The bob of a pendulum is released from a horizontal position. If the length of the pendulum is 1.5m, what is the speed with which the bob arrives at the lowermost point, given that it dissipated 5% of its initial energy against air resistance ?

Answers

Answer 1

The speed at which the bob reaches the lowest point is 3.54 m/s

When the bob is released from the horizontal position, its potential energy is maximum, and kinetic energy is zero. So, the initial energy of the pendulum is the potential energy it has when it is released. The formula to calculate the potential energy of the pendulum is given by: PE = mgh

Where m is the mass of the bob, g is the acceleration due to gravity, and h is the height of the bob above the lowermost point. At the lowermost point, the potential energy is zero, and the kinetic energy is maximum.

Therefore, the kinetic energy at the lowermost point is equal to the initial potential energy of the pendulum. The formula for kinetic energy is given by:

KE = (1/2)mv² Where m is the mass of the bob, and v is the velocity of the bob at the lowermost point. Since energy is conserved, the initial potential energy of the pendulum is equal to the final kinetic energy of the bob. However, some of the initial energy is dissipated against air resistance. So, we can write the equation as:

PE - 5% PE = KE,

mgh - 0.05mgh = (1/2)mv²,

v² = 2gh(1 - 0.05),

v² = 2 × 9.8 × 1.5 × 0.95,

v = 3.54 m/s

Therefore, the speed with which the bob arrives at the lowermost point is 3.54 m/s.

To know more about pendulum click on below link :

https://brainly.com/question/30528375

#SPJ11


Related Questions

calculate the torque produced by a 42-n perpendicular force at the end of a 0.17-m-long wrench. group of answer choices 24 nm none of these. 1.7 nm 7.1 nm

Answers

Answer:

Γ = F X R

If the force is right angle to the lever arm then

Γ = F R = 42 N * .17 m = 7.1 N-m

what is the pressure of a fluid that comes out of a pipe that was closed on both ends, but then is opened up one end

Answers

The pressure of a fluid that comes out of a pipe that was closed on both ends, but then is opened up on one end is equal to the atmospheric pressure.

This is because when the pipe was closed, the pressure inside the pipe is equal to the atmospheric pressure outside the pipe. When one end is opened, the pressure inside the pipe is still equal to the atmospheric pressure outside the pipe, so the pressure of the fluid that comes out is equal to the atmospheric pressure.


When a pipe that has been closed on both ends is opened at one end, the pressure of the fluid that comes out of the pipe is given by Bernoulli's principle.

The principle of Bernoulli states that the sum of pressure and kinetic energy per unit volume of an incompressible fluid is constant at all points along a streamline. If the fluid flows through a narrow constriction, the fluid's velocity must increase to maintain the mass flow rate (conservation of mass).

Bernoulli's principle can be represented mathematically as:

P + 1/2ρv² + ρgh = constant

where P is pressure, ρ is density, v is velocity,g is the gravity constant, h is the height

Therefore, the pressure of a fluid that comes out of a pipe that is opened up on one end is equal to the atmospheric pressure.

To know more about atmospheric pressure click here:

https://brainly.com/question/30166820

#SPJ11

does adding too many fins on a surface causes the overall heat transfer coefficient and heat transfer to increase?

Answers

Yes, adding too many fins on a surface can cause the overall heat transfer coefficient and heat transfer to increase.

This is because the presence of fins can increase the surface area available for heat exchange, allowing more heat to be transferred over a given period of time. Fins can also improve the convective heat transfer coefficient and turbulence levels of the surrounding fluid.
When adding fins to a surface, it is important to consider the fin spacing and height to ensure that the fins do not impede the flow of the surrounding fluid. For instance, if the fins are too close together, they can cause an increase in the pressure drop of the fluid and reduce the efficiency of the heat exchange. Likewise, if the fins are too high, they can block the flow of the fluid.
It is also important to consider the type of material used for the fins. Fin materials can affect the thermal conductivity of the fins, which in turn can influence the heat transfer rate. Furthermore, if the fins are made from a material that is not resistant to corrosion, the effectiveness of the fins may be reduced over time.
In summary, adding too many fins on a surface can cause the overall heat transfer coefficient and heat transfer to increase. It is important to consider the fin spacing, height, and material when determining the most efficient fin configuration for a given surface.

For more such questions on heat transfer

https://brainly.com/question/2341645

#SPJ11

Question
Two bicycles have the following equations of motion, what is the distance between the bicycles at t = 0?
X1= -6. 0 m+ (7. 5 m/s)
X2 = 9. 6 m +(-4. 5 m/s)t​

Answers

The distance between the two bicycles at t=0 is 15.6 meters.

The length of the line connecting two places represents the distance between them. Subtracting the different coordinates will reveal the distance if the two points are on the same horizontal or vertical line. To find the distance between the two bicycles at time t=0, we need to find their positions at that time.

For the first bicycle,

X1 = -6.0 m + (7.5 m/s)t

    = -6.0 + 7.5 × 0

    = -6.0 m.

For the second bicycle,

X2 = 9.6 m + (-4.5 m/s)t

     = 9.6 + (-4.5) × 0

     = 9.6 m.

Therefore, the distance between the two bicycles at time t=0 is:

Distance = X2 - X1

               = 9.6 m - (-6.0 m)

               = 15.6 m

So the distance between the two bicycles at t=0 is 15.6 meters.

To learn more about distance, refer to:

https://brainly.com/question/26550516

#SPJ4

as a student runs a plastic comb through her hair, the comb acquires a negative electric charge this charge resuklts from the transfer of

Answers

Electrons from the student's hair to the plastic comb. When the student runs the comb through her hair, the comb and the hair rub against each other. This friction causes the transfer of electrons between the two materials.

What is friction ?

Friction is a force that opposes motion between two surfaces in contact. Whenever two surfaces are in contact and one of them moves or tries to move over the other, there is a force that resists the motion. This force is called friction. Friction arises due to the irregularities on the surfaces of the objects in contact. When the two surfaces are pressed together and moved relative to each other, the irregularities interlock and create resistance to motion. The force of friction always acts in the opposite direction to the direction of motion or the direction of the applied force.

To know more about friction visit :

https://brainly.com/question/28356847

#SPJ1

the resistivity of a wire is zero when no current is passing though it. group of answer choices false true

Answers

The statement "the resistivity of a wire is zero when no current is passing through it" is false. The resistivity of a wire is determined by the material the wire is made from and does not change when current is passed through it.


What is resistivity?

The measure of the resistance of a material to the movement of electrical current is called resistivity. It is calculated by taking the resistance of the object's cross-sectional area and length. The resistance of an object is defined as the ratio of the voltage drop across the object's terminals to the current that passes through it.

The definition of resistivity also implies that it is a property that is constant at a given temperature, and it is a characteristic of the material that is independent of its shape or size. Resistance is a characteristic of an object that depends on its size, shape, and material. It is the inherent opposition of a material to the flow of an electric current through it.

Read more about resistivity :

https://brainly.com/question/17563681

#SPJ11

A particle executes simple harmonic motion
with an amplitude of 1.67 cm.
At what positive displacement from the
midpoint of its motion does its speed equal
one half of its maximum speed?
Answer in units of cm.

Answers

Answer:

0.835cm or 1.145cm

Explanation:

We know that in simple harmonic motion, the speed is at its maximum at the equilibrium point (midpoint) and zero at the amplitude. Therefore, we need to find the displacement from the midpoint where the speed is half of its maximum.

Let's start by finding the maximum velocity. We know that the velocity is given by:

v = Aωcos(ωt)

where A is the amplitude, ω is the angular frequency, and t is the time. At the equilibrium point, where the displacement is zero, the velocity is at its maximum. Therefore:

v_max = Aω

Next, we need to find the velocity when the speed is half of v_max. The speed is given by the absolute value of the velocity:

speed = |v| = Aω|cos(ωt)|

When the speed is half of v_max, we have:

Aω|cos(ωt)| = 0.5v_max

Substituting v_max = Aω, we get:

|cos(ωt)| = 0.5

Since the cosine function oscillates between -1 and 1, we have two possible solutions:

cos(ωt) = 0.5 or cos(ωt) = -0.5

Solving for ωt, we get:

ωt = arccos(0.5) = π/3 or ωt = 2π/3

or

ωt = -arccos(0.5) = -π/3 or ωt = -2π/3

We only need to consider the positive solutions, since displacement is always positive. Therefore:

ωt = π/3 or ωt = 2π/3

The displacement corresponding to these times can be found using the equation for displacement in simple harmonic motion:

x = Acos(ωt)

Substituting ωt = π/3, we get:

x = 1.67cos(π/3) = 0.835 cm

Substituting ωt = 2π/3, we get:

x = 1.67cos(2π/3) = 1.145 cm

Therefore, the particle's speed equals one half of its maximum speed at a positive displacement of either 0.835 cm or 1.145 cm from the midpoint of its motion.

A beam of horizontally polarized light passes through a polarizer whose transmission axis is at an angle of 35. 0 degrees with the vertical. If the intensity of the transmitted light is 0. 55 w/m^2, what was the initial intensity of the beam?

Answers

Malus's law describes how much light is transmitted when a beam of polarised light travels through a polarizer:

I = I0 cos^2(θ)

where is the angle formed by the transmission axis of the polarizer and the polarisation direction of the input light, and I0 is the beam's starting intensity.

The transmission axis of the polarizer in this issue makes a 35.0 degree angle with the vertical. The angle between the transmission axis and the polarisation direction is 90 - 35.0 = 55.0 degrees since the incident light is horizontally polarised.

By applying the provided values to Malus's law, we obtain:

I0 cos2 = 0.55 W/m2 (55.0 degrees)

To solve for I0, we obtain:

I0 equals 0.55 W/m2/cos2 (55.0 degrees)

I0 = 1.24 W/m^2 (rounded to two major values) (rounded to two significant figures)

learn more about polarizer here:

https://brainly.com/question/30002497

#SPJ4

basics of quantum physics and how it works?

Answers

The most fundamental stage of studying matter and energy is quantum physics. It aims to comprehend the traits and behaviours of the very substances that make up nature.

What is the fundamental principle of quantum physics?

According to this theory, the universe of any object transforms into an array of parallel universes with an identical number of possible states for that object, one in each universe. This occurs as soon as the potential for any object to be in any state arises.

What is a quantum physicist's process?

By examining the interactions between particles of matter, quantum physicists investigate how the universe functions. This career might suit your interests if you like math or physics.

To know more about quantum physics visit:-

https://brainly.com/question/10430663

#SPJ9

a 14.3 v battery is connected to a 7.9 pf parallel-plate capacitor. what is the magnitude of the charge on each plate?

Answers

Each plate has a charge that is roughly 113.17 pC in size.

How can you determine a parallel plate capacitor's charge?

According to the equation Q=CV, where Q is the charge in Coulombs, C is the capacitance in Farads, and V is the potential difference between the plates in volts, Both the capacitance and the applied voltage affect how much charge moves into the plates.

We can use the following formula to determine the size of the charge present on each plate of a parallel-plate capacitor:

Q = CV

It is critical to remember that the parallel-plate capacitor's capacitance is determined by:

C = εA/d

It makes use of the free space permittivity (0).

We'll assume that the provided capacitance of 7.9 pF is accurate.

Using the formula Q = CV, we get:

Q = (7.9 pF) x (14.3 V) = 113.17 pC

To know more about charge visit:-

https://brainly.com/question/14713274

#SPJ1

you are trying to solve a physics problem and the first thing you try doesnt workyou try another and then another and eventually you figure it out what is this method called

Answers

The method of trying different approaches to solve a problem until one works is called trial and error.

It involves experimenting with different methods or strategies until the correct solution is found. It is a common problem-solving method used in many fields, including physics, mathematics, engineering, and computer science. It can be a time-consuming process, but it can also be an effective way to arrive at a solution when other methods fail.

What is trial and error method?

The trial and error method is a problem-solving strategy that involves experimenting with different solutions or approaches until the correct one is found. This method is commonly used when the problem is complex or the solution is not obvious. The trial and error method involves trying different approaches, observing the results, and adjusting the approach until the desired outcome is achieved. It is often a time-consuming process but can be effective in finding solutions when other methods fail.

To know more about trial and error method, visit:

https://brainly.com/question/4123314

#SPJ1

wire b has 4.6 times the resistance of wire a. if the same voltage is placed across them, find the ratio of the currents, ib/ia.

Answers

The ratio of the current, Ib/Ia = 1/4.6

The ratio of the currents in wires A and B, Ib/Ia, is determined by the ratio of their resistances.

To understand this more clearly, consider the following equation:
V = I R

This equation states that the voltage across a wire is equal to the product of the current in the wire and its resistance. Since the same voltage is placed across both wires, and the resistance of wire B is greater than that of wire A, the current in wire B must be less than that of wire A. Therefore, the ratio of the currents is the inverse of the ratio of their resistances.


Solving we get,

(Ib/Ia) = (V/4.6R) / (V/R) = 1/4.6.

In summary, when the same voltage is placed across two wires with different resistances, the ratio of the currents in those two wires is equal to the inverse of the ratio of their resistances.

Therefore, if the same voltage is placed across wires A and B, the ratio of the currents, Ib/Ia will be equal to 1/4.6.

To know more about currents, refer here:

https://brainly.com/question/13076734#

#SPJ11

at what speed does a 982 kg compact car have the same kinetic energy as a 32266 kg truck going 33 km/h?

Answers

The speed at which the compact car has the same kinetic energy as the truck going 33 km/h is approximately 170 m/s.

The formula for calculating kinetic energy is K.E. = 1/2 x mass x speed². Therefore, the speed of the compact car is the

[tex]\sqrt{(32266/982)} * 33[/tex]  km/h = 126.46 km/h.

The kinetic energy (KE) of an object is given by the formula:

[tex]KE = 1/2 * m * v^2[/tex]

where m is the mass of the object and

v is its velocity.

We are given the masses and velocities of the compact car and the truck. Let's calculate the kinetic energy of the truck first:

[tex]KE_{(truck)}= 1/2 * m_{truck} * v_{truck}^2[/tex]

[tex]KE_{(truck)}= 1/2 * 32266* (33)^2[/tex] (kg )*(km/h)²

[tex]KE_{(truck)} = 1.42*10^9[/tex] J

Now, let's set the kinetic energy of the car equal to the kinetic energy of the truck and solve for the velocity of the car:

[tex]KE_{(car)} = KE_{truck}[/tex]

[tex]1/2 * m_{(car)} * v_{(car)}^2 = 1.42*10^9[/tex] J

Rearranging the equation, we get:

[tex]v_{(car)}^2 = (2 * KE_{truck}) / m_{(car)}[/tex]

[tex]v_{car}^2 = (2 * 1.42*10^9)/982[/tex]J/kg

[tex]v_{car}^2= 2.89*10^6[/tex] m²/s²

Taking the square root of both sides, we get:

[tex]v_{car} = \sqrt{2.89*10^2}[/tex] m²/s²

[tex]v_{car}[/tex]=170 m/s

Therefore, the speed at which the compact car has the same kinetic energy as the truck going 33 km/h is approximately 170 m/s.

To practice more questions about kinetic energy:

https://brainly.com/question/29763149

#SPJ11

tyrell is playing marbles with his younger sister. a 6.63-g marble moving at 1.41 m/s has a head-on collision with a 2.86-g marble, initially at rest on the playing surface. the post-collision speed of the 6.63-g marble is 0.86 m/s. what is the speed (in m/s) of 2.86-g marble after the collision?

Answers

The speed of the 2.86 g marble after the collision is 1.05 m/s.

We can use the conservation of momentum to solve this problem:

Before the collision:

m1 = 6.63 g = 0.00663 kg (mass of the first marble)

v1 = 1.41 m/s (velocity of the first marble)

m2 = 2.86 g = 0.00286 kg (mass of the second marble)

v2 = 0 m/s (initial velocity of the second marble)

After the collision:

v1' = 0.86 m/s (final velocity of the first marble)

v2' = ? (final velocity of the second marble)

Using conservation of momentum:

[tex]m1v1 + m2v2 = m1v1' + m2v2'[/tex]

Substituting the known values:

[tex]0.00663 kg * 1.41 m/s + 0.00286 kg * 0 m/s = 0.00663 kg * 0.86 m/s + 0.00286 kg * v2'[/tex]

Solving for v2':

[tex]v2' = (0.00663 kg * 1.41 m/s - 0.00663 kg * 0.86 m/s) / 0.00286 kgv2' = 1.05 m/s[/tex]

Therefore, the speed of the 2.86 g marble after the collision is 1.05 m/s.

To know more about "-  head-on collisions here

https://brainly.com/question/30224237

#SPJ4

Jack and Jill stand on the ice and push off each other. Jack's 64.3-kg body is propelled westward with a velocity of 2.19 m/s. What is the eastward velocity of Jill's 45.4-kg body?

Answers

Answer:

By the law of conservation of momentum, the total momentum of the system before and after the push must be equal. Therefore, we can use the following equation to solve for Jill's velocity:

(mass of Jack) x (velocity of Jack) = (mass of Jill) x (velocity of Jill)

Plugging in the given values, we get:

(64.3 kg) x (2.19 m/s) = (45.4 kg) x (velocity of Jill)

Solving for the velocity of Jill, we get:

velocity of Jill = (64.3 kg x 2.19 m/s) / 45.4 kg = 3.10 m/s (eastward)

Therefore, Jill's body is propelled eastward with a velocity of 3.10 m/s.

a 6.0-v battery that can store 500.0 j of energy is connected to a resistor. how much charge must flow between the battery's terminals to completely drain the battery if it is fully charged? assume that the voltage of the battery remains the same until it is totally drained.

Answers

To drain a 6.0-V battery that can store 500.0 J of energy, the charge that must flow between the battery's terminals is 8,333 Coulombs. This is because the energy stored in a battery is equal to the voltage multiplied by the charge. Therefore, 500.0 J = 6.0 V x Q, where Q is the charge.

Solving for Q, we find that the charge must be 8,333 Coulombs. The voltage of the battery will remain the same until it is completely drained. This is because the voltage of a battery is a measure of the electric potential difference between the two terminals, and this does not change until all the energy stored in the battery has been transferred out. So, to completely drain the battery, 8,333 Coulombs of charge must flow between the battery's terminals.

Know more about Coulombs here

https://brainly.com/question/4111722#

#SPJ11

a heat pump with a cop of 4.0 supplies heat to a building at a rate of 100 kw. determine the power input to the heat pump.

Answers

The power input to the heat pump is 25 kW.

The COP (coefficient of performance) of the heat pump is 4.0. This means that for every unit of power consumed by the heat pump, it supplies four units of heat to the building.

The rate at which the heat pump supplies heat to the building is 100 kW.

Therefore, the power input to the heat pump can be calculated as:

Power input = Power output / COP

Power input = 100 kW / 4.0

Power input = 25 kW

Hence, the power input to the heat pump is 25 kW.

To know more about power input click here:

https://brainly.com/question/1141300

#SPJ11

a 27.8 g marble sliding to the right at 21.0 cm/s overtakes and collides with a 13.9 g marble moving in the same direction at 11.5 cm/s. after the collision, the 13.9 g marble moves to the right at 23.9 cm/s. find the velocity of the 27.8 g marble after the collision.

Answers

When two marbles of different masses collide, their velocities will change depending on the masses and the collision force. In this case, the 27.8 g marble was traveling to the right at 21.0 cm/s and overtook the 13.9 g marble traveling in the same direction at 11.5 cm/s.

After the collision, the 13.9 g marble moved to the right at 23.9 cm/s. The velocity of the 27.8 g marble after the collision can be calculated by applying the conservation of momentum.

Momentum is the product of mass and velocity, and when two objects collide, the total momentum is conserved. This means that the sum of the momentum of the two marbles before the collision must be equal to the sum of the momentum after the collision.

Thus, the velocity of the 27.8 g marble after the collision can be calculated by subtracting the momentum of the 13.9 g marble after the collision from the momentum of the 27.8 g marble before the collision. The resulting velocity of the 27.8 g marble after the collision is 17.1 cm/s.

Know more about Momentum here

https://brainly.com/question/30487676#

#SPJ11

. in a tug-of-war, 13 children, with an average mass of 30 kg each, pull westward on a rope with an average force of 150 n per child. five parents, with an average mass of 60 kg each, pull eastward on the other end of the rope with an average force of 475 n per adult. assuming that the whole mass accelerates together as a single entity, what is the acceleration of the system?

Answers

When the whole mass accelerates together as a single entity, the acceleration of the system is 0.62 m/s²

To determine the acceleration of the system, the mass on one end of the rope must be subtracted from the mass on the other end of the rope.

The mass of each child is 30 kg. The number of children is 13.

Therefore, 30 x 13 = 390 kg is the total mass of the children.

The mass of each parent is 60 kg. There are five parents.

So the total mass of the parents is 5 x 60 = 300 kg.

Total mass is the sum of the masses of the parents and children, which is 300 + 390 = 690 kg.

The force applied by the children is 150 N/child, and there are 13 children

So the total force applied by the children is 150 x 13 = 1950 N.

The force applied by the parents is 475 N/adult, and there are five parents, so the total force applied by the parents is 475 x 5 = 2375 N.

The net force is the difference between the forces applied by the children and the forces applied by the parents, which is 425 N to the east (2375 N - 1950 N).

Use the formula F = ma, where F is force, m is mass, and a is acceleration, to determine the acceleration of the system. The formula should be rearranged to solve for acceleration. a = F/m

Substitute the values into the formula:

a = 425 N / 690 kg

acceleration:a = 0.62 m/s²

Therefore, the acceleration of the system is 0.62 m/s².

To know more about acceleration click here:

https://brainly.com/question/30660316

#SPJ11

Calculate the resistance of copper wire 20 m long and diameter of 0.05cm

Answers

Answer:

the resistance of the copper wire 20 meters long and with a diameter of 0.05 cm is 0.342 ohms.

Explanation:

To calculate the resistance of the copper wire, we need to use the formula:

R = (ρ * L) / A

where R is the resistance of the wire, ρ is the resistivity of copper, L is the length of the wire, and A is the cross-sectional area of the wire.

The resistivity of copper is 1.68 × 10^-8 Ω·m.

First, we need to calculate the cross-sectional area of the wire:

A = π * (d/2)^2

A = π * (0.05cm/2)^2

A = 0.0019635 cm^2

Note that we converted the diameter from centimeters to meters, since the resistivity is given in ohms per meter.

Now, we can calculate the resistance of the wire:

R = (ρ * L) / A

R = (1.68 × 10^-8 Ω·m * 20m) / 0.0019635 cm^2

R = 0.342 Ω

Therefore, the resistance of the copper wire 20 meters long and with a diameter of 0.05 cm is 0.342 ohms.

a weight lifter lifts a 390-n set of weights from ground level to a position over his head, a vertical distance of 1.80 m. how much work does the weight lifter do, assuming he moves the weights at constant speed?

Answers

The work done by the weight lifter is 7260 J.

The weight lifter does 7,260 J of work when lifting the 390-N weights. This is calculated by multiplying the force (390 N) by the distance (1.80 m) that the weights were moved.

W = Fd, where W is work, F is force, and d is distance.

The weight lifter must apply a force to lift the weights. This force is what enables the weight lifter to move the weights from ground level to a position over his head.

The force applied is measured in Newtons, and the distance moved is measured in meters. The work done is measured in joules (J).

The work done by the weight lifter, we need to multiply the force applied (390 N) by the distance moved (1.80 m). So, W = Fd, W = 390 N x 1.80 m, and W = 7,260 J.

This is the work done by the weight lifter in lifting the 390-N weights from ground level to a position over his head.

It is important to note that the work done is the same whether the weight lifter moves the weights at a constant speed or at varying speeds.

The only factor that affects the amount of work done is the amount of force applied and the distance the weights were moved.

to know more about work refer here:

https://brainly.com/question/18094932#

#SPJ11

in the circuit to the right the battery maintains a constant potential difference between its terminals at points 1 and 2. the three light bulbs a b and c are identical. how do the brightness of the 3 bulbs compare to each other?

Answers

The brightness of the 3 bulbs compares to each other if a constant potential difference between its terminals at points 1 and 2 is bulb A is brightest compared to B and equal due to sharing current.

From the figure, we know that brightest to leаst bright: А and B/C (B and C аre sаme). B аnd C аre in the sаme brаnch, so they both hаve the sаme current. Since they both hаve the sаme resistаnce, they hаve the sаme power/brightness аs eаch other.

Since B аnd C shаre а voltаge drop equаl to A, they’ll eаch hаve less voltаge thаn A аs well. With less current АND less voltаge thаn A, they’ll both be dimmer thаn A. BC hаs аn equivаlent resistаnce of 1/2 А. This meаns the voltаge drop аcross BC is 1/2 the voltаge аcross А.

Your question is incomplete, but most probably your full question can be seen in the Attachment.

For more information about potential difference refers to the link: https://brainly.com/question/12198573

#SPJ11

what is the speed acquired by a freely falling object 5 s after being dropped from a rest position? what is the speed 6 s after?

Answers

The speed acquired by the body is 49m/s and 59m/s respectively.

The speed can be calculated using the formula:

v= u + gt,  where v= final speed, u= initial speed = 0 for a freely falling body, g= acceleration due to gravity, t= time.

The speed acquired by a freely falling object 5 seconds after being dropped from a rest position is 49 m/s. This is because an object dropped from rest will accelerate at a rate of 9.8 m/s², so after 5 seconds it will be moving at a speed of 5 * 9.8 = 49 m/s.

The speed 6 seconds after being dropped from a rest position is approximately 59 m/s. This is because an object dropped from rest will accelerate at a rate of 9.8 m/s², so after 6 seconds it will be moving at a speed of 6 * 9.8 = 58.8 m/s.


In summary, the speed of an object dropped from rest 5 seconds after being dropped is 49 m/s, and 6 seconds after it is approximately 59 m/s.

To know more about speed, refer here:

https://brainly.com/question/17661499#

#SPJ11

A 0.2-kg hockey puck, moving at 24 m/s, is caught and held by a 75-kg goalie at rest. With what speed does the goalie (with the puck) slide on the ice?

Answers

Answer:

To solve this problem, we can use the law of conservation of momentum, which states that the total momentum of a system is conserved in the absence of external forces. In this case, the system consists of the hockey puck and the goalie.

Before the catch, the momentum of the puck is:

puck momentum = m1 * v1 = 0.2 kg * 24 m/s = 4.8 kg m/s

where m1 is the mass of the puck and v1 is its velocity.

The momentum of the goalie before the catch is zero since the goalie is at rest.

After the catch, the combined momentum of the puck and the goalie is:

combined momentum = m1 * v2 + m2 * v3

where v2 is the velocity of the puck after the catch, v3 is the velocity of the goalie and m2 is the mass of the goalie with the equipment.

Since the system is closed and there are no external forces, the momentum is conserved. Therefore:

puck momentum = combined momentum

4.8 kg m/s = 0.2 kg * v2 + 75 kg * v3

Solving for v3, the velocity of the goalie after the catch, we get:

v3 = (4.8 kg m/s - 0.2 kg * v2) / 75 kg

We need to find v2, the velocity of the puck after the catch. Since the puck is caught and held, its velocity is zero.

Substituting v2 = 0 into the above equation, we get:

v3 = 4.8 kg m/s / 75 kg = 0.064 m/s

Therefore, the goalie (with the puck) slides on the ice with a speed of 0.064 m/s.

thermionic diodes are the most widely used diodes because of their small size and weight. true false

Answers

Thermionic diodes are the most widely used diodes because of their small size and weight, this statement is: false.

While thermionic diodes are still used in some applications, they are not the most widely used diodes.Thermionic diodes work by using the emission of electrons from a heated cathode, which then travel across a vacuum to a cooler anode.

This is also called a vacuum diode. While this technology was the basis for early electronics, it has largely been replaced by semiconductor diodes, which are much smaller, more efficient, and easier to manufacture.

Semiconductor diodes, such as silicon or germanium diodes, are used in a wide variety of applications, including rectifiers, voltage regulators, and switching circuits. They are small and lightweight, making them ideal for use in electronic devices such as cell phones, computers, and other portable electronics.

Additionally, semiconductor diodes have a much longer lifespan than thermionic diodes, making them a more reliable choice. While thermionic diodes may still be used in some specialized applications, such as in high-power vacuum tubes or in some scientific instruments, they are no longer the most widely used diodes.

To know more about electrons refer here:

https://brainly.com/question/1255220#

#SPJ11

3. Ryder hits a tennis ball 2. 0 m from the ground. The initial velocity is directed horizontally and is 17. 2 m/s. The ball hits the ground 11. 0 m away from the player after passing over a 1. 0 m high net that is 6. 0 m horizontally from the player. 2K,1C
4T,1C

How long does it take for the ball to reach the ground?
What was the magnitude of the final velocity of the ball?

Answers

The time it takes for the ball to reach the ground is 1.63 seconds.
The magnitude of the final velocity of the ball is 17.2 m/s.



To calculate this, we can use the equations of motion for horizontal motion with constant acceleration:

x = x0 + v0t + (1/2)at2

v2 = v02 + 2a(x - x0)

Here, x

is the initial velocity (17.2 m/s), x is the final distance (11.0 m), and a is the acceleration due to gravity (-9.8 m/s).
Substituting in the given values, we get:

11.0 m = 2.0 m + (17.2 m/s)(t) + (-9.8 m/s2)(t2)/2

(17.2 m/s)2 = (17.2 m/s)2 + 2(-9.8 m/s2)(11.0 m - 2.0 m)
Since the initial velocity was directed horizontally, the magnitude of the final velocity is the same as the initial velocity (17.2 m/s).

For such more questions on initial velocity:

brainly.com/question/29110645

#SPJ11

4. if the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?

Answers

The possible direction in which an electromagnetic wave is traveling if the electric field is oscillating along the z-axis and the magnetic field is oscillating along the x-axis is the y-axis.

An electromagnetic wave is composed of two mutually perpendicular fields that oscillate perpendicular to the direction of the wave's propagation. They are the electric field and the magnetic field. An electromagnetic wave is created when a charged particle is accelerated. These waves can travel through a vacuum or any medium, including air and water, at the speed of light.

In this scenario, the electric field of the wave oscillates along the z-axis, while the magnetic field oscillates along the x-axis. As a result, the wave's propagation direction must be perpendicular to both fields. As a result, the wave must be propagating along the y-axis.This is why it's critical to comprehend the interplay between electric and magnetic fields in the context of electromagnetic waves.

It's also critical to recognize that an electromagnetic wave's direction of propagation is always perpendicular to the oscillation directions of the two fields, which are mutually perpendicular to each other.

for such more question on electromagnetic wave

https://brainly.com/question/24319848

#SPJ11

- a car rounds an unbanked curve of radius 50 m. if the coefficient of static friction between the road and car is 0.67, what is the maximum speed (in m/s) at which the car can traverse the curve without slipping?

Answers

The maximum speed at which the car can traverse the curve without slipping is 14.2 m/s.

The maximum speed that a car can traverse an unbanked curve without slipping is determined by the centripetal force acting on the car, which is provided by the force of static friction between the road and the car's tires.

The formula for centripetal force is given by:

F_c = m*v² / r

where Fc is the centripetal force, m is the mass of the car, v is the speed of the car, and r is the radius of the curve.

The maximum speed of the car can be determined by equating the centripetal force to the maximum static friction force:

F_f = μs * m * g

where Ff is the maximum static friction force, μs is the coefficient of static friction, m is the mass of the car, and g is the acceleration due to gravity.

Setting these two equations equal to each other and solving for v, we get:

m*v²/ r = μ_s * m * g

v² = μ_s * g * r

v = [tex]\sqrt{Ms * g * r)}[/tex]

Plugging in the given values, we get:

v = [tex]\sqrt{0.67 * 9.81 m/s^{2} * 50 m)}[/tex]

v = 14.2 m/s

Learn more about the centripetal: https://brainly.com/question/14249440

#SPJ11

a certain colored light has a frequency of about 7.5 x 1014 hz. what is the wavelength? please show all the steps and all of your work when you upload your final answer.

Answers

The wavelength of the colored light is 4.00 x [tex]10^{-7}[/tex] m, or 4.00 x [tex]10^{-4}[/tex] cm.

The wavelength of a certain colored light with a frequency of about 7.5 x [tex]10^{14}[/tex] Hz can be calculated using the following equation: wavelength (λ) = velocity of light (c) / frequency (f). The velocity of light is a constant, so it is equal to 3.00 x [tex]10^{8}[/tex] m/s.

Plugging the given frequency into the equation, we get: λ = 3.00 x [tex]10^{8}[/tex]  m/s / 7.5 x [tex]10^{14}[/tex] Hz
Solving for wavelength, we get:
λ = 4.00 x [tex]10^{-7}[/tex] m, or 4.00 x [tex]10^{-4}[/tex] cm
This means that the wavelength of the colored light is 4.00 x [tex]10^{-7}[/tex] m, or 4.00 x [tex]10^{-4}[/tex] cm.


To summarize, the frequency of the colored light is 7.5 x [tex]10^{14}[/tex] Hz, and the corresponding wavelength is 4.00 x [tex]10^{-7}[/tex] m, or 4.00 x [tex]10^{-4}[/tex] cm. This can be calculated by using the equation: wavelength (λ) = velocity of light (c) / frequency (f).

For more such questions on Wavelength.

https://brainly.com/question/20462619#

#SPJ11

a marble is rolling across the floor at a speed of 7.0 m/s when it starts up a plane inclined at to the horizontal. (a) how far along the plane does the marble travel before coming to a rest? (b) how much time elapses while the marble moves up the plane?cx

Answers

Answer:

Explanation:

To solve this problem, we can use the principle of conservation of energy, which states that the initial mechanical energy of the marble (kinetic energy) is equal to its final mechanical energy (potential energy plus kinetic energy), neglecting any losses due to friction:

Initial kinetic energy = Final potential energy + final kinetic energy

1/2 mv^2 = mgh + 1/2 mv_f^2

where m is the mass of the marble, v is its initial speed, h is the height the marble reaches before coming to a stop, and v_f is the final speed of the marble (which is zero in this case).

(a) To find the distance the marble travels up the plane before coming to a stop, we need to find the height h, which we can do by solving the above equation for h:

h = (1/2 v^2)/(g sinθ)

where g is the acceleration due to gravity (9.8 m/s^2) and θ is the angle of inclination of the plane (which is not given in the problem, so we'll assume it's 30 degrees).

Plugging in the given values, we get:

h = (1/2 × 7.0^2)/(9.8 × sin30) = 6.4 m

Therefore, the marble travels 6.4 meters up the plane before coming to a stop.

(b) To find the time it takes the marble to travel up the plane, we can use the kinematic equation:

v_f = v_i + at

where v_i is the initial velocity (7.0 m/s), v_f is the final velocity (zero), a is the acceleration of the marble, and t is the time it takes to travel up the plane.

The acceleration of the marble can be found using the component of gravity along the plane, which is given by:

a = g sinθ

Plugging in the values, we get:

0 = 7.0 + (9.8 sin30)t

Solving for t, we get:

t = (7.0/4.9) sec = 1.4 sec

Therefore, the marble takes 1.4 seconds to travel up the plane.

Other Questions
most people in the united states with a mental disorder in any given 12-month period receive treatment during the same time frame. as you are working on a sketch of a dicot leaf for your botany lab report, you want to be sure that you add specific details about the mesophyll. what should you be sure to show in palisade, but not spongy, mesophyll? By the end of the 1920s, the policy of the united states governmemt towards " Indian schools" in the country was to how does a vlan save a company time and money, provide extra security for a network, and reduce network traffic? g starting with the arrival of an action potential at the axon terminal of a motor neuron, which is the correct order of events? a good business goal should have which of the following qualities? a. flexible b. stated simply c. easily understandable d. fits within the business mission e. c and d only fall of the above a company selling diapers knows the market is for people with infants and toddlers. however, within that segment, it can further divide the market by a demographic factor like: which statement best defines productivity? a. productivity is the ability of a company to produce goods and services. cross out b. productivity is the quantity of goods or services that a worker can produce in one hour. cross out c. productivity is the total quantity of goods and services that a nation can produce. cross out d. productivity is the ability of a company to generate profit. 2. they describe conjugation (matings) done in liquid media where the recipient cells used to be on a biofilm and compared them with matings done with cells still on a biofilm. why did they do these by, at least, triplicate? the nurse is teaching a client about moving joints into positions of pronation and supination. which client action reflects that teaching has been effective? Marine life in the oceans are an important source of atmospheric _______________. which process is often associated with the technical tools and techniques of quality management, such as pareto charts, quality control charts, and statistical sampling? Read the following summary and answer the question below. In 1823, the U.S. Supreme Court ruled that Native Americans could live on United States lands, but they could not actually own any of these lands. This ruling led American citizens to settle on lands that has been traditionally inhabited by Native Americans.How did this ruling affect the lives of Native Americans in the Southeast?Group of answer choicesA.Many tribes were forcibly relocated beyond white settlements.B.Most tribes abandoned their culture to be accepted in the white settlements.C.Most tribes resettled areas similar to their homeland to make adaptation easier.D.Many tribes formed war alliances to attack new communities. the pascal's brought their child to their pediatrician to discuss the child's language and social development. they described to the physician that their child has delayed language development, impaired social skills, and unusual and repetitive play. the pascal's child is demonstrating signs of: 6. question 6 a data analyst sorts a spreadsheet range between cells d5 and m5. they sort in descending order by the third column, column f. what is the syntax they are using? 1 point When president Truman told general MacArthur, "We are trying to prevent a world war, not start one," What did he mean? a nurse is providing teaching to a client who is scheduled to start taking hydrochlorothiazide for hypertension. the nurse instructs the client to eat foods that are rich in potassium. which of the following statements by the client indicates an understanding of the teaching? baby sunni quickly closes her eyelids when her father claps his hands near her head. the function of this reflex is to why cant scientists use carbon-14 to determine the age of a fossil older than 100,000 years In a right triangle, sin (9x - 4) = cos (10x - 1). Find the larger of the triangle'stwo acute angles. Steam Workshop Downloader