Solve the system of equations by ELIMINA TION Cherk your anjwer by substituting back into the equation and how it y true Leave you anwer ai a traction. • 6x+5y=4
6x−7y=−20
• (x+2)2+(y−2)2=1
y=−(x+2)2+3

Answers

Answer 1

To solve the system of equations by elimination, we'll need to eliminate one of the variables.

[tex]Here's how to solve each system of equations:6x + 5y = 46x − 7y = −20[/tex]

To eliminate x, we will multiply the first equation by 7 and the second equation by 6.

[tex]This gives us:42x + 35y = 28636x − 42y = −120[/tex]

[tex]Now we will add the two equations together:78y = 166y = 166/78y = 83/39[/tex]

Now we will substitute the value of y into one of the original equations to find x.

[tex]We'll use the first equation:6x + 5y = 46x + 5(83/39) = 46x = (234/39) - (415/39)6x = -181/39x = (-181/39) ÷ 6x = -181/234[/tex]

[tex]Therefore, the solution of the system of equations is x = -181/234, y = 83/39(x+2)² + (y-2)² = 1y = - (x+2)² + 3[/tex]

To solve this system of equations, we will substitute y in the first equation by the right-hand side of the second equation.

[tex]This gives us:(x+2)² + (- (x+2)² + 3 - 2)² = 1(x+2)² + (-(x+2)² + 1)² = 1(x+2)² + (x+1)² = 1x² + 4x + 4 + x² + 2x + 1 = 1 2x² + 6x + 4 = 0 x² + 3x + 2 = 0  (Divide by 2) (x+2)(x+1) = 0x = -1, x = -2.[/tex]

[tex]We will now use the second equation to find the values of y:y = -(x+2)² + 3When x = -1: y = -(-1+2)² + 3 = -1When x = -2: y = -(-2+2)² + 3 = 3[/tex]

Therefore, the solutions of the system of values are (-1, -1) and (-2, 3).

To know more about the word values visits :

https://brainly.com/question/24503916

#SPJ11


Related Questions

mx" + cx' + kx = F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and F(t) = 50 sin(6t) Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t) ≈ xsp(t) = 00+1 help (formulas)

Answers

The x(t) ≈ xsp(t) = (25/127)cos(6t) - (3/127)sin(6t) for very large positive values of t.

Given equation is mx''+cx'+kx=F(t), where m=2 kg, c=8 kg/s, k=80 N/m, and F(t)=50 sin(6t) Newtons.

We need to solve the initial value problem where x(0)=0, x'(0)=0. This is a second-order linear differential equation. We can solve it using undetermined coefficients.

To solve the differential equation, we assume that x(t) is of the form A sin(6t) + B cos(6t) + C₁ e^{r1t} + C₂ [tex]e^{r2t}[/tex].

Here, A and B are constants to be determined. Since the forcing function is sin(6t), we assume the homogeneous solution to be of the form e^{rt} and the particular solution to be of the form (C₁ sin(6t) + C₂ cos(6t)).After differentiating twice, we get the differential equation:

                          mr² + cr + k = 0

On solving, we get the roots as: r₁ = -4 and r₂ = -10. We know that, the homogeneous solution is xh(t) = C₁ e^{-4t} + C₂ e⁻¹⁰⁺.

Now, we find the particular solution xp(t). Since the forcing function is sin(6t), we assume the particular solution to be of the form xp(t) = (C₁ sin(6t) + C₂ cos(6t)).

On differentiating twice, we get xp''(t) = -36 (C₁ sin(6t) + C₂ cos(6t)) and substituting the values in the differential equation and solving we get, C₁ = -3/127 and C₂ = 25/127.

The particular solution is xp(t) = (-3/127)sin(6t) + (25/127)cos(6t).

Therefore, the complete solution is: x(t) = C₁ e⁻⁴⁺ + C₂ e⁻¹⁰⁺ - (3/127)sin(6t) + (25/127)cos(6t)

Applying initial conditions x(0) = 0 and x'(0) = 0, we get: C₁ + C₂ = 0 and -4C₁ - 10C₂ + (25/127) = 0. Solving these equations, we get, C₁ = -5/23 and C₂ = 5/23.

The complete solution is, x(t) = (-5/23) e^{-4t} + (5/23) e⁻¹⁰⁺ - (3/127)sin(6t) + (25/127)cos(6t).The long-term behavior of the system is given by the steady periodic solution.

It is obtained by taking the limit of x(t) as t tends to infinity. Since e⁻⁴⁺ and e⁻¹⁰⁺ tend to zero as t tends to infinity, we have:lim x(t) = (25/127)cos(6t) - (3/127)sin(6t) for very large positive values of t.

Learn more about Linear differential solution:

brainly.com/question/30645878

#SPJ11

Ali ate 2/5 of a large pizza and sara ate 3/7 of a small pizza. Who ate more ? Explain

Answers

To determine who ate more, we need to compare the fractions of pizza consumed by Ali and Sara. Ali ate 2/5 of a large pizza, while Sara ate 3/7 of a small pizza.

To compare these fractions, we need to find a common denominator. The least common multiple of 5 and 7 is 35. So, we can rewrite the fractions with a common denominator:

Ali: 2/5 of a large pizza is equivalent to (2/5) * (7/7) = 14/35.

Sara: 3/7 of a small pizza is equivalent to (3/7) * (5/5) = 15/35.

Now we can clearly see that Sara ate more pizza as her fraction, 15/35, is greater than Ali's fraction, 14/35. Therefore, Sara ate more pizza than Ali.

In conclusion, even though Ali ate a larger fraction of the large pizza (2/5), Sara consumed a greater amount of pizza overall by eating 3/7 of the small pizza.

Learn more about fractions here

https://brainly.com/question/78672

#SPJ11

2. A real estate agent is showing homes to a prospective buyer. There are ten homes in the desired price range listed in the area. The buyer has time to visit only four of them. a. In how many ways could the four homes be chosen if the order of visiting is considered? ( 5 points) b. In how many ways could the four homes be chosen if the order is disregarded? c. If four of the homes are new and six have previously been occupied and if the four homes to visit are randomly chosen, what is the probability that all four are new? (Order is considered.)

Answers

a. The total number of ways the four homes can be chosen, considering the order of visiting, is 5040

b. The number of ways the four homes can be chosen without considering the order of visiting is 210

c. the probability of selecting all four new homes out of the four randomly chosen homes is 1/120

a) The total number of ways four homes can be chosen out of ten is given by the combination C(10, 4), which is equal to 210. Each of these 210 sets can be visited in 4! (four factorial) ways, which is equal to 24.

Therefore, the total number of ways the four homes can be chosen, considering the order of visiting, is given by 210 * 24 = 5040.

b) The number of ways the four homes can be chosen without considering the order of visiting is given by the combination C(10, 4), which is equal to 210.

c) The probability of selecting one new home out of four homes is 4/10.

Therefore, the probability of selecting all four new homes out of the four randomly chosen homes is (4/10) * (3/9) * (2/8) * (1/7) = 1/210.

Learn more about probability at

https://brainly.com/question/8665414

#SPJ11

What is the product? 6x[4-21 730]

Answers

Answer:C

Step-by-step explanation:

4×6≈24...

To find the product of 6x and [4-21 730], we need to simplify the expression first.

To simplify, we perform the subtraction first and then multiply.  

So, [4-21 730] can be simplified as follows: [4-21 730] = 4 - 21730 = -21726  

Now, we can find the product of 6x and -21726 as follows: 6x(-21726) = -130356  


Therefore, the product of 6x and [4-21 730] is -130356.

Stan wants to buy a new pair of shoes that costs $89. 99. The store charges 9. 1% tax to every purchase. If Stan has $100 to spend on his new shoes, how much change will Stan get back after he buys the shoes?

Answers

To calculate the change Stan will receive after buying the shoes, we need to consider the cost of the shoes and the tax applied. Stan will receive $1.83 in change after buying the shoes.

The cost of the shoes is $89.99. To find out the amount of tax, we multiply the cost by the tax rate of 9.1%:

Tax = $89.99 * 9.1% = $8.18

The total cost of the shoes including tax is the sum of the cost of the shoes and the tax amount:

Total Cost = $89.99 + $8.18 = $98.17

Now, to find the change Stan will receive, we subtract the total cost from the amount he has to spend:

Change = $100 - $98.17 = $1.83

Therefore, Stan will receive $1.83 in change after buying the shoes.

Learn more about buying here

https://brainly.com/question/21644019

#SPJ11

6. Show whether or not each vector can be expressed as a linear combination of u= (0,1,2) and v=(−1,2,1) ? a) (0,2,1) b) (2,1,8) ( 2 marks) c) (0,0,0)

Answers

a) Vector (0,2,1) can be expressed as a linear combination of u and v.

b) Vector (2,1,8) cannot be expressed as a linear combination of u and v.

c) Vector (0,0,0) can be expressed as a linear combination of u and v.

To determine if a vector can be expressed as a linear combination of u and v, we need to check if there exist scalars such that the equation a*u + b*v = vector holds true.

a) For vector (0,2,1):

We can solve the equation a*(0,1,2) + b*(-1,2,1) = (0,2,1) for scalars a and b. By setting up the system of equations and solving, we find that a = 1 and b = 2 satisfy the equation. Therefore, vector (0,2,1) can be expressed as a linear combination of u and v.

b) For vector (2,1,8):

We set up the equation a*(0,1,2) + b*(-1,2,1) = (2,1,8) and try to solve for a and b. However, upon solving the system of equations, we find that there are no scalars a and b that satisfy the equation. Therefore, vector (2,1,8) cannot be expressed as a linear combination of u and v.

c) For vector (0,0,0):

We set up the equation a*(0,1,2) + b*(-1,2,1) = (0,0,0) and solve for a and b. In this case, we can observe that setting a = 0 and b = 0 satisfies the equation. Hence, vector (0,0,0) can be expressed as a linear combination of u and v.

In summary, vector (0,2,1) and vector (0,0,0) can be expressed as linear combinations of u and v, while vector (2,1,8) cannot.

Learn more about linear combination

brainly.com/question/25867463

#SPJ11

1. E ⊃ (A ⋅ C)
2. A ⊃ (F ⋅ E)
3. E / F

Answers

By modus ponens on step 2, we infer A ⋅ F. The formal proof above demonstrates that under assumption E, we can derive A. Therefore, the conclusion is A.

Modus ponens is a rule of inference in propositional logic that allows us to make a deduction based on a conditional statement and its antecedent. The modus ponens rule states that if we have a conditional statement of the form "If P, then Q" and we also have P, then we can infer Q.

E ⊃ (A ⋅ C)

A ⊃ (F ⋅ E)

E / F

To prove: A

Step 1: Suppose E.

Step 2: By (1) and modus ponens, we infer A ⋅ C.

Step 3: By (2) and modus ponens on step 2, we infer F ⋅ E.

Step 4: By simplification on step 3, we infer E.

Step 5: Therefore, by modus ponens on step 2, we infer A ⋅ F.

Step 6: Hence, we can conclude A from step 5.

We can deduce A under assumption E, as shown by the formal evidence above. The conclusion is therefore A.

Learn more about modus ponens

https://brainly.com/question/27990635

#SPJ11

Mura is paddling her canoe to Centre Island. The trip in one direction is 5 km. She noticed that the current was 2 km/h. While travelling to Centre island, her canoe was moving with the current. On her way back her canoe was moving against the current. The total trip took 1 hour. Determine her paddling speed (the speed we are looking for is the speed of the canoe without the effects of the current. To receive full marks, you must have a let statement, a final statement and a full algebraic solution using concepts studied in this unit.

Answers

Mura is paddling her canoe to Centre Island and noticed that the current was 2 km/h. She travels to the Island with the current, and on her way back, she travels against it. The paddling speed is 6/5 km/h.

Given, the distance to Centre Island in one direction = 5 kmThe current speed = 2 km/h. Let the paddling speed be x km/h. Mura covers the distance to Centre Island in the following time (time = distance / speed):
5 / (x + 2) hours.The time it takes Mura to travel back from the island is:5 / (x − 2) hours.The total time it takes Mura to travel both ways is:
[tex]\frac{5}{(x + 2)} + \frac{5}{(x - 2)}= 1.[/tex]
Multiplying each side by (x + 2)(x − 2), we get
5(x − 2) + 5(x + 2) = (x + 2)(x − 2)

⇒ 10x = x² − 4x − 20x² − 14x − 20 = 0.
Solving the equation,
10x = x² − 4x − 2(x² − 4x + 4) − 20 = −2(x − 2)² + 12. The above equation is of the form [tex]y = a(x - h)^2 + k[/tex], where (h, k) is the vertex.
Since the coefficient of (x − 2)² is negative, the graph of the function opens downwards.
Therefore, the maximum occurs at (2,12), and y can take any value less than or equal to 12. So, paddling speed can be
[tex]x = (-b \pm \frac{ \sqrt{(b^2 - 4ac)}}{2a} = -(-14) ± \frac{ \sqrt{(-14)^2 - 4(-20)(-2))}}{2(-20)} = \frac{6}{5} km/h.[/tex]

So, x = -2. The negative value can be ignored as it is impossible to paddle at a negative speed.

Learn more about algebraic solution here:

https://brainly.com/question/32430667

#SPJ11

helpppppp i need help with this

Answers

Answer:

[tex]\alpha=54^o[/tex]

Step-by-step explanation:

[tex]\alpha+36^o=90^o\\\mathrm{or,\ }\alpha=90^o-36^o=54^o[/tex]

Find the perimeter of the triangle whose vertices are the following specified points in the plane.

(1,−5), (4,2) and (−7,−5)

Answers

To find the perimeter of the triangle with vertices (1,-5), (4,2), and (-7,-5), we need to find the distance between each pair of points and add them up.

Using the distance formula, we find:

- The distance between (1,-5) and (4,2) is sqrt[(4-1)^2 + (2-(-5))^2] = sqrt[3^2 + 7^2] = sqrt[58].
- The distance between (4,2) and (-7,-5) is sqrt[(-7-4)^2 + (-5-2)^2] = sqrt[(-11)^2 + (-7)^2] = sqrt[170].
- The distance between (-7,-5) and (1,-5) is sqrt[(1-(-7))^2 + (-5-(-5))^2] = sqrt[8^2] = 8.

Adding these distances together, we get:

sqrt[58] + sqrt[170] + 8

This is the perimeter of the triangle. We can simplify it by leaving it in terms of radicals, or by using a calculator to get a decimal approximation.

all x,y. Prove that f is a constant function. (**) Using the Mean Value Theorem, prove that if 0

0, then (1+x)^p<1+px.

Answers

Suppose f is a function such that f(x) = f(y) for all x and y. Then f is a constant function.

To prove that function f is a constant function for all x and y, we will use the Mean Value Theorem.

Let's assume that f(x) = f(y) for all x and y. We want to show that f is constant, meaning that it has the same value for all inputs.

According to the Mean Value Theorem, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a point c in (a, b) such that f'(c) = (f(b) - f(a))/(b - a).

Let's consider two arbitrary points x and y. Since f(x) = f(y), we have f(x) - f(y) = 0. Applying the Mean Value Theorem, we have f'(c) = (f(x) - f(y))/(x - y) = 0/(x - y) = 0.

This implies that f'(c) = 0 for any c between x and y. Since f'(c) = 0 for any interval (a, b), we conclude that f'(x) = 0 for all x. This means that the derivative of f is always zero.

If the derivative of a function is zero everywhere, it means the function is constant. Therefore, we can conclude that f is a constant function.

To know more about the Mean Value Theorem, refer here:

https://brainly.com/question/30403137#

#SPJ11

A regular graph is a graph in which all vertices have the same degree. Which of the following are regular for every number n ≥ 3? □ (a) Kn (b) Cn □ (c) Wn Select all possible options that apply.

Answers

The answers are:
(a) Kn and (b) Cn are regular for every number n ≥ 3.

(a) Kn represents the complete graph with n vertices, where each vertex is connected to every other vertex. In a complete graph, every vertex has degree n-1 since it is connected to all other vertices. Therefore, Kn is regular for every number n ≥ 3.

(b) Cn represents the cycle graph with n vertices, where each vertex is connected to its adjacent vertices forming a closed loop. In a cycle graph, every vertex has degree 2 since it is connected to two adjacent vertices. Therefore, Cn is regular for every number n ≥ 3.

(c) Wn represents the wheel graph with n vertices, where one vertex is connected to all other vertices and the remaining vertices form a cycle. The center vertex in the wheel graph has degree n-1, while the outer vertices have degree 3. Therefore, Wn is not regular for every number n ≥ 3.

In summary, both Kn and Cn are regular graphs for every number n ≥ 3, while Wn is not regular for every number n ≥ 3.

Learn more about graph theory.

brainly.com/question/30134274

#SPJ11

Fill in the missing fraction: Do not reduce your answer. What is 10/12 plus blank equals 16/12​

Answers

Answer:

The missing fraction is 6/12

(you can further simplify this but the question requires that you don't do that)

Step-by-step explanation:

To add fractions easily, their denominators should have the same value, so the denominator should be 12,

Then, to get 16 in the numerator, we need to find a number that on adding to 10, gives 16, or,

10 + x = 16

x = 16 - 10

x = 6

So, the numerator should be 6

so we get the fraction, 6/12

We can also solve it in an alternate way,

[tex]10/12 + x = 16/12\\x = 16/12 - 10/12\\x = (16-10)/12\\x = 6/12[/tex]

|x|-3|x+4|≧0
please tell meeeeeeeeeeeee..........

Answers

Answer:

The solution to the inequality |x|-3|x+4|≧0 is x≤-4 or -1≤x≤3.

Answer:

-4,3

Step-by-step explanation:

Flux/Surface integral
Given is the vectorfield: v(x, y, z) = (yz, −xz, x² + y²)
And given is the a conical frustum K := (x, y, z) = R³ : x² + y² < z², 1 < ≈ < 2
Calculate the flux from top to bottom (through the bottom) of the cone shell B := (x, y, z) = R³ : x² + y² ≤ 1, z=1
Thank you

Answers

The flux from top to bottom (through the bottom) of the cone shell B := (x, y, z) = R³ : x² + y² ≤ 1, z = 1 is u.

Given vectorfield: v(x, y, z) = (yz, −xz, x² + y²)

Conical frustum K := (x, y, z) = R³ : x² + y² < z², 1 < ≈ < 2

We need to calculate the flux from top to bottom (through the bottom) of the cone shell B :

= (x, y, z) = R³ : x² + y² ≤ 1, z = 1.

A cone shell can be expressed as given below;`x^2 + y^2 = r^2 , 1 <= z <= 2, 0 <= r <= z.

`Given that the vector field is;`v(x, y, z) = (yz, −xz, x² + y²)`We can calculate flux through surface integral as follows;

∫∫F.ds = ∫∫F.n dS , where n is the outward normal to the surface and dS is the surface element.

We need to calculate the flux through the closed surface. The conical frustum is open surface, so we will need to use Divergence theorem to find the flux from the top to bottom through the bottom of the cone shell.

In Divergence theorem, the flux through a closed surface is equal to the triple integral of the divergence of the vector field over the volume enclosed by the surface i.e.

,[tex]\iiint_D\nabla . F dV = \iint_S F. NdS[/tex].

In this problem, Divergence theorem can be given as;[tex]\iint_S F. NdS = \iiint_D\nabla . F dV[/tex]

We can write the vector field divergence [tex]\nabla . F as;\nabla . F = \frac{{\partial }}{{\partial x}}\left( {yz} \right) - \frac{{\partial }}{{\partial y}}\left( {xz} \right) + \frac{{\partial }}{{\partial z}}\left( {{x^2} + {y^2}} \right)\nabla[/tex]. F = y - x.

We can integrate this over the given cone shell region to get the flux through the surface. But as the cone shell is an open surface, we will need to use the Divergence theorem.

Now, we will calculate the flux from the top to bottom (through the bottom) of the cone shell.[tex]= \iiint_D {\nabla . F dV} = \int\limits_1^2 {\int\limits_0^{2\pi } {\int\limits_1^z {\left( {y - x} \right)dzd\theta dr} } }This can be calculated as; = \int\limits_1^2 {\int\limits_0^{2\pi } {\left( {\frac{1}{2}{z^2} - \frac{1}{2}} \right)d\theta dz} }[/tex]

This gives us the flux as;

[tex]= \int\limits_1^2 {\int\limits_0^{2\pi } {\left( {\frac{1}{2}{z^2} - \frac{1}{2}} \right)d\theta dz} } = \pi\left[ {\frac{7}{3} - \frac{1}{3}} \right] = \frac{{6\pi }}{3} = 2\pi[/tex]

Therefore, the flux from top to bottom (through the bottom) of the cone shell B := (x, y, z) = R³ : x² + y² ≤ 1, z = 1 is 2π.

Learn more about vectorfield from the link :

https://brainly.com/question/17177764

#SPJ11

Use the summary output obtained from Excel Regression function to answer the following questions.

Regression Statistics

R Square 0. 404

Observations 30

Summary Output

Coefficients Standard Error t Stat P-value

Intercept 1. 683 0. 191 8. 817 0

Predictor 0. 801 0. 184 • • 1. (1 mark) Assuming that all assumptions are satisfied, calculate the ABSOLUTE value of the test statistic for testing the slope of the regression question (t-Stat) = Answer (3dp)

2. (1 mark) Is the P-value less than 0. 05 for testing the slope of the regression question? AnswerFALSETRUE

3. (2 mark) Calculate a 95% confidence interval for the Predictor variable (Please double check and ensure that the lower bound is smaller than the upper bound)

The lower bound = Answer (3dp)

The upper bound = Answer (3dp)

Answers

The absolute value of the test statistic for testing the slope of the regression (t-Stat), we look at the coefficient of the Predictor variable divided by its standard error:The 95% confidence interval for the Predictor variable is [0.438, 1.164].

Absolute value of t-Stat = |0.801 / 0.184| = 4.358 (rounded to 3 decimal places). To determine if the P-value is less than 0.05 for testing the slope of the regression, we compare the P-value to the significance level of 0.05. From the provided summary output, the P-value is not explicitly given. However, since the P-value is listed as "• •" (indicating missing or unavailable information), we cannot make a conclusive determination. Therefore, the answer is FALSE.

To calculate a 95% confidence interval for the Predictor variable, we need to use the coefficient and the standard error. The confidence interval is typically calculated as the coefficient ± (critical value * standard error). In this case, we need the critical value for a 95% confidence level, which corresponds to a two-tailed test. Assuming the sample size is large enough, we can use the standard normal distribution critical value of approximately ±1.96.

Lower bound = 0.801 - (1.96 * 0.184) = 0.438 (rounded to 3 decimal places).

Upper bound = 0.801 + (1.96 * 0.184) = 1.164 (rounded to 3 decimal places).

Therefore, the 95% confidence interval for the Predictor variable is [0.438, 1.164].

Learn more about Predictor here

https://brainly.com/question/441178

#SPJ11

A pediatrician kept record of boby jacobs temperature for 3 hours on the first hour the temperature was 37. 5degree celcius and on the second hour 37. 5 degree celcius and on the third hour 37. 2 degree celcius what was the average temperature for 3 hours

Answers

To find the average temperature for the three hours, we need to sum up the temperatures for each hour and divide by the total number of hours.The average temperature for the three hours is approximately 37.4 degrees Celsius.

Temperature in the first hour: 37.5 degrees Celsius

Temperature in the second hour: 37.5 degrees Celsius

Temperature in the third hour: 37.2 degrees Celsius

To calculate the average temperature:

Average temperature = (Temperature in the first hour + Temperature in the second hour + Temperature in the third hour) / Total number of hours

Average temperature = (37.5 + 37.5 + 37.2) / 3

Calculating the sum:

Average temperature = 112.2 / 3

Dividing by the total number of hours:

Average temperature ≈ 37.4 degrees Celsius

Therefore, the average temperature for the three hours is approximately 37.4 degrees Celsius.

Learn more about temperature here

https://brainly.com/question/24746268

#SPJ11

4. Claim: The school principal wants to test if it is true that the juniors use the computer for school work more than 70% of the time.

H0:

Ha:​

Answers

H0: The proportion of juniors using the computer for school work is less than or equal to 70%.

Ha: The proportion of juniors using the computer for school work is greater than 70%.

In hypothesis testing, the null hypothesis (H0) represents the assumption of no effect or no difference, while the alternative hypothesis (Ha) represents the claim or the effect we are trying to prove.

In this case, the school principal wants to test if it is true that the juniors use the computer for school work more than 70% of the time. The null hypothesis (H0) would state that the proportion of juniors using the computer for school work is less than or equal to 70%. The alternative hypothesis (Ha) would state that the proportion of juniors using the computer for school work is greater than 70%.

By conducting an appropriate statistical test and analyzing the data, the school principal can determine whether to reject the null hypothesis in favor of the alternative hypothesis, or fail to reject the null hypothesis due to insufficient evidence.

Learn more about proportion here:-

https://brainly.com/question/31548894

#SPJ11

Two vertices of a graph are adjacent when which of the following is true? a. There is a path of length 2 that connects them b. Both vertices are isolated c. Both vertices have even degrees d. There is an edge that between them

Answers

Two vertices of a graph are adjacent when there is an edge that connects them. This is true for option (d).

Definition of vertices:

Vertices refer to the points or nodes on a graph that are connected by edges.

Definition of adjacent:Two vertices are adjacent when they are directly connected by an edge on the graph.

Definition of graph:Graph refers to a collection of vertices connected by edges. Graphs are used to represent networks, relationships, or connections between objects. Graph theory is a branch of mathematics that studies graphs and their properties.

Therefore, option d is the correct answer i.e. There is an edge that between them.

Learn more about vertices at https://brainly.com/question/29154919

#SPJ11

Karl Runs A Firm With The Following Production Function F(X1,X2)=Min(4x1,5x2), Where X1 And X2 Are Units Of Input 1 And 2 , Respectively. The Price Of Inputs 1 And 2 Are 4 And 5 , Respectively. What Is The Minimal Cost Of Producing 192 Units? (Round Off To The Closest Integer)

Answers

The minimal cost of producing 192 units is $672.

To find the minimal cost of producing 192 units, we need to determine the optimal combination of inputs (x1 and x2) that minimizes the cost function while producing the desired output.

Given the production function F(x1, x2) = min(4x1, 5x2), the function takes the minimum value between 4 times x1 and 5 times x2. This means that the output quantity will be limited by the input with the smaller coefficient.

To produce 192 units, we set the production function equal to 192:

min(4x1, 5x2) = 192

Since the price of input 1 is $4 and input 2 is $5, we can equate the cost function with the cost of producing the desired output:

4x1 + 5x2 = cost

To minimize the cost, we need to determine the values of x1 and x2 that satisfy the production function and result in the lowest possible cost.

Considering the given constraints, we can solve the system of equations to find the optimal values of x1 and x2. However, it's worth noting that the solution might not be unique and could result in fractional values. In this case, we are asked to round off the minimal cost to the closest integer.

By solving the system of equations, we find that x1 = 48 and x2 = 38.4. Multiplying these values by the respective input prices and rounding to the closest integer, we get:

Cost = (4 * 48) + (5 * 38.4) = 672

 

Therefore, the minimal cost of producing 192 units is $672.

Learn more about function here: brainly.com/question/30721594

#SPJ11

The line L 1 ​ has an equation r 1 ​ =<6,4,11>+n<4,2,9> and the line L 2 ​ has an equation r 2 ​ =<−3,10,2>+m<−5,8,0> Different values of n give different points on line L 1 ​ . Similarly, different values of m give different points on line L 2 ​ . If the two lines intersect then r 1 ​ =r 2 ​ at the point of intersection. If you can find values of n and m.which satisfy this condition then the two lines intersect. Show the lines intersect by finding these values n and m hence find the point of intersection. The point of intersection is (?,?,?)

Answers

The two lines intersect at the point (-8, 18, 2).

The two given lines are given by the equations: r1 = <6, 4, 11> + n <4, 2, 9>r2 = <-3, 10, 2> + m <-5, 8, 0>

where n and m are the parameters. Two lines will intersect at the point where they coincide. That is, at the intersection point, r1 = r2.

We can equate r1 and r2 to find the values of m and n. <6, 4, 11> + n <4, 2, 9> = <-3, 10, 2> + m <-5, 8, 0>Equating the x-coordinates, we get:

6 + 4n = -3 - 5m Equation 1

Equating the y-coordinates, we get:4 + 2n = 10 + 8m Equation 2

Equating the z-coordinates, we get:11 + 9n = 2

Equation 3

Solving equation 3 for n, we get:n = -1

We can substitute n = -1 in equations 1 and 2 to find m.

From equation 1:6 + 4(-1) = -3 - 5mm = 1

Substituting n = -1 and m = 1 in the equation of line 1, we get:r1 = <6, 4, 11> - 1 <4, 2, 9> = <2, 2, 2>

Substituting n = -1 and m = 1 in the equation of line 2, we get:

r2 = <-3, 10, 2> + 1 <-5, 8, 0> = <-8, 18, 2>

Hence, the answer is (-8, 18, 2).

Learn more about equation at

https://brainly.com/question/27438433

#SPJ11

Question 1 Solve the exponential equation. If necessary, round the answer to 4 decimal places. 5X+3 =525 Question 2 Solve the exponential equation. If necessary, round the answer to 4 decimal places. 3x+7=9x Question 3 Solve the exponential equation. If necessary, round the answer to 4 decimal places. 20 = 56 Question 4 Solve the exponential equation. If necessary, round the answer to 4 decimal places. ex-1-5=5 10 pts 10 pts 10 pts 10 pts

Answers

The solutions of the given 3 exponential equations are given by 1. x = 104.4, 2. no solution, 3. x = 2.3979.

Solving the exponential equation: 5x + 3 = 525

Step 1: First, we will subtract both sides by 3. 5x = 522

Step 2: Now, we will divide by 5. x = 104.4

Solving the exponential equation: 3x + 7 = 9x

Step 1: We will subtract 3x from both sides. 7 = 6x

Step 2: We will divide both sides by 6. x = 1.1667

Solving the exponential equation: 20 = 56

There is no value of x which will make this equation true.

Therefore, this equation has no solution.

Solving the exponential equation: ex-1-5 = 5

Step 1: We will add both sides by 5. ex-1 = 10

Step 2: We will add 1 to both sides. ex = 11

Step 3: We will take natural logs of both sides.

ln(ex) = ln(11) x = 2.3979, rounded to 4 decimal places.

Learn more about exponential equations visit:

brainly.com/question/11672641

#SPJ11

Solve the system of equations such that Fab, Fbc, and Fbe are in terms of only Fbx and Fby. There are three equations and three unknowns so it's solvable but I don't have a calculator or know and app to solve it by assuming you know Fbx and Fby. If you can show all your work or at least the application showing it, that would be great but it's not necessary F B x ​ ​ and F By ​ are known F AB ​ =F BX ​ −( 4/5 ​ )(F BC ​ +F BE ​ )(1) F BC ​ =( 125/68 ​ )( 196/75 ​ F By ​ − 32/25 ​ F BX ​ + 138/125 ​ F BE ​ ) F BE ​ =( 125/432 ​ )( 189/50 ​ F BX ​ − 74/125 ​ F BC ​ − 5/2 ​ F AB ​ ) ​

Answers

The values of FAB, FBC, and FBE can be expressed in terms of Fbx and Fby as follows:

FAB = (35/54)FBX - (196/375)FBy - (69/200)FBEFBC = (5/68)FBX + (49/300)FBy - (1/27)FBEFBE = (25/432)FBX - (49/300)FBy + (7/108)FBE

Given equations are:

Equation (1): FAB = FBX - (4/5)(FBC + FBE)Equation (2): FBC = (125/68)(196/75FBy - 32/25FBX + 138/125FBE)Equation (3): FBE = (125/432)(189/50FBX - 74/125FBC - 5/2FAB)

To solve the given system of equations such that Fab, Fbc, and Fbe are in terms of only Fbx and Fby, we need to substitute the values of FBC and FBE in terms of Fbx and Fby in equation (1).

Substituting the value of FBC from equation (2) into equation (1), we get:

FAB = FBX - (4/5)((125/68)(196/75FBy - 32/25FBX + 138/125FBE) + (125/432)(189/50FBX - 74/125((125/68)(196/75FBy - 32/25FBX + 138/125FBE)) - 5/2FAB))

Simplifying the above equation, we get:

FAB = (35/54)FBX - (196/375)FBy - (69/200)FBE

Therefore, FAB is in terms of Fbx, Fby, and Fbe.

We can also substitute the values of FAB and FBE in terms of Fbx and Fby in equation (2). Substituting the values of FAB and FBE in equation (2), we get:

FBC = (125/68)(196/75FBy - 32/25FBX + 138/125((125/432)(189/50FBX - 74/125((125/68)(196/75FBy - 32/25FBX + 138/125FBE)) - 5/2((35/54)FBX - (196/375)FBy - (69/200)FBE)))

Simplifying the above equation, we get:

FBC = (5/68)FBX + (49/300)FBy - (1/27)FBE

Therefore, FBC is in terms of Fbx, Fby, and Fbe.

Similarly, substituting the values of FAB and FBC in terms of Fbx and Fby in equation (3), we get:

FBE = (25/432)FBX - (49/300)FBy + (1/27)((125/68)(196/75FBy - 32/25FBX + 138/125((35/54)FBX - (196/375)FBy - (69/200)FBE)))

Simplifying the above equation, we get:

FBE = (25/432)FBX - (49/300)FBy + (7/108)FBE

Therefore, FBE is in terms of Fbx and Fby.

Hence, we have obtained the values of FAB, FBC, and FBE in terms of only Fbx and Fby.

Learn more about system of equations: https://brainly.com/question/25976025

#SPJ11

Solve the following recurrence relations (a) an​=7an−1​−6an−2​(n≥2),a0​=2,a1​=7. (b) an​=2an−1​+(−1)n,a0​=2

Answers

(a) The solution to the given recurrence relation an = 7an-1 - 6an-2 is an = 6^n + 1.

(b) The solution to the given recurrence relation an = 2an-1 + (-1)^n is an = 3·4^k - 1 for even values of n, and an = 2k+1 + 1 for odd values of n.

(a) The recurrence relation is given by: an​=7an−1​−6an−2​(n≥2),a0​=2,a1​=7.

The characteristic equation associated with this recurrence relation is:

r^2 - 7r + 6 = 0.

Solving this quadratic equation, we find that the roots are r1 = 6 and r2 = 1.

Therefore, the general solution to the recurrence relation is:

an​ = A(6^n) + B(1^n).

Using the initial conditions a0​ = 2 and a1​ = 7, we can find the values of A and B.

Substituting n = 0, we get:

2 = A(6^0) + B(1^0) = A + B.

Substituting n = 1, we get:

7 = A(6^1) + B(1^1) = 6A + B.

Solving these two equations simultaneously, we find A = 1 and B = 1.

Therefore, the solution to the recurrence relation is:

an​ = 1(6^n) + 1(1^n) = 6^n + 1.

(b) The recurrence relation is given by: an​=2an−1​+(−1)n,a0​=2.

To find a solution, we can split the recurrence relation into two parts:

For even values of n, let's denote k = n/2. The recurrence relation becomes:

a2k = 2a2k−1 + 1.

For odd values of n, let's denote k = (n−1)/2. The recurrence relation becomes:

a2k+1 = 2a2k + (−1)^n = 2a2k + (-1).

We can solve these two parts separately:

For even values of n, we can substitute a2k−1 using the odd part of the relation:

a2k = 2(2a2k−2 + (-1)) + 1

    = 4a2k−2 + (-2) + 1

    = 4a2k−2 - 1.

Simplifying further, we have:

a2k = 4a2k−2 - 1.

For the base case a0 = 2, we have a0 = a2(0/2) = a0 = 2.

We can now solve this equation iteratively:

a2 = 4a0 - 1 = 4(2) - 1 = 7.

a4 = 4a2 - 1 = 4(7) - 1 = 27.

a6 = 4a4 - 1 = 4(27) - 1 = 107.

...

We can observe that for even values of k, a2k = 3·4^k - 1.

For odd values of n, we can use the relation:

a2k+1 = 2a2k + (-1).

We can solve this equation iteratively:

a1 = 2a0 + (-1) = 2(2) + (-1) = 3.

a3 = 2a1 + (-1) = 2(3) + (-1) = 5.

a5 = 2a3 + (-1) = 2(5) + (-1) = 9.

...

We can observe that for odd values of k, a2k+1 = 2k+1 + 1.

Therefore, the solution to the recurrence relation is

an = 3·4^k - 1 for even values of n, and

an = 2k+1 + 1 for odd values of n.

To know more about recurrence relations, refer here:

https://brainly.com/question/32773332#

#SPJ11

What is the probability that a random sample of 10 second grade students from the city results in a mean reading rate of more than 98 words per minute?

Answers

The probability that a random sample of 10 second-grade students from the city results in a mean reading rate of more than 95 words per minute is approximately 0.0287.

To calculate the probability that a random sample of 10 second-grade students from the city results in a mean reading rate of more than 95 words per minute, we can use the information provided: the population mean (μ) is 89 words per minute, the standard deviation (σ) is 10 words per minute, and the desired mean reading rate is 95 words per minute.

1. Calculate the standard error of the mean (SE):

  SE = σ / sqrt(n)

  SE = 10 / sqrt(10)

  SE ≈ 3.1623

2. Convert the desired mean reading rate (95 words per minute) to a z-score:

  z = (x - μ) / SE

  z = (95 - 89) / 3.1623

  z ≈ 1.8974

3. Find the probability using the standard normal distribution table (or calculator):

  P(Z > z) = 1 - P(Z ≤ z)

Using the standard normal distribution table or calculator, we can find the corresponding probability for the z-score of 1.8974:

P(Z > 1.8974) ≈ 0.0287

Therefore, the probability that a random sample of 10 second-grade students from the city results in a mean reading rate of more than 95 words per minute is approximately 0.0287, rounded to four decimal places.

To know more about probability, refer here:

https://brainly.com/question/30691438

#SPJ4

Complete Question:

The reading speed of second grade students in a large city is approximately​ normal, with a mean of 89 words per minute​ (wpm) and a standard deviation of 10 wpm.

What is the probability that a random sample of 10 second grade students from the city results in a mean reading rate of more than 95 words per​ minute? The probability is 0.0287. ​(Round to four decimal places as​ needed.)

Explain the process of timber extraction in
Guyana, from the planning phase to the timber's transportation to a
TSA depot.

Answers

The process of timber extraction in Guyana involves several phases, including planning, harvesting, processing, and transportation. Here is an overview of the process:

1. Planning Phase:

  - Timber extraction starts with the identification of suitable timber concessions, which are areas allocated for logging activities.

  - The government of Guyana, through the Guyana Forestry Commission (GFC), oversees the granting of logging permits and ensures compliance with sustainable forest management practices.

  - Harvesting plans are developed, taking into account the species, volume, and location of trees to be harvested. Environmental and social considerations are also taken into account during this phase.

2. Harvesting Phase:

  - Once the logging permit is obtained, the actual harvesting of timber begins.

  - Skilled workers, such as chainsaw operators and tree fellers, carry out the cutting and felling of trees. They follow specific guidelines to minimize damage to surrounding trees and the forest ecosystem.

  - Extracted trees are carefully selected based on size, species, and maturity to ensure sustainable logging practices.

  - Trees are often cut into logs and prepared for transportation using skidders or other machinery.

3. Processing Phase:

  - After the timber is harvested, it needs to be processed before transportation.

  - Processing may involve activities such as debarking, sawing, and sorting logs based on size and quality.

  - The processed timber is typically stacked in log yards or loading areas, ready for transportation.

4. Transportation Phase:

  - Timber is transported from the harvesting sites to a Timber Sales Agreement (TSA) depot or designated loading area.

  - In Guyana, transportation methods can vary depending on the location and infrastructure. Common modes of transportation include trucks, barges, and in some cases, helicopters or cranes.

  - Timber is often transported overland using trucks or loaded onto barges for river transportation, which is especially common in remote areas with limited road access.

  - Transported timber is accompanied by appropriate documentation, including permits and invoices, to ensure compliance with legal requirements.

5. Timber Sales Agreement (TSA) Depot:

  - Once the timber arrives at a TSA depot, it undergoes further processing, inspection, and sorting.

  - Depot staff may conduct quality checks and measure the volume of timber to determine its value and suitability for different markets.

  - The timber is then typically stored in the depot until it is sold or shipped to buyers, both locally and internationally.

Learn more about Guyana:

https://brainly.com/question/29230410

#SPJ11

Let A and B be two n by n square matrices. If B is symmetric, then the matrix C = AT BA is Not symmetric Symmetric Undefined Not necessarily symmetric None of these

Answers

if B is a symmetric matrix, then the matrix C = [tex]\rm A^TBA[/tex] is also symmetric. The correct answer is: C. Symmetric.

It means that [tex]\rm B^T[/tex]= B, where [tex]\rm B^T[/tex] denotes the transpose of matrix B.

Now let's consider the matrix C = [tex]\rm A^TBA[/tex].

To determine whether C is symmetric or not, we need to check if C^T = C.

Taking the transpose of C:

[tex]\rm C^T = (A^TBA)^T[/tex]

[tex]\rm = A^T (B^T)^T (A^T)^T[/tex]

[tex]\rm = A^TB^TA[/tex]

Since B is symmetric ([tex]\rm B^T = B[/tex]), we have:

[tex]\rm C^T = A^TB^TA[/tex]

[tex]\rm = A^TB(A^T)^T[/tex]

[tex]\rm = A^TBA[/tex]

Comparing [tex]\rm C^T[/tex] and C, we can see that [tex]\rm C^T[/tex] = C.

As a result, if matrix B is symmetric, then matrix [tex]\rm C = A^TBA[/tex] is also symmetric. The right response is C. Symmetric.

Learn more about symmetric matrix

https://brainly.com/question/14405062

#SPJ11

Prove that 1+3+9+27+…+3^n=3^n+1−1/2​ Let n be a positive integer,

Answers

Using mathematical induction, we can prove that the equation 1 + 3 + 9 + 27 + ... + 3^n = (3^(n+1) - 1) / 2 holds true for all positive integers n.

To prove the equation 1 + 3 + 9 + 27 + ... + 3^n = (3^(n+1) - 1) / 2, we can use mathematical induction.

1. Base Case:

For n = 1, we have 1 = (3^(1+1) - 1) / 2.

1 = (3^2 - 1) / 2.

1 = (9 - 1) / 2.

1 = 8 / 2.

1 = 4.

The base case holds true.

2. Inductive Step:

Assume that the equation holds true for some positive integer k, i.e., 1 + 3 + 9 + 27 + ... + 3^k = (3^(k+1) - 1) / 2.

We need to prove that it also holds true for k + 1, i.e., 1 + 3 + 9 + 27 + ... + 3^k + 3^(k+1) = (3^((k+1)+1) - 1) / 2.

Starting from the left side of the equation:

1 + 3 + 9 + 27 + ... + 3^k + 3^(k+1) = (3^(k+1) - 1) / 2 + 3^(k+1)

= (3^(k+1) - 1 + 2 * 3^(k+1)) / 2

= (3^(k+1) - 1 + 2 * 3 * 3^k) / 2

= (3^(k+1) + 2 * 3 * 3^k - 1) / 2

= (3^(k+1) + 2 * 3^(k+1) - 1) / 2

= (3 * 3^(k+1) + 3^(k+1) - 1) / 2

= (3^(k+2) + 3^(k+1) - 1) / 2

= (3^(k+2) + 3^(k+1) - 1 * 2/2) / 2

= (3^(k+2) + 3^(k+1) - 2) / 2

= (3^(k+2) + 3^(k+1) - 2) / 2

= (3^(k+2) + 3^(k+1) - 1) / 2 - 1/2

= (3^(k+2+1) - 1) / 2 - 1/2

= (3^((k+1)+1) - 1) / 2 - 1/2

Thus, we have shown that if the equation holds true for k, it also holds true for k + 1.

By the principle of mathematical induction, the equation is true for all positive integers n. Therefore, we have proven that 1 + 3 + 9 + 27 + ... + 3^n = (3^(n+1) - 1) / 2 for any positive integer n.

To know more about mathematical induction, refer to the link below:

https://brainly.com/question/32554849#

#SPJ11

Let A,B, and C be n×n invertible matrices. Then (4C^2B^TA^−1)^−1 is equal to ○None of the mentioned 
○1/4A(B^T)−1^C^−2 
○1​/4C^−2(B^T)−1^A

Answers

Let A,B, and C be n×n invertible matrices. Then (4C^2B^TA^−1)^−1 is equal to 1/4A(B^T)−1^C^−2.

From the question above, A,B, and C are n×n invertible matrices. Then we need to find (4C²BᵀA⁻¹)⁻¹.

Using the property (AB)⁻¹ = B⁻¹A⁻¹, we get (4C²BᵀA⁻¹)⁻¹ = A(4BᵀC²)⁻¹.

Now let us evaluate (4BᵀC²)⁻¹.Let D = C²Bᵀ.

Now the matrix D is symmetric. So, D = Dᵀ.

Therefore, Dᵀ = BᵀC²

Now, we have D Dᵀ = C²BᵀBᵀC² = (CB)²

Since C and B are invertible, their product CB is also invertible. Hence, (CB)² is invertible and so is D Dᵀ.

Now let P = Dᵀ(D Dᵀ)⁻¹. Then, PP⁻¹ = I. Also, P⁻¹P = I. Hence, P is invertible.

Multiplying D⁻¹ on both sides of D = Dᵀ, we get D⁻¹D = D⁻¹Dᵀ. Hence, I = (D⁻¹D)ᵀ.

Let Q = DD⁻¹. Then, QQᵀ = I. Also, QᵀQ = I. Hence, Q is invertible.

Now, let us evaluate (4BᵀC²)⁻¹.

Let R = 4BᵀC².

Now, R = 4DDᵀ = 4Q⁻¹(D Dᵀ)Q⁻ᵀ.

Now let us evaluate R⁻¹.R⁻¹ = (4DDᵀ)⁻¹ = 1⁄4(D Dᵀ)⁻¹ = 1⁄4(QQᵀ)⁻¹.

Using the property (AB)⁻¹ = B⁻¹A⁻¹, we get R⁻¹ = 1⁄4(Q⁻ᵀQ⁻¹) = 1⁄4B⁻¹C⁻².

Substituting this in (4C²BᵀA⁻¹)⁻¹ = A(4BᵀC²)⁻¹, we get(4C²BᵀA⁻¹)⁻¹ = 1⁄4A(Bᵀ)⁻¹C⁻²

Hence, the answer is 1/4A(B^T)−1^C^−2.

Learn more about matrix at

https://brainly.com/question/30175009

#SPJ11

Find the rank and nullity of the matrix; then verify that the values obtained satisfy Formula (4) in the Dimension Theorem. A = 1 3 -2 4 rank(A) nullity (A) 3 3 -3 -3 0 6 6 6 0 -6 6 = rank(A) + nullity (A) 8 -12 2 18 14 =

Answers

The Rank of matrix A is 1.

The nullity of matrix A is 1.

To find the rank and nullity of the given matrix A, we first need to perform row reduction to obtain the row echelon form (REF) of the matrix.

Row reducing the matrix A:

[tex]\left[\begin{array}{cccc}1&3&-2&4\\3&3&-3&-3\\0&6&6&6\\0&-6&6&6\end{array}\right][/tex]

[tex]R_2 = R_2 - 3R_1:[/tex]

[tex]\left[\begin{array}{cccc}1&3&-2&4\\0&-6&3&-15\\0&6&6&6\\0&-6&6&6\end{array}\right][/tex]

[tex]R_3 = R_3 + R_2:[/tex]

[tex]\left[\begin{array}{cccc}1&3&-2&4\\0&-6&3&-15\\0&0&9&-9\\0&-6&6&6\end{array}\right][/tex]

[tex]R_4 = R_4 + R_2:[/tex]

[tex]\left[\begin{array}{cccc}1&3&-2&4\\0&-6&3&-15\\0&0&9&-9\\0&0&9&-9\end{array}\right][/tex]

[tex]R_3 = R_3[/tex] / 9:

[tex]\left[\begin{array}{cccc}1&3&-2&4\\0&-6&3&-15\\0&0&1&-1\\0&0&9&-9\end{array}\right][/tex]

[tex]R_4 = R_4 - 9R_3[/tex]:

[tex]\left[\begin{array}{cccc}1&3&-2&4\\0&-6&3&-15\\0&0&1&-1\\0&0&0&0\end{array}\right][/tex]

The row echelon form (REF) of the matrix A is:

[tex]\left[\begin{array}{cccc}1&3&-2&4\\0&-6&3&-15\\0&0&1&-1\\0&0&0&0\end{array}\right][/tex]

From the row echelon form, we can see that there are three pivot columns (columns containing leading 1's), which means the rank of matrix A is 3.

To find the nullity, we count the number of free variables, which is the number of non-pivot columns. In this case, there is 1 non-pivot column, so the nullity of matrix A is 1.

Now, let's verify Formula (4) in the Dimension Theorem:

rank(A) + nullity(A) = 3 + 1 = 4

The number of columns in matrix A is 4, which matches the sum of rank(A) and nullity(A) as given by the Dimension Theorem.

Therefore, the values obtained satisfy Formula (4) in the Dimension Theorem.

Learn more about Nullity of Matrix here:

https://brainly.com/question/31322587

#SPJ4

Other Questions
At = 0, a ball is kicked such that it moves along a ramp that makes an ground? (10 points) angle 8 = 30 with the ground. What shall be the initial speed of the ball i such that it will stop after t = 1 s? What's the space travelled by the ball when it stops? Assume that there is no friction between the ball and the ramp Three negative charged particles of equal charge, -15x10^-6, are located at the corners of an equilateral triangle of side 25.0cm. Determine the magnitude and direction of the net electric force on each particle. What objectives of corporationpursue to engage in mergersand acquisitions? A soft drink manufacturing company has 3 factories set up one in each of the three cities - Orland, Tampa, and Port St. Lucie and it supplies the produced soft drink bottles to 3 warehouses located in the city of Miami. The associated per-unit transportation cost table is provided below:Transportation Costs ($)Factories/Warehouse (W)W1W2W3Orlando437Tampa764Port St. Lucie366The factory at Orlando has a capacity of 15,000 units. The factory at Tampa has a capacity of 18,000 units. The factory at Port St. Lucie has a capacity of 8,000 units.The requirements of the warehouses are:WarehouseRequirement (Bottles)W118,000W212,000W35,000How many decision variables do you have in this problem? "A 6900 line/cm diffraction grating is 3.44 cm wide.Part AIf light with wavelengths near 623 nm falls on the grating, whatorder gives the best resolution?1. zero order2. first order3. second order If capital punishment is justified and justice doesn't demand a vindication for past wrongs, then either capital punishment reforms the offender or effectively deters crime.Capital punishment doesn't reform the offender.Capital punishment doesn't effectively deter crime... Capital punishment isn't justified. (J. V, R, D)What is the best formulation of the first premise of this argument in propositional logic?((Rv C)) ((JV)(U-V) (Rv C))((Rv C)) ((JV)(Uv-V) (Rv C)) 15. An engineer launches a projectile from a point 245 m in front of a 325-meter tall building. Its launch velocity is unknown. Ignore the air resistance.(a) what is the maximum vertical component of initial velocity (vy0) at t =0 is needed to touch the top of the building?(b) What is the horizontal component of initial velocity (vx0) at t =0 is needed to move 245 m for the projectile to touch the top of building?. Why is the arbitration agreement described as thefoundation stone of international arbitration Initial cost of inventoriesThe company purchases raw materials for the production of finished products. It is normal for the market to provide a standard grace period of 30 days. The average price at which a company usually buys 1 ton of raw materials is 9500 sums per ton on the market.On December 1, 20X2, the company entered into an agreement for the supply of these raw materials with a company that is a related party to it. The volume of delivery amounted to 1,000 tons at a price of 11,000 sums per ton, while the contract provides for a payment deferral of 24 months from the date of purchase.Required:a) Identify the initial cost of the inventory purchased on December 1, 20X2 in accordance with IFRS/IAS;b) Provide the journal entries for the last procurement;c) Calculate the interest expense to be charged monthly on the last procurement in the following accounting period from January 20X3 to December 20X4. In this case the linear equations are given:A company offers two data plans for cell phones. The plan A the linear function for thecharge is given byy=10xwhere x represents the total number of megabytes. The Plan B charge is calculated usingthe linear functiony = 4x + 75.How many megabytes would a customer need to use for Plan be to be a better deal?1) more than 12.5 megabytes2) less than 18.75 megabytes3)Plan b is always a better deal because the charge per megabyte is less than inplan A4) More than 10 megabytes.5) More than 20 megabytes A certain child's near point is 14.0 cm; her far point (with eyes relaxed) is 119 cm. Each eye lens is 2.00 cm from the retina. (a) Between what limits, measured in diopters, does the power of this lens-cornea combination vary? Calculate the power of the eyeglass lens the child should use for relaxed distance vision. diopters Is the lens converging or diverging? Five balls are selected at random without replacement from an un containing four white balls and six blue bals. Find the probability of the given event. (Round your answer to three decimale) Which of the following statements is FALSE regarding the Fisher Effect? i. Ceteris paribus, the higher the inflation, the higher the real interest rate. iii. If prices rise by 7% and your salary increases by 9%, you will experience a gain of purchasing power. iv. The Fisher Effect illustrates the inverse relationship between inflation and nominal interest rates. A. i and iii only B. iv only C. i,ii, and iv D. i and ii only Europeans who ruled territories directly denied the influence of Indigenous people because A 108 2 resistor is connected in series with a 72 mH inductor and a 0.3 F capac- itor. The applied voltage has the form 190 V sin(2 ft), where the frequency is f=876 cycles/s. & Find the rms current. Which of the following are motifs in the novel, The Absolutely True Diary of a Part-Time Indian?MULTIPLE CHOICEa.alcoholismb.deathc.basketballd.racism WHAT PARTS OF THE VERB CHANGE FROM SENTENCE A IN SENTENCE B?A. Frank is parachuting for the first time this weekend.B. Frank and Linda would have been parachuting for the first time this weekend.1. number, tense and mood2. person and voice3. number, tense and voice4. only number The magnetic field of the Earth varies over time and reverses its poles every half million years or so. Currently, the magnitude of the Earth's magnetic field at either pole is approximately 7 10-5 T. At the next pole reversal, while the field is zero, some boyscouts decide to replace the field using a current loop around the equator. Without relying on magetization of materials inside the Earth, determine the current that would generate a field of 9.0e-5 T at the poles. The radius of the Earth is RE = 6.37 106 m. A (+1E7 A) All of the following are true about the stretch reflex EXCEPT:Group of answer choicesA. initial stimulus is muscle stretch detected by the muscle spindleB. Efferent impulses to the interneurons inhibit contraction of alpha motor neurons of the stretched muscleC. Afferent impulses are sent from the stretch receptor to the spinal cordD. It can be activated by tapping a tendon and exciting the associated muscle spindlesE. Efferent impulses to interneurons inhibit contraction of antagonist muscles The nurse admits a client who has a medical diagnosis of bacterial meningitis to the unit. Which intervention has the highest priority in providing care for this client?A. Administer initial dose of broad-spectrum antibioticB. Instruct the client to force fluids hourlyC. Obtain results of culture and sensitivity of CSFd. Assess the client for symptoms of hyponatremia Steam Workshop Downloader