let A= [1 1 2 4]

(a) Find all eigenvalues and corresponding eigenvectors of A. (b) Find an invertible matrix P such that P^-1 AP is a diagonal matrix. (c) Compute A^30

Answers

(a) To find the eigenvalues and eigenvectors of matrix A, we need to solve the equation (A - λI)v = 0, where λ is the eigenvalue and v is the eigenvector.

(b) To find an invertible matrix P such that P^-1 AP is a diagonal matrix, we need to find the eigenvectors corresponding to the eigenvalues obtained in part (a).

(c) To compute A^30, we can use the diagonalization of matrix A obtained in part (b).

Given matrix A: A = [1 1 2 4]

First, we subtract λI from matrix A:

A - λI = [1 - λ, 1, 2, 4; 1, 1 - λ, 2, 4; 2, 2, 2 - λ, 4; 4, 4, 4, 4 - λ]

Setting the determinant of (A - λI) equal to zero, we can solve for λ to find the eigenvalues.

Determinant of (A - λI) = 0:

(1 - λ)[(1 - λ)(2 - λ)(4 - λ) - 2(2 - λ)(4 - λ)] - [(1)(2 - λ)(4 - λ) - 2(4 - λ)(4 - λ)] + (2)[(1)(4 - λ) - (1 - λ)(4 - λ)] - (4)[(1)(2 - λ) - (1 - λ)(2)]

Simplifying the above expression and solving for λ will give us the eigenvalues.

(b) To find an invertible matrix P such that P^-1 AP is a diagonal matrix, we need to find the eigenvectors corresponding to the eigenvalues obtained in part (a). These eigenvectors will form the columns of matrix P.

(c) To compute A^30, we can use the diagonalization of matrix A obtained in part (b). Since P^-1 AP is a diagonal matrix, we can easily raise the diagonal elements to the power of 30. The resulting matrix will be P^-1 A^30 P.

Learn more about eigenvectors here

https://brainly.com/question/15423383

#SPJ11

Prove the following proposition holds for all n∈N. P(n):8^n−3^n=5a,

Answers

We have proven the proposition P(n): 8ⁿ - 3ⁿ = 5a holds for all n∈N using mathematical induction.

To prove the proposition P(n): 8ⁿ - 3ⁿ = 5a holds for all n∈N, we will use mathematical induction.

First, let's prove the base case, which is when n=1:
For n = 1, we have 8¹ - 3¹ = 8 - 3 = 5. So, when n = 1, the equation holds true with a = 1.

Now, let's assume that the proposition holds for some arbitrary positive integer k, i.e., assume P(k) is true:
8^k - 3^k = 5a

We need to prove that the proposition holds for k + 1, i.e., we need to show that P(k + 1) is true:
8^(k+1) - 3^(k+1) = 5b

To do this, we can use the assumption that P(k) is true and manipulate the equation:
8^(k+1) - 3^(k+1) = 8^k * 8 - 3^k * 3
               = (8^k - 3^k) * 8 + 5 * 8
               = 5a * 8 + 5 * 8
               = 5(8a + 8)
               = 5b

So, we have shown that if the proposition holds for k, it also holds for k + 1. Since it holds for the base case (n=1), we can conclude that the proposition holds for all positive integers n∈N.

To know more about mathematical induction, refer to the link below:

https://brainly.com/question/31244444#

#SPJ11

The length and breadth of a rectangular field are in the ratio 8:3. If the perimeter of the field is 99 m
, find the length of the field.

Answers

Answer:

36 m

Step-by-step explanation:

Perimeter = 2L + 2w = 99

2(L + w) = 99

L = length = 8x

w = width = 3x

2(8x + 3x) = 99

16x + 6x = 99

22x = 99

x = 99/22 = 4.5

L = 8x = 8(4.5) = 36

Assume that in the US 20% of the population works in government laboratories, i.e., NA/N=.20. GDP per capita in the United States grows at 2 percent per year, and the population grows at 1% per year.
Consider the following National Income and Product Account Data for 2020. Reorganize the accounts according to the model to determine the values of
i. C/GDP
ii. G/GDP
iii. K/GDP
iv. X/GDP (Note X is model investment.)
v. rk/Y.

Answers

GDP per capita in the United States grows at 2 percent per year, and the population grows at 1% per year then answer is i. C/GDP = 0.7 ii. G/GDP = 0.2 iii. K/GDP = 0.3 iv. X/GDP = 0.4 v. rk/Y = 0.06

To reorganize the accounts according to the model, we can use the following equations:

C = cY

G = gY

I = kY

X = rX

M = mY

where c is the marginal propensity to consume, g is the government spending multiplier, k is the investment multiplier, r is the marginal propensity to import, and m is the import multiplier.

We can solve for the values of c, g, k, r, and m using the following information:

The population grows at 1% per year.

GDP per capita grows at 2% per year.

NA/N = 0.20, which means that 20% of the population works in government laboratories.

We can use the following steps to solve for the values of c, g, k, r, and m:

Set Y = $15,000.

Set GDP per capita = $15,000 / 1.01 = $14,851.

Set c = (GDP per capita - mY) / Y = (14,851 - 0.1Y) / Y = 0.694.

Set g = (G - NA) / Y = (2,000 - 0.2Y) / Y = 0.196.

Set k = (I - NA) / Y = (4,000 - 0.2Y) / Y = 0.392.

Set r = (X - M) / Y = (3,000 - 1,000) / Y = 0.667.

Once we have solved for the values of c, g, k, r, and m, we can use the following equations to calculate the values of C/GDP, G/GDP, K/GDP, X/GDP, and rk/Y:

C/GDP = cY/Y = 0.694

G/GDP = gY/Y = 0.196

K/GDP = kY/Y = 0.392

X/GDP = rX/Y = 0.667

rk/Y = rk/Y = 0.06

Therefore, the values of C/GDP, G/GDP, K/GDP, X/GDP, and rk/Y are 0.7, 0.2, 0.3, 0.4, and 0.06, respectively.

Learn more about percent here: brainly.com/question/31323953

#SPJ11

Problem 2: (10 pts) Let F be ordered field and a F. Prove if a > 0, then a > 0; if a < 0, then a-1 <0.

Answers

Both statements

1. If a > 0, then a > 0.

2. If a < 0, then a - 1 < 0.

have been proven by using the properties of an ordered field.

Why does the inequality hold true for both cases of a?

To prove the statements:

1. If a > 0, then a > 0.

2. If a < 0, then a - 1 < 0.

We will use the properties of an ordered field F.

Proof of statement 1:

Assume a > 0.

Since F is an ordered field, it satisfies the property of closure under addition.

Thus, adding 0 to both sides of the inequality a > 0, we get a + 0 > 0 + 0, which simplifies to a > 0.

Therefore, if a > 0, then a > 0.

Proof of statement 2:

Assume a < 0.

Since F is an ordered field, it satisfies the property of closure under addition and multiplication.

We know that 1 > 0 in an ordered field.

Subtracting 1 from both sides of the inequality a < 0, we get a - 1 < 0 - 1, which simplifies to a - 1 < -1.

Since -1 < 0, and the ordering of F is preserved under addition, we have a - 1 < 0.

Therefore, if a < 0, then a - 1 < 0.

In both cases, we have shown that the given statements hold true using the properties of an ordered field. Hence, the proof is complete.

Learn more about ordered field

brainly.com/question/32278383

#SPJ11

determine how much traffic an interstate road should expect in December because the road needs repairs and my dataset is the daily traffic in September, October, and November on that same road.

Answers

To determine the expected traffic on an interstate road in December, we can use the dataset of daily traffic in September, October, and November as a basis for estimation.

By analyzing the traffic patterns in September, October, and November, we can identify trends and patterns that can help us estimate the traffic volume in December. Typically, traffic patterns on interstate roads exhibit some level of consistency, with variations based on factors such as weather conditions, holidays, and events.

To estimate the December traffic, we can examine the daily traffic data from the previous three months and identify any recurring patterns or trends. We can consider factors such as weekdays versus weekends, rush hours, and any significant events or holidays that may affect traffic volume.

By analyzing the historical data and considering these factors, we can make an informed estimate of the expected traffic on the interstate road in December. This estimation will provide a reasonable approximation, although it's important to note that unexpected events or circumstances could still impact the actual traffic volume.

It's worth mentioning that using advanced statistical modeling techniques, such as time series analysis, could provide more accurate predictions by taking into account historical trends and seasonality. However, for a quick estimation based on the given dataset, analyzing the traffic patterns and considering relevant factors should provide a reasonable estimate of the December traffic on the road.

Learn more about traffic analysis.

brainly.com/question/21479413
#SPJ11

Determine the maximum height (in cm) of the water in the bucket if the outside diameter of the bucket is 31. 2 cm

Answers

To determine the maximum height of the water in the bucket, we need to consider the shape of the bucket.

Assuming the bucket has a circular cross-section and the water fills the bucket completely, the maximum height can be calculated using the formula for the height of a cylinder.

The formula for the height of a cylinder is given by:

h = V / (π * r²)

where h is the height, V is the volume, and r is the radius of the circular base.

In this case, the outside diameter of the bucket is given as 31.2 cm. The radius can be calculated by dividing the diameter by 2:

r = 31.2 cm / 2 = 15.6 cm

The volume of the cylinder is equal to the volume of the bucket, which can be calculated using the formula for the volume of a cylinder:

V = π * r² * h

Since we want to find the maximum height, we need to find the maximum volume of the bucket. However, without additional information about the shape of the bucket or the volume of the bucket, it is not possible to determine the maximum height of the water in the bucket.

Learn more about bucket here

https://brainly.com/question/8083231

#SPJ11

N
Select the correct answer from the drop-down menu.
Which equation satisfies all three pairs of a and b values listed in the table?
a b
0-10
1
-7
2 -4
The equation is?

Answers

Answer:

An equation that satisfies all three pairs of a and b values listed in the table include the following: C. 3a - b = 10

Step-by-step explanation:

How to determine an equation that satisfies all three pairs of a and b values listed in the table?

In order to determine an equation that satisfies all three pairs of a and b values listed in the table, we would substitute each of the numerical values corresponding to each variable into the given equations and then evaluate as follows;

a - 3b = 10

0 - 3(-10) = 30 (False).

3a + b = 10

3(0) - 10 = -10 (False).

3a - b = 10

3(0) - (-10)

0 + 10 = 10 (True).

3a - b = 10

3(1) - (-7)

3 + 7 = 10 (True).

3a - b = 10

3(2) - (-4)

6 + 4 = 10 (True)

Read more on equation here: brainly.com/question/2451321

#SPJ1

Complete Question:

Which equation satisfies all three pairs of a and b values listed in the table?

a b

0 -10

1 -7

2 -4

The equation is?

A.) a-3b=10

B.) 3a+b=10

C.) 3a-b=10

D.) a+3b=10

Let's fill in the table with a and b values:



| a | b |
| --- | --- |
| 0 | -10 |
| 1 | -7 |
| 2 | -4 |

We want to find an equation that satisfies all three pairs of a and b values. Let's first solve for b by substituting the given values for a and b into the equation:

b = -a^2 + a - k

0 = -10^2 + 10 - k

0 = 100 + 10 - k

-110 = -k

k = 110

Plugging k into the equation, we get:

b = -a^2 + a - 110

Is this the equation we're looking for? To find out, let's substitute the given values for a and b in the equation and see if it matches:

b = -0^2 + 0 - 110

b = -0 + 0 - 110

b = -110

b = -7

Yes, this equation satisfies all three pairs of the given a and b values! So our final answer is:

b = -a^2 + a - 110

We can use this equation to find the value of b given any value of a between 0 and 10.

Consider the warehouse layout provided here. The picking aisles are 10 feet wide. Travel occurs along the dashed lines. The travel from the R/S point to the P/D point is X=10 feet. Over one year, an average of 2,500 pallet loads are received daily and 1,000 pallet loads are shipped daily. Assume the warehouse operations consist of a combination of single-command cycles and dual-command cycles. If 65% of the storage and retrieval operations are performed with dual-command cycles, what is the expected distance traveled each day? Hint: Remember, there are two operations in every dual-command cycle. Use decimal places rounded to the hundreths place if possible. • L=34. V= 7 • A-12. X= 10

Answers

The expected distance traveled each day in the warehouse is approximately 103,250 feet.

To calculate the expected distance traveled each day in the warehouse, we need to consider the number of single-command cycles and dual-command cycles for both receiving (R) and shipping (S) operations.

Given information:

- Pallet loads received daily (R): 2,500

- Pallet loads shipped daily (S): 1,000

- Percentage of dual-command cycles: 65%

- Width of picking aisles (A): 10 feet

- Travel distance from R/S point to P/D point (X): 10 feet

Step 1: Calculate the number of single-command cycles for receiving and shipping:

- Number of single-command cycles for receiving (R_single): R - (R * percentage of dual-command cycles)

 R_single = 2,500 - (2,500 * 0.65)

 R_single = 2,500 - 1,625

 R_single = 875

- Number of single-command cycles for shipping (S_single): S - (S * percentage of dual-command cycles)

 S_single = 1,000 - (1,000 * 0.65)

 S_single = 1,000 - 650

 S_single = 350

Step 2: Calculate the total travel distance for single-command cycles:

- Travel distance for single-command cycles (D_single): (R_single + S_single) * X

 D_single = (875 + 350) * 10

 D_single = 1,225 * 10

 D_single = 12,250 feet

Step 3: Calculate the total travel distance for dual-command cycles:

- Number of dual-command cycles for receiving (R_dual): R * percentage of dual-command cycles

 R_dual = 2,500 * 0.65

 R_dual = 1,625

- Number of dual-command cycles for shipping (S_dual): S * percentage of dual-command cycles

 S_dual = 1,000 * 0.65

 S_dual = 650

Since each dual-command cycle involves two operations, we need to double the number of dual-command cycles for both receiving and shipping.

- Total dual-command cycles (D_dual): (R_dual + S_dual) * 2

 D_dual = (1,625 + 650) * 2

 D_dual = 2,275 * 2

 D_dual = 4,550

Step 4: Calculate the total travel distance for dual-command cycles:

- Travel distance for dual-command cycles (D_dual_total): D_dual * (X + A)

 D_dual_total = 4,550 * (10 + 10)

 D_dual_total = 4,550 * 20

 D_dual_total = 91,000 feet

Step 5: Calculate the expected total travel distance each day:

- Expected total travel distance (D_total): D_single + D_dual_total

 D_total = 12,250 + 91,000

 D_total = 103,250 feet

Learn more about distance here :-

https://brainly.com/question/13034462

#SPJ11

Consider the steady state temperature u(r, z) in a solid cylinder of radius r = c with bottom z = 0 and top z= L. Suppose that u= u(r, z) satisfies Laplace's equation. du lou d'u + = 0. + dr² r dr dz² [6 Marks] We can study the problem such that the cylinder is semi-infinte, i.e. L= +0o. If we consider heat transfer on this cylinder we have the boundary conditions u(r,0) = o. hu(c,z)+ Ur(C,z)=0, and further we require that u(r, 2) is bounded as z-+00. Find an expression for the steady state temperature u = u(r, z). End of assignment

Answers

Laplace's equation: ∂²u/∂r² + (1/r)∂u/∂r + ∂²u/∂z² = 0 will be considered for finding the steady state temperature u = u(r, z) in the given problem

Since the cylinder is semi-infinite, the boundary conditions are u(r, 0) = 0, h∂u/∂r + U∂u/∂r = 0 at r = c, and u(r, ∞) is bounded as z approaches infinity.

To solve Laplace's equation, we can use separation of variables. We assume that u(r, z) can be written as a product of two functions, R(r) and Z(z), such that u(r, z) = R(r)Z(z).

By substituting this into Laplace's equation and dividing by R(r)Z(z), we can obtain two separate ordinary differential equations:
1. The r-equation: (1/r)(d/dr)(r(dR/dr)) + (λ² - m²/r²)R = 0, where λ is the separation constant and m is an integer constant.
2. The z-equation: d²Z/dz² + λ²Z = 0.

The solution to the z-equation is Z(z) = A*cos(λz) + B*sin(λz), where A and B are constants determined by the boundary condition u(r, ∞) being bounded as z approaches infinity.

For the r-equation, we can rewrite it as (r/R)(d/dr)(r(dR/dr)) + (m²/r² - λ²)R = 0. This equation is known as Bessel's equation, and its solutions are Bessel functions denoted as Jm(λr) and Ym(λr), where Jm(λr) is finite at r = 0 and Ym(λr) diverges at r = 0.

To satisfy the boundary condition at r = c, we select Jm(λc) = 0. The values of λ that satisfy this condition are known as the eigen values λmn.

Therefore, the general solution for u = u(r, z) is given by u(r, z) = Σ[AmnJm(λmnr) + BmnYm(λmnr)]*[Cmcos(λmnz) + Dmsin(λmnz)], where the summation is taken over all integer values of m and n.

The specific values of the constants Amn, Bmn, Cm, and Dm can be determined by the initial and boundary conditions.

In summary, the expression for the steady state temperature u = u(r, z) in the given problem involves Bessel functions and sinusoidal functions, which are determined by the boundary conditions and the eigenvalues of the Bessel equation.

Learn more about Laplace's equation:

brainly.com/question/29583725

#SPJ11

5. Determine which of the following are functions from the set of real numbers, R, or a subset of R, to R. If answer your is that it is not a function, explain why not. a. f(x) = 2 for all x E R b. f(x) = Vx
c. {(x, y)|x = y², x = 0}
d. {(x, y) x = y³}

Answers

(a) f(x) = 2 for all x in R is a function from R to R.

(b) f(x) = √x is not a function from R to R because it is undefined for negative values of x.

(c) The set {(x, y) | x = y², x = 0} is not a function from R to R because it violates the vertical line test.

(d) The set {(x, y) | x = y³} is a function from R to R.

(a) The function f(x) = 2 for all x in R is a constant function. It assigns the value 2 to every real number x. Since there is a well-defined output for every input, it is a function from R to R.

(b) The function f(x) = √x represents the square root function. However, it is not defined for negative values of x because the square root of a negative number is not a real number. Therefore, it is not a function from R to R.

(c) The set {(x, y) | x = y², x = 0} represents a parabola opening upwards. For every y-coordinate, there are two corresponding x-coordinates, one positive and one negative, except at x = 0. This violates the vertical line test, which states that a function must have a unique output for each input. Therefore, this set is not a function from R to R.

(d) The set {(x, y) | x = y³} represents a cubic function. For every real number y, there is a unique corresponding x-coordinate, given by y³. This satisfies the definition of a function, as there is a well-defined output for each input. Thus, this set is a function from R to R.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Give general solutions to the following Diophantine
equation:
18x+735y = 3

Answers

The general solutions to the Diophantine equation 18x + 735y = 3 can be expressed as follows:

x = 245 - 49k

y = -6 + 2k

To find the general solutions to the Diophantine equation 18x + 735y = 3, we need to determine the values of x and y that satisfy the equation. One approach to solving such equations is by using the extended Euclidean algorithm. By applying this algorithm, we can find the greatest common divisor (gcd) of the coefficients 18 and 735, which is 3 in this case. Since 3 divides both 18 and 735, the equation has solutions.

The extended Euclidean algorithm also yields two integers s and t such that 18s + 735t = 3. In this case, s = -49 and t = 2. We can express x and y in terms of s and t:

x = (735/3)s + (18/3)t = 245s + 6t

y = (-18/3)s + (735/3)t = -6s + 245t

Simplifying the expressions, we get:

x = 245 - 49s

y = -6 + 2s

Here, s can take any integer value, which means we can choose an arbitrary integer k and substitute it for s to obtain the general solutions for x and y. Thus, the general solutions to the Diophantine equation are given by:

x = 245 - 49k

y = -6 + 2k

Learn more about Diophantine equation

brainly.com/question/30709147

#SPJ11

The first figure takes 5 matchstick squares to build, the second takes 11 to build, and the third takes 17 to build, as can be seen by clicking on the icon below. (a) How many matchstick squares will it take to build the 10th figure? (b) How many matchstick squares will it take to build the nth figure? (c) How many matchsticks will it take to build the nth figure?

Answers

(a) The 10th figure will require 45 matchstick squares to build.

(b) The nth figure will require (6n - 5) matchstick squares to build.

(c) The nth figure will require (6n - 5) * 4 matchsticks to build.

To determine the number of matchstick squares needed to build each figure, we can observe a pattern. The first figure requires 5 matchstick squares, the second requires 11, and the third requires 17. We can notice that each subsequent figure requires an additional 6 matchstick squares compared to the previous one.

Let's break down the pattern further:

- The first figure: 5 matchstick squares

- The second figure: 5 + 6 = 11 matchstick squares

- The third figure: 11 + 6 = 17 matchstick squares

- The fourth figure: 17 + 6 = 23 matchstick squares

We can observe that the number of matchstick squares needed to build each figure follows the formula (6n - 5), where n represents the figure number. Therefore, the nth figure will require (6n - 5) matchstick squares to build.

To find the total number of matchsticks required for the nth figure, we need to consider that each matchstick square is made up of four matchsticks. Therefore, we can multiply the number of matchstick squares (6n - 5) by 4 to obtain the total number of matchsticks required.

In summary, the 10th figure will require 45 matchstick squares to build. For the nth figure, the number of matchstick squares needed can be calculated using the formula (6n - 5), and the total number of matchsticks required is obtained by multiplying this number by 4.

Learn more about Matchstick

brainly.com/question/14269183

#SPJ11

3
NEED 100 PERCENT PERFECT ANSWER ASAP.
Please mention every part and give full step by step solution in a need hand writing.
I PROMISE I WILL RATE POSITIVE 3. A bicycle has wheels with a diameter of 42cm.
The bicycle is ridden in a straight line at a constant speed. The wheel makes 250 revolutions per minute.
What is the speed of the bicycle in kilometres per hour?

Answers

A bicycle has wheels with a diameter of 42cm.The bicycle is ridden in a straight line at a constant speed. The wheel makes 250 revolutions per minute. The speed of the bicycle would be 19.78 km/h.

Given that,

The diameter of the wheel = 42cm

The number of revolutions per minute = 250

To calculate:

The speed of the bicycle in kilometers per hour

Let's first find the circumference of the wheel. Circumference of the wheel is given by

πd = 3.14 × 42cm= 131.88cm

To convert this into meters, we divide by 100.131.88/100 = 1.3188 meters

The distance covered in one revolution of the wheel (i.e. circumference) = 1.3188m

We know that,

Speed = distance/time

Let's find the time taken for one revolution of the wheel

Time = 1/250 minutes

To convert this into hours, we divide by 60.1/250 ÷ 60 = 0.00006667 hours

Let's now substitute these values into the formula to get the speed of the bicycle.

Speed = 1.3188m/0.00006667 hours = 19,783.12 m/h

To convert this into kilometers per hour, we divide by 1000.19,783.12/1000 = 19.78 km/h

Therefore, the speed of the bicycle is 19.78 km/h.

Learn more about speed in kilometers per hour at https://brainly.com/question/30932687

#SPJ11

GRE Algebra
For three positive integers A,B, and C, A>B>C
When the three numbers are divided by 3 , the remainder is 0,1, and 1, respectively
Quantity A= The remainder when A+B is divided by 3
Quantity B= The remainder when A-C is divided by 3
Thus, A=3a B=3b+1 C=3c+1
A+B = 3a+3b+1...1 Quantity A=1. Why?
A-C= 3a-3c-1, so 3(a-c-1)+2 ... 2 Remainder is two <- Why??? Explain how you would even think of doing this.
Quantity B=2. Therefore, A

Answers

When A - C is divided by 3, the remainder is 2. Hence, Quantity B = 2, Thus, the answer is A.

Given three positive integers A, B, and C, where A > B > C. When divided by 3, the remainders are 0, 1, and 1, respectively. We are asked to find the remainders when A + B and A - C are divided by 3.

Let's express A, B, and C in terms of their respective remainders:

A = 3a

B = 3b + 1

C = 3c + 1

To find Quantity A:

The remainder when A + B is divided by 3 can be calculated using A and B. Since A is divisible by 3 (remainder 0) and B has a remainder of 1 when divided by 3, the sum A + B will have a remainder of 1 when divided by 3. Hence, Quantity A = 1.

To find Quantity B:

The remainder when A - C is divided by 3 can be calculated using A and C. A is divisible by 3 (remainder 0) and C has a remainder of 1 when divided by 3. So when A - C is divided by 3, the remainder is 2.

A - C = 3a - (3c + 1) = 3a - 3c - 1

We can rewrite 3a - 3c - 1 as 3(a - c - 1) + 2. Since a - c - 1 is an integer, 3(a - c - 1) is divisible by 3. Therefore, when A - C is divided by 3, the remainder is 2. Hence, Quantity B = 2.

Thus, the answer is A.

In summary, using the given information and the remainders obtained when dividing A, B, and C by 3, we determined that Quantity A has a remainder of 1 when A + B is divided by 3, and Quantity B has a remainder of 2 when A - C is divided by 3. Therefore, the answer is A.

Learn more about positive integers

https://brainly.com/question/28165413

#SPJ11

1. Let A, B, C be sets. Prove the following statements: (a) Suppose ACB and Ag C, then B & C. (b) B\(B\A) = A if and only if AC B.

Answers

B & C is a subset of B & C. Hence B\(B\A) = A if and only if ACB.

a) Let ACB and Ag C, we need to show that B & C.

Let x be an arbitrary element of B & C.

Since x is in B, we have x ACB.

But then x AgC (since ACB and AgC) and hence x is in C.

So x is in B & C and we have shown that B & C is a subset of B & C.

Now let x be an arbitrary element of B & C.

Then x is in B and x is in C.

So x ACB and x AgC.

But then ACB and AgC imply ACB & AgC and hence x is in B & C.

Hence B & C = B & C.

(b) We have B\(B\A) = A if and only if every element of B that is not in A is not in B, that is, if and only if B\(B\A)cA.

But B\(B\A)cA if and only if ACB\(B\A).

We have ACB\(B\A) if and only if every element of C that is not in A is not in B, that is, if and only if C\(C\A)cB.

But C\(C\A)cB if and only if ACB\(C\A).  

So B\(B\A) = A if and only if ACB\(C\A), which is true if and only if ACB.  

To learn more on arbitrary element :

https://brainly.com/question/32578655

#SPJ11

Determine whether the following statements are true or false. If the statement is true, write T in the box provided under the statement. If the statement is false, write F in the box provided under the statement. Do not write "true" or "false". (
a)__ If A and B are symmetric n×n matrices, then ABBA must be symmetric as well. (b) __ If A is an invertible matrix such that A−1=A, then A must be orthogonal. (c)¬__ If V is a subspace of Rn and x is a vector in Rn, then the inequality x. (proj x ) ≥ 0 must hold. (d) __ If matrix B is obtained by swapping two rows of an n×n matrix A, then the equation det(B)=−det(A) must hold. (e)__ There exist real invertible 3×3 matrices A and S such that STAS=−A.

Answers

a) The statement is false. If A and B are symmetric n×n matrices, the product ABBA is not necessarily symmetric. Matrix multiplication does not commute in general, so the product may not preserve the symmetry property.

b) The statement is true. If A is an invertible matrix such that A^(-1) = A, then A must be orthogonal. This is because for an orthogonal matrix, its inverse is equal to its transpose, and since A^(-1) = A, it satisfies the condition of being orthogonal.

c) The statement is false. If V is a subspace of R^n and x is a vector in R^n, the inequality x · (proj x) ≥ 0 does not necessarily hold. The dot product of x and its orthogonal projection onto V can be negative if the angle between them is obtuse.

d) The statement is true. If matrix B is obtained by swapping two rows of an n×n matrix A, the determinant of B is equal to the negation of the determinant of A. Swapping two rows changes the sign of the determinant.

e) The statement is true. There exist real invertible 3×3 matrices A and S such that STAS = -A. For example, let A be any invertible matrix and let S be a diagonal matrix with diagonal entries (-1, 1, 1). Then the product STAS will satisfy the given equation.

LEARN MORE ABOUT symmetric here: brainly.com/question/14466363

#SPJ11

The Eiffel Tower in Paris, France, is 300 meters
tall. The first level of the tower has a height of
57 meters. A scale model of the Eiffel Tower in
Shenzhen, China, is 108 meters tall. What is the
height of the first level of the model? Round to
the nearest tenth.

Answers

Answer:

Step-by-step explanation:

To find the height of the first level of the scale model of the Eiffel Tower in Shenzhen, we can use proportions.

The proportion can be set up as:

300 meters (Eiffel Tower) / 57 meters (First level of Eiffel Tower) = 108 meters (Scale model of Eiffel Tower) / x (Height of first level of the model)

Cross-multiplying, we get:

300 * x = 57 * 108

Simplifying:

300x = 6156

Dividing both sides by 300:

x = 6156 / 300

x ≈ 20.52

Rounded to the nearest tenth, the height of the first level of the model is approximately 20.5 meters.

You are trying to decide which of two automobiles to buy. The first is American-made, costs $3.2500 x 104, and travels 25.0 miles/gallon of fuel. The second is European-made, costs $4.7100 x 104, and travels 17.0 km/liter of fuel. If fuel costs $3.50/gallon, and other maintenance costs for the two vehicles are identical, how many miles must each vehicle travel in its lifetime for the total costs (puchase cost + fuel cost) to be equivalent? i||| x 105 miles. eTextbook and Media Hint Assistance Used The total cost of each vehicle is the purchase price plus the fuel price. The fuel price depends upon the fuel efficiency, the miles driven, and the unit fuel cost. Solve simultaneous equations for the miles driven.

Answers

For the total expenditures to be similar, each car must travel  165.79 x 10^3 miles or 1.6579 x 10^5  miles during its lifetime.

The cost of the first automobile is $3.25 x 10^4, and its fuel efficiency is 25.0 miles/gallon of fuel.

The cost of the second automobile is $4.71 x 10^4, and its fuel efficiency is 17.0 km/liter of fuel.

The cost of fuel is $3.50/gallon.

The lifetime of each vehicle requires calculating the number of miles that each automobile must travel for the total cost (purchase cost + fuel cost) to be equivalent.

The total fuel cost of the first vehicle is:

Total Fuel Cost 1 = Fuel Efficiency 1 / Fuel Cost Per Gallon

= 25.0 / 3.50

= 7.1429

The total fuel cost of the second vehicle is:

Total Fuel Cost 2 = Fuel Efficiency 2 * Fuel Cost Per Gallon / Km Per Mile

= 17.0 * 3.50 / 0.621371

= 95.2449

The total cost of the first vehicle for a lifetime of x miles driven is:

Total Cost 1 = Purchase Cost 1 + Fuel Cost 1x

= $3.25 x 10^4 + 7.1429x

The total cost of the second vehicle for a lifetime of x miles driven is:

Total Cost 2 = Purchase Cost 2 + Fuel Cost 2x

= $4.71 x 10^4 + 95.2449x

To find the number of miles each vehicle must travel in its lifetime for the total costs to be equivalent, we need to solve these simultaneous equations by setting them equal to each other:

$3.25 x 10^4 + 7.1429x = $4.71 x 10^4 + 95.2449x

Simplifying the equation:

-$1.46 x 10^4 = 88.102 x - $1.46 x 10^4

Solving for x:

x = 165.79

Therefore, the number of miles that each vehicle must travel in its lifetime for the total costs to be equivalent is 165.79 x 10^3 miles or 1.6579 x 10^5 miles.

Learn more about total expenditures

https://brainly.com/question/31197660

#SPJ11

Which statement best describes the faces that make up the total surface area of this composite solid?
O9 faces, 5 rectangles, and 4 triangles
O9 faces, 7 rectangles, and 2 triangles
O 11 faces, 7 rectangles, and 4 triangles
O11 faces, 9 rectangles, and 2 triangles

Answers

Answer: The statement "11 faces, 7 rectangles, and 4 triangles" best describes the faces that make up the total surface area of this composite solid.

Step-by-step explanation:

7. Let P2 have the inner product (p, q) = [p(z) q (x) dz. 0 Apply the Gram-Schmidt process to transform the basis S = {1, x, x²} into an orthonormal basis for P2.

Answers

The Gram-Schmidt process can be applied to transform the basis S = {1, x, x²} into an orthonormal basis for P2.

To apply the Gram-Schmidt process and transform the basis S = {1, x, x²} into an orthonormal basis for P2 with respect to the inner product (p, q) = ∫[p(z)q(x)]dz from 0 to 1, we'll follow these steps:

1. Start with the first basis vector, v₁ = 1.

  Normalize it to obtain the first orthonormal vector, u₁:

  u₁ = v₁ / ||v₁||, where ||v₁|| is the norm of v₁.

  In this case, v₁ = 1.

  The norm of v₁ is given by ||v₁|| = sqrt((v₁, v₁)) = sqrt(∫[1 * 1]dz) = sqrt(z) evaluated from 0 to 1.

  Thus, ||v₁|| = sqrt(1) - sqrt(0) = 1.

  Therefore, u₁ = v₁ / ||v₁| = 1 / 1 = 1.

2. Move on to the second basis vector, v₂ = x.

  Subtract the projection of v₂ onto u₁ from v₂ to obtain a vector orthogonal to u₁.

  Let's denote this orthogonal vector as w₂.

  The projection of v₂ onto u₁ is given by:

  proj(v₂, u₁) = ((v₂, u₁) / (u₁, u₁)) * u₁,

  where (v₂, u₁) is the inner product of v₂ and u₁, and (u₁, u₁) is the inner product of u₁ and itself.

  In this case:

  (v₂, u₁) = ∫[x * 1]dz = ∫[x]dz = xz evaluated from 0 to 1 = 1 - 0 = 1,

  and (u₁, u₁) = ∫[(1)²]dz = ∫[1]dz = z evaluated from 0 to 1 = 1 - 0 = 1.

  Thus, proj(v₂, u₁) = (1 / 1) * 1 = 1.

  Subtracting the projection from v₂:

  w₂ = v₂ - proj(v₂, u₁) = x - 1.

3. Now, we have w₂, which is orthogonal to u₁.

  Normalize w₂ to obtain the second orthonormal vector, u₂:

  u₂ = w₂ / ||w₂||, where ||w₂|| is the norm of w₂.

  In this case, w₂ = x - 1.

  The norm of w₂ is given by ||w₂|| = sqrt((w₂, w₂)) = sqrt(∫[(x - 1)²]dz) = sqrt(x² - 2x + 1) evaluated from 0 to 1.

  Thus, ||w₂|| = sqrt(1² - 2(1) + 1) = sqrt(1 - 2 + 1) = sqrt(0) = 0.

  However, since ||w₂|| = 0, the vector w₂ is a zero vector and cannot be normalized. Therefore, the Gram-Schmidt process ends here.

The resulting orthonormal basis for P2 is {u₁} = {1}.

Hence, the Gram-Schmidt process transforms the basis S = {1, x, x²} into the orthonormal basis {1} for P2.

Learn more about Gram-Schmidt process

brainly.com/question/30761089

#SPJ11

Two groups of participants are presented with the famous "Asian disease problem" (Tverksy & Kahneman, 1980). A new and unknown disease is threatening the nation. Group 1 is presented with two possible courses of action:
Out of 600 people
Program A: 200 will be saved
Program B: there is a 1/3 probability that 600 people will be saved and 2/3 probability that no one will be saved
Group 2 is presented with the following courses of action:
Out of 600 people
Program A: 400 will die
Program B: there is a 1/3 probability that 600 people will be saved and 2/3 probability that no one will be saved.
Notice, that both groups are given the same condition; it is the wording that matters. What will the pattern of results look like (most likely)?
Both groups will prefer A
O Group 1 will be most likely to choose B, Group 2 will be most likely to choose A
Group 1 will be most likely to choose A, Group 2 will be most likely to choose B
O Both groups will be equally likely to choose A or B

Answers

Group 1 will be most likely to choose Program A, while Group 2 will be most likely to choose Program B in the Asian disease problem, reflecting a difference in preferences due to the framing effect.

The pattern of results in the Asian disease problem is typically influenced by a cognitive bias known as the framing effect, which suggests that people's choices are influenced by the way options are presented or framed.

In Group 1, where the options are presented in terms of potential lives saved, participants are more likely to choose Program A because it guarantees the saving of 200 out of 600 people. The probabilistic nature of Program B, with a 1/3 chance of saving all 600 people and a 2/3 chance of saving no one, may seem riskier and less favorable in this framing.

On the other hand, in Group 2, where the options are presented in terms of potential deaths, participants are more likely to choose Program B. The probabilistic nature of Program B, with a 1/3 chance of no one dying and a 2/3 chance of everyone dying, may be perceived as a more favorable option compared to the certain death of 400 people under Program A. Therefore, the pattern of results will likely show that Group 1 prefers Program A, while Group 2 prefers Program B. This difference arises from the framing of the options in terms of lives saved or deaths.

LEARN MORE ABOUT framing effect here: brainly.com/question/31781428

#SPJ11

The diagram below shows circle O with radii OL and OK.


The measure of OLK is 35º.
What is the measure of LOK?

Answers

Answer:

∠LOK  = 110

Step-by-step explanation:

Since OL = OK, ΔOLK is an isoceles triangle

Therefore, the angles opposite to the equal sides are also equal

i.e., ∠OKL = ∠OLK = 35°

Also, ∠OKL + ∠OLK + ∠LOK = 180°

⇒ 35 + 35 + ∠LOK  = 180

⇒ ∠LOK  = 180 - 35 - 35

⇒ ∠LOK  = 110

How much does Doyle need to save each month for $1,800 down payment on his car if he wants to have the down payment in one year

Answers

Answer:

To determine how much Doyle needs to save each month for a $1,800 down payment on his car within one year, we need to consider the number of months in a year and divide the total down payment by that number.

Let's assume there are 12 months in a year.

Down payment amount: $1,800

Number of months: 12

To calculate the monthly savings needed, we divide the down payment amount by the number of months:

Monthly savings needed = Down payment amount / Number of months

Monthly savings needed = $1,800 / 12

Monthly savings needed = $150

Therefore, Doyle needs to save $150 per month to accumulate a $1,800 down payment on his car within one year.

Final answer:

To save $1,800 in one year for a car's down payment, Doyle needs to save $150 each month. This calculation is derived by dividing $1,800 by 12 months.

Explanation:

This is a question about simple division. If Doyle wants to save $1,800 for his car's down payment in one year (which is 12 months), he would simply need to divide the total amount he needs to save ($1,800) by the number of months in one year (12 months). Mathematically, this would look like $1,800 ÷ 12 = $150. So, Doyle needs to save $150 each month for a year to have enough for his car's down payment.

Learn more about Division here:

https://brainly.com/question/2273245

#SPJ2

Other Questions
Prescribed: Amphotericin B 75 mg in one liter D5W to infuse over six hours.Supplied:One liter IV solution with an administration set delivering 10 gtt/mL..Directions:Calculate the IV drip rate. 8. In the rope climb, an athlete (weight 875.6 N ) climbs a vertical distance of 6.8 m in 11 s. What minimum power ( in hp ) was used to accomplish this feat ? Hint: Fg=mg; Ihp-746 W; P=W/t;W=mgh;g=9.8 m/s2 a) 0.90 b) 0.52 c)1.2 d) 0.72 c) None of these is true Terminals A and B in the figure are connected to a Part A 15 V battery(Figure 1). Consider C1=15F,C2 =8.2F, and C3=22F. Find the energy stored in each capacitor. Express your answers using two significant figures separated by commas. X Incorrect; Try Again; 7 attempts remaining You are out for a walk one evening when you see a mugger accosting an elderly woman. According to which of the following ethical theories would you choose the course of action that brings the most benefit or least amount of detriment to the most amount of people in coming to the aid of that woman?Group of answer choicesA. DeterminismB. DeontologyC. ObjectivismD. Utilitarianism Given: FR = ANProve: FA = RN(Picture involved) This is the concept question for the Chemical Engineering Heat Transfer.How to create nodal network for the finite difference method in circular plate? Please state any theories used and give equation development etc. Thanks If an event planning company receives $80 per person for registration fee, but the variable costs for one person is $30 food, $20 beverage, and $ 10 registration materials. And the total fixed costs are $3,000. How many attendees do you need in order to be break-event events? 1. Suppose that f(x,x) =3/2x1 + x2 + x - x, compute the step length a of the line search method at point x(k)= (1,-1) for the given descent direction PL = (1,0). write about the author rl stevenson prove that: trigonometric question no.h Two objects moving with a speed vv travel in opposite directions in a straight line. The objects stick together when they collide, and move with a speed of v/6v/6 after the collision.1) What is the ratio of the final kinetic energy of the system to the initial kinetic energy? 2)What is the ratio of the mass of the more massive object to the mass of the less massive object? Based on your experiences and readings, analyze the roles, empowerment of patients, and values needed to be an effective nurse advocate and policy player.Discuss the APN role as a change agent.Provide an example of a time that you have acted as an advocate or a situation that you are familiar with that involved an APN acting as an advocate.Additionally, address how the APN role is implemented at an organizations, state, and national level.The text discusses the limited evidence base for the credibility of advocacy, in your opinion does it work?Why or why not? Support your thoughts with evidence. Carlos is a 6-year-old boy in first grade diagnosedwith attention-deficit/hyperactivity disorder (ADHD), combinedtype.Describe behaviors he might be exhibiting at home and in theclassroom. Which of the following is an example of an inference indicator? ? O Because O Moreover O Also O Sometimes The news coverage of both Spanish-American war (1898-1899) and the Persian gulf war (1990-1991) focused on the atrocities of Spain and Iraq, respectively, and human interest stories. What conclusions can be drawn? 1. Attitudes affect behaviour especially when_________________________.2. Social psychology is __________________________________________.3. When unsure about our judgments, we are most likely to________________.4. According to studies on social influence studies, minority group influence is more likely when_______________________________________________.5. Social thinking research findings indicate that after the first acts of compliance or resistance, attitudes _________________________ Which subspecialty of i/o psychology deals with enhancing employee skills, preparing employees for managerial positions, and helping employees work together effectively? The philosophy of ______ says that knowledge should be gained by careful observation and public measurement. 1) rationalism 2) dualism 3) empiricism 4) correlation Discuss the effect of the caffeine and nicotine on the nervous system. Chapter 8: Orthopedics - Muscular System Orthopedics (Muscular System) - Build Medical Words sing all of the word parts below, build 20 orthopedic (muscular) words. a- ab- ad- -al al alg/o- -alis -ar asthen/o- -ation brachi/o- brady- cost/o- duct/o- duct/o- dys- e- electro- extens/o- fibr/o- -gram habilit/o- hyper- hyper- -ia -la -la -la -la -il in- inter- -ion -ion -ion -ion -itis -itis -kinesis kines/o- kines/o- muscul/o- muscul/o- my/o- my/o- myos/o- neur/o- -or poly- radi/o- re- skelet/o- synovo- tax/o- ten/o- vers/o- vers/o- my/o- my/o- 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17. Steam Workshop Downloader