Sketch with direction of the following functions r = f(0) in polar coordinate. (8 pts) a) r= 5 sin (30) b) p2 = -9 sin (20) c) r=4-5 cos e the following:

Answers

Answer 1

In polar coordinates, the functions r = f(θ) represent the distance from the origin to a point on the graph. Sketching the functions r = f(0) involves finding the values of r at θ = 0 and plotting those points.

For the function r = 5 sin(30), we need to evaluate r when θ = 0. Plugging in θ = 0 into the equation, we get r = 5 sin(0) = 0. This means that at θ = 0, the distance from the origin is 0. Therefore, we plot the point (0, 0) on the graph.

The function [tex]p^{2}[/tex] = -9 sin(20) can be rewritten as [tex]r^{2}[/tex] = -9 sin(20). Since the square of a radius is always positive, there are no real solutions for r in this case. Therefore, there are no points to plot on the graph.

For the function r = 4 - 5 cos(θ), we evaluate r when θ = 0. Plugging in θ = 0, we get r = 4 - 5 cos(0) = 4 - 5 = -1. This means that at θ = 0, the distance from the origin is -1. We plot the point (0, -1) on the graph.

Learn more about polar coordinates here:

https://brainly.com/question/31904915

#SPJ11


Related Questions

5. The height in metres, above the ground of a car as a Ferris wheel rotates can be modelled by the function h(t) = 16cos +18, where t is the time in seconds. What is the height of a rider after 15 second

Answers

The height of the rider after 15 seconds is approximately 33.4548124213 meters above the ground.

The given function h(t) = 16cos(t) + 18 represents the height above the ground of a rider on a Ferris wheel as a function of time in seconds. To find the height of the rider after 15 seconds, we substitute t = 15 into the equation:

h(15) = 16cos(15) + 18

Evaluating the cosine of 15 degrees using a calculator, we find that cos(15) is approximately 0.96592582628. Plugging this value into the equation, we get:

h(15) = 16 * 0.96592582628 + 18

     ≈ 15.4548124213 + 18

     ≈ 33.4548124213

Therefore, the height of the rider after 15 seconds is approximately 33.4548124213 meters above the ground.

Learn more about cosine here:

https://brainly.com/question/29114352

#SPJ11

Write and find the general solution of the differential equation that models the verbal statement. Evaluate the solution at the specified value of the independent variable The rate of change of Pis proportional to P. When t = 0, P-8,000 and when t-1, P-5.200. What is the value of P when t-6? Write the differential equation. (Use k for the constant of proportionality.) dp KP de Solve the differential equation poceki Evaluate the solution de the specified value of the independent variable. (Round your answer to three decimal places)

Answers

The general solution of the differential equation that models the given verbal statement is P(t) = P₀e^(kt), where P(t) represents the population at time t, P₀ is the initial population, k is the constant of proportionality, and e is the base of the natural logarithm.

The differential equation that represents the given verbal statement is dp/dt = kP, where dp/dt represents the rate of change of population P with respect to time t, and k is the constant of proportionality. This equation indicates that the rate of change of P is directly proportional to P itself.

To solve this differential equation, we can separate variables and integrate both sides. Starting with dp = kP dt, we divide both sides by P and dt to get dp/P = k dt. Integrating both sides, we have ∫(1/P) dp = ∫k dt. This yields ln|P| = kt + C₁, where C₁ is the constant of integration.

Solving for P, we take the exponential of both sides to obtain |P| = e^(kt+C₁). Simplifying further, we get |P| = e^(kt)e^(C₁). Since e^(C₁) is another constant, we can rewrite the equation as |P| = Ce^(kt), where C = e^(C₁).

Using the given initial conditions, when t = 0, P = 8,000, we can substitute these values into the general solution to find C. Thus, 8,000 = C e^(0), which simplifies to C = 8,000.

Finally, evaluating the solution at t = 6, we substitute C = 8,000, k = -ln(5,200/8,000)/1, and t = 6 into the equation P(t) = Ce^(kt) to find P(6) ≈ 5,242.246. Therefore, when t = 6, the value of P is approximately 5,242.246.

Learn more about constant of proportionality here: brainly.com/question/8598338

#SPJ11

Consider the function /(x,1) = sin(x) sin(ct) where c is a constant. Calculate is and дх2 012 as дх? Incorrect os 012 Incorrect 1 дх 101 and the one-dimensional heat equation is given by The one

Answers

The correct partial derivative is cos(x) sin(ct). The one-dimensional heat equation is unrelated to the given function /(x,1).

The function /(x,1) = sin(x) sin(ct), where c is a constant, is analyzed. The calculation of its integral and partial derivative with respect to x is carried out. Incorrect results are provided for the integration and partial derivative, and the correct values are determined using the given information. Furthermore, the one-dimensional heat equation is briefly mentioned.

Let's calculate the integral of the function /(x,1) = sin(x) sin(ct) with respect to x. By integrating sin(x) with respect to x, we get -cos(x). However, there seems to be an error in the given incorrect result "is" for the integration. To obtain the correct integral, we need to apply the chain rule.

Since we have sin(ct), the derivative of ct with respect to x is c. Therefore, the correct integral is (-cos(x))/c.

Next, let's calculate the partial derivative of /(x,1) with respect to x, denoted as /(x,1).

Taking the partial derivative of sin(x) sin(ct) with respect to x, we get cos(x) sin(ct).

The given incorrect result "дх2 012" seems to have typographical errors.

The correct notation for the partial derivative of /(x,1) with respect to x is /(x,1). Therefore, the correct partial derivative is cos(x) sin(ct).

It's worth mentioning that the one-dimensional heat equation is unrelated to the given function /(x,1). The heat equation is a partial differential equation that describes the diffusion of heat over time in a one-dimensional space. It relates the temperature distribution to the rate of change of temperature with respect to time and the second derivative of temperature with respect to space. While it is not directly relevant to the current calculations, the heat equation plays a crucial role in studying heat transfer and thermal phenomena.

Learn more about partial derivative:

https://brainly.com/question/28751547

#SPJ11

A point starts at the location 2.0and moves counter-clockwise along a circular path with a radius of 2 units that is centered at the origin of an -y plane.An angle with its vertex at the circle's center has a mcasure of radians and subtends the path the point travels. Let z represent the point's z-coordinate.(Draw a diagram of this to make sure you understand the context!) a.Complete the following statements oAsvariesfrom0to to units, Asvaries fromto,varies from to units. varies from to units. 3r oAxvaries from to 2w,variesfrom 2 to units. b.Based on your answers to part asketch a graph of the relationship between and .(Represent on the horizontal axis and on the vertical axis.) x2 T 3./2 2x

Answers

a) Completing the statements:

As θ varies from 0 to π/2 units, z varies from 2 to 0 units.

As θ varies from π/2 to π units, z varies from 0 to -2 units.

As θ varies from π to 3π/2 units, z varies from -2 to 0 units.

As θ varies from 3π/2 to 2π units, z varies from 0 to 2 units.

b) Based on the given information, we can sketch a graph of the relationship between θ and z. The x-axis represents the angle θ, and the y-axis represents the z-coordinate. The graph will show how the z-coordinate changes as the angle θ varies. It will start at (0, 2), move downwards to (π/2, 0), then continue downwards to (π, -2), and finally move back upwards to (2π, 2). The graph will form a wave-like shape with periodicity of 2π, reflecting the circular motion of the point along the circular path.

To learn more about circular paths click here: brainly.com/question/31753102

#SPJ11

oil pours into a conical tank at the rate of 20 cubic centimeters per minute. the tank stands point down and has a height of 8 centimeters and a base radius of 11 centimeters. how fast is the oil level rising when the oil is 3 centimeters deep?

Answers

The oil level is rising at approximately 0.0467 centimeters per minute when the oil is 3 centimeters deep.

To find the rate at which the oil level is rising, we can use the concept of similar triangles. Let h be the height of the oil in the conical tank. By similar triangles, we have the proportion h/8 = (h-3)/11, which can be rearranged to h = (8/11)(h-3).

The volume V of a cone is given by V = (1/3)πr^2h, where r is the radius of the base and h is the height. Differentiating both sides with respect to time t, we get dV/dt = (1/3)πr^2(dh/dt).

Given that dV/dt = 20 cubic centimeters per minute and r = 11 centimeters, we can solve for dh/dt when h = 3 centimeters. Substituting the values into the equation, we have 20 = (1/3)π(11^2)(dh/dt). Solving for dh/dt, we find dh/dt ≈ 0.0467 centimeters per minute.

Therefore, the oil level is rising at approximately 0.0467 centimeters per minute when the oil is 3 centimeters deep.

Learn more about similar triangles here:

https://brainly.com/question/29731302

#SPJ11

g suppose both x and y are normally distributed random variables with the same mean 10. suppose further that the standard deviation of x is greater than the standard deviation of y. which of the following statements is true? group of answer choices a. p(x>12) b. > p(y>12) c. p(x>12) d. < p(y>12) e. p(x>12)

Answers

The correct statement is: (c.) P(X > 12) < P(Y > 12)

Based on the information provided, we are able to determine the correct statement, which states that both X and Y are normally distributed random variables with the same mean of 10 and that X has a higher standard deviation than Y:

The assertion is accurate:

c. P(X > 12) P(Y > 12)

The way that X has a better quality deviation than Y recommends that X's dissemination is more scattered. This indicates that the likelihood of X exceeding a particular value, such as 12, is lower than that of Y exceeding a similar value. As a result, P(X  12) is not precisely P(Y  12).

To know more about standard deviation refer to

https://brainly.com/question/13498201

#SPJ11

New York Yankees outfelder, Aaron Judge, has a career batting average of 0.276 (batting average is the ratio of number of hits over the total number of at bats appearance). Assume that on 2022 season, Judge will have 550 at bats because of another injury. Using the normal distribution, estimate the probability that Judge will have between 140 to 175 hits? (Compute answers to 4 decimal places.).

Answers

the estimated probability that Aaron Judge will have between 140 to 175 hits in the 2022 season is approximately 0.8793, rounded to 4 decimal places.

To estimate the probability that Aaron Judge will have between 140 to 175 hits in the 2022 season, we can use the normal distribution.

First, we need to calculate the mean (μ) and standard deviation (σ) of the distribution.

Mean (μ) = batting average * number of at bats

        = 0.276 * 550

        = 151.8

Standard deviation (σ) = sqrt(batting average * (1 - batting average) * number of at bats)

                     = sqrt(0.276 * (1 - 0.276) * 550)

                     = sqrt(0.193296 * 550)

                     = sqrt(106.3128)

                     ≈ 10.312

Next, we need to standardize the range of hits using the z-score formula:

z = (x - μ) / σ

For the lower bound (140 hits):

z1 = (140 - 151.8) / 10.312

  ≈ -1.1426

For the upper bound (175 hits):

z2 = (175 - 151.8) / 10.312

  ≈ 2.2382

Now, we can use the standard normal distribution table or a calculator to find the probability associated with the z-scores.

P(140 ≤ x ≤ 175) = P(z1 ≤ z ≤ z2)

Using the normal distribution table or calculator, we find:

P(-1.1426 ≤ z ≤ 2.2382) ≈ 0.8793

To know more about probability visit;

brainly.com/question/31828911

#SPJ11

Is there any systematic tendency for part-time college faculty to hold their students to different standards than do full-time faculty? The article "Are There Instructional Differences Between Full-Time and Part-Time Faculty?" (College Teaching, 2009: 23–26) reported that for a sample of 125 courses taught by full-time faculty, the mean course GPA was 2.7186 and the standard deviation was .63342, whereas for a sample of 88 courses taught by part-timers, the mean and standard deviation were 2.8639 and .49241, respectively. Does it appear that true average course GPA for part-time faculty differs from that for faculty teaching full-time? Test the appropriate hypotheses at significance level .01 by first obtaining a P-value.

Answers

The article "Are There Instructional Differences Between Full-Time and Part-Time Faculty?" (College Teaching, 2009: 23–26) compared the mean course GPA and standard deviation between full-time and part-time faculty. For the sample of 125 courses taught by full-time faculty, the mean course GPA was 2.7186 with a standard deviation of 0.63342.

For the sample of 88 courses taught by part-time faculty, the mean course GPA was 2.8639 with a standard deviation of 0.49241. We need to determine if there is evidence to suggest a true difference in average course GPA between part-time and full-time faculty.

To test the hypothesis regarding the average course GPA difference, we can use a two-sample t-test since we have two independent samples. The null hypothesis (H0) is that there is no difference in average course GPA between part-time and full-time faculty, while the alternative hypothesis (H1) is that there is a difference.

Using the given data, we calculate the t-statistic, which is given by:

t = [(mean part-time GPA - mean full-time GPA) - 0] / sqrt((s_part-time² / n_part-time) + (s_full-time² / n_full-time))

where s_part-time and s_full-time are the standard deviations, and n_part-time and n_full-time are the sample sizes.

Plugging in the values, we find:

[tex]t=\frac{(2.8639 - 2.7186) - 0}{\sqrt{((0.49241^{2} / 88) + (0.63342^{2} / 125))} }[/tex]

Calculating this expression gives us the t-statistic. With this value, we can determine the p-value associated with it using a t-distribution with appropriate degrees of freedom.

If the p-value is less than the significance level of 0.01, we would reject the null hypothesis in favor of the alternative hypothesis and conclude that there is evidence of a true average course GPA difference between part-time and full-time faculty.

Learn more about average here: https://brainly.com/question/8501033

#SPJ11

1 a show that two lines with direction vectors d1 - (2.3) and d2 - (6,-4) are perpendicular 5. Give the Cartesian equation of the line with direction vector d1, going through the point P(5.-2). c. Give the vector and parametric equations of the line from part b.

Answers

Two lines with direction vectors d1 = (2,3) and d2 = (6,-4) are perpendicular if their dot product is zero, which is confirmed as d1 · d2 = 0. The Cartesian equation for the line with direction vector d1 passing through the point P(5,-2) is 3x - 2y - 13 = 0.

How can we determine if two lines with direction vectors d1 = (2,3) and d2 = (6,-4) are perpendicular?

a) To show that two lines with direction vectors d1 = (2,3) and d2 = (6,-4) are perpendicular, we can compute their dot product. If the dot product is zero, the lines are perpendicular. In this case, d1 · d2 = 2*6 + 3*(-4) = 12 - 12 = 0, confirming the perpendicularity.

b) The Cartesian equation of the line with direction vector d1 = (2,3) and passing through the point P(5,-2) can be obtained using the point-slope form. Using the equation (x - x1)/dx = (y - y1)/dy, we substitute the values to get (x - 5)/2 = (y - (-2))/3, which simplifies to 3x - 9 = 2y + 4, or 3x - 2y - 13 = 0.

c) The vector equation of the line from part b is r = (5, -2) + t(2, 3), where r is the position vector and t is a scalar parameter. The parametric equations for x and y coordinates can be written as x = 5 + 2t and y = -2 + 3t, respectively.

Learn more about direction vectors

brainly.com/question/30396164

#SPJ11

I WILL THUMBS UP YOUR
POST
A chemical manufacturing plant can produce z units of chemical Z given p units of chemical P and r units of chemical R, where: 2 = 140p0.75 0.25 Chemical P costs $400 a unit and chemical R costs $1,20

Answers

The chemical manufacturing plant can produce z units of chemical Z using p units of chemical P and r units of chemical R. The production relationship is given by the equation z = 140p^0.75 * r^0.25.

To produce chemical Z, the plant requires a certain amount of chemical P and chemical R. The relationship between the input chemicals and the output chemical Z is described by the equation z = 140p^0.75 * r^0.25, where p represents the number of units of chemical P and r represents the number of units of chemical R.

In this equation, p is raised to the power of 0.75, indicating that the amount of chemical P has a significant impact on the production of chemical Z. Similarly, r is raised to the power of 0.25, indicating that the amount of chemical R also affects the production, but to a lesser extent.

The cost of chemical P is $400 per unit, while chemical R costs $1,200 per unit. By knowing the cost per unit and the required amount of chemicals, one can calculate the total cost of producing chemical Z based on the given quantities of chemical P and R.

It's important to note that the explanation provided assumes the given equation is correct and accurately represents the production relationship between the chemicals.

Learn more about cost here:

https://brainly.com/question/6506894

#SPJ11

Use the series method to compute f cos(x³) dr. Hint: Use the known Maclaurin series for cos..

Answers

Using the series method and the known Maclaurin series for cos(x), we can compute the integral of f cos(x³) with respect to x.

To compute the integral ∫f cos(x³) dx using the series method, we can express cos(x³) as a power series using the Maclaurin series expansion of cos(x).The Maclaurin series for cos(x) is given by:

cos(x) = 1 - (x²/2!) + (x⁴/4!) - (x⁶/6!) + ...

Substituting x³ for x, we have:

cos(x³) = 1 - ((x³)²/2!) + ((x³)⁴/4!) - ((x³)⁶/6!) + ...

Now, we can integrate each term of the power series individually. Integrating term by term, we obtain:

∫f cos(x³) dx = ∫f [1 - ((x³)²/2!) + ((x³)⁴/4!) - ((x³)⁶/6!) + ...] dx

Since we have expressed cos(x³) as an infinite power series, we can integrate each term separately. This allows us to calculate the integral of f cos(x³) using the series method.

Learn more about Maclaurin series here:

https://brainly.com/question/31745715

#SPJ11

Find the equation for the line tangent to the curve 2ey = x + y at the point (2, 0). Explain your work. Use exact forms. Do not use decimal approximations.

Answers

The equation for the line tangent to the curve 2ey = x + y at the point (2, 0) is y = x - 2.

To find the equation for the line tangent to the curve 2ey = x + y at the point (2, 0), we need to determine the slope of the tangent line at that point.

First, let's differentiate the given equation implicitly with respect to x:

d/dx (2ey) = d/dx (x + y)

Using the chain rule on the left side and the sum rule on the right side:

2(d/dx (ey)) = 1 + dy/dx

Since dy/dx represents the slope of the tangent line, we can solve for it by rearranging the equation:

dy/dx = 2(d/dx (ey)) - 1

Now, let's find d/dx (ey) using the chain rule:

d/dx (ey) = d/du (ey) * du/dx

where u = y(x)

d/dx (ey) = ey * dy/dx

Substituting this back into the equation for dy/dx:

dy/dx = 2(ey * dy/dx) - 1

Next, we can substitute the coordinates of the given point (2, 0) into the equation to find the value of ey at that point:

2ey = x + y

2ey = 2 + 0

ey = 1

Now, we can substitute ey = 1 back into the equation for dy/dx:

dy/dx = 2(1 * dy/dx) - 1

dy/dx = 2dy/dx - 1

To solve for dy/dx, we rearrange the equation:

dy/dx - 2dy/dx = -1

- dy/dx = -1

dy/dx = 1

Therefore, the slope of the tangent line at the point (2, 0) is 1.

Now that we have the slope, we can use the point-slope form of the equation of a line to find the equation of the tangent line. Given the point (2, 0) and the slope 1:

y - y1 = m(x - x1)

y - 0 = 1(x - 2)

Simplifying:

y = x - 2

Thus, the equation for the line tangent to the curve 2ey = x + y at the point (2, 0) is y = x - 2.

To learn more about equation click here:

/brainly.com/question/31061664

#SPJ11

to determine her , divides up her day into three parts: morning, afternoon, and evening. she then measures her at randomly selected times during each part of the day.

Answers

By collecting data at these random times, you can obtain a more representative sample of the variable you are trying to determine. Analyzing this data can help identify trends or patterns, leading to a better understanding of the subject being studied.

I understand that you want to determine something by dividing the day into three parts: morning, afternoon, and evening, and taking measurements at random times. To do this, you can use a systematic approach.
First, divide the day into the three specified parts. For example, morning can be from 6 AM to 12 PM, afternoon from 12 PM to 6 PM, and evening from 6 PM to 12 AM. Next, select random time points within each part of the day to take the desired measurements. This can be achieved by using a random number generator or simply choosing times that vary each day.
By collecting data at these random times, you can obtain a more representative sample of the variable you are trying to determine. Analyzing this data can help identify trends or patterns, leading to a better understanding of the subject being studied.

To know more about divide visit :

https://brainly.com/question/29087926

#SPJ11

Find (No points for using L'Hopital's Rule.) x²-x-12 lim x+3x²+8x + 15,

Answers

The limit of the expression as x approaches infinity is 1/4.

To find the limit of the expression (x² - x - 12) / (x + 3x² + 8x + 15) as x approaches infinity, we can simplify the expression and then evaluate the limit.

First, let's simplify the expression:

(x² - x - 12) / (x + 3x² + 8x + 15) = (x² - x - 12) / (4x² + 9x + 15)

Now, let's divide every term in the numerator and denominator by x²:

(x²/x² - x/x² - 12/x²) / (4x²/x² + 9x/x² + 15/x²)

Simplifying further, we get:

(1 - 1/x - 12/x²) / (4 + 9/x + 15/x²)

As x approaches infinity, the terms involving 1/x and 1/x² tend to 0. Therefore, the expression becomes:

(1 - 0 - 0) / (4 + 0 + 0) = 1 / 4

To know more about the limit refer here:

https://brainly.com/question/29795597#

#SPJ11




Set up the definite integral required to find the area of the region between the graph of y = 15 – x² and Y 27x + 177 over the interval - 5 ≤ x ≤ 1. = dx 0

Answers

The area of the region between the two curves is 667 square units.

To find the area of the region between the graphs of \(y = 15 - x^2\) and \(y = 27x + 177\) over the interval \(-5 \leq x \leq 1\), we need to set up the definite integral.

The area can be calculated by taking the difference between the upper and lower curves and integrating with respect to \(x\) over the given interval.

First, we find the points of intersection between the two curves by setting them equal to each other:

\(15 - x^2 = 27x + 177\)

Rearranging the equation:

\(x^2 + 27x - 162 = 0\)

Solving this quadratic equation, we find the two intersection points: \(x = -18\) and \(x = 9\).

Next, we set up the definite integral for the area:

\(\text{Area} = \int_{-5}^{1} \left[(27x + 177) - (15 - x^2)\right] \, dx\)

Simplifying:

\(\text{Area} = \int_{-5}^{1} (27x + x^2 + 162) \, dx\)

Now, we can integrate term by term:

\(\text{Area} = \left[\frac{27x^2}{2} + \frac{x^3}{3} + 162x\right]_{-5}^{1}\)

Evaluating the definite integral:

\(\text{Area} = \left[\frac{27(1)^2}{2} + \frac{(1)^3}{3} + 162(1)\right] - \left[\frac{27(-5)^2}{2} + \frac{(-5)^3}{3} + 162(-5)\right]\)

Simplifying further:

\(\text{Area} = \frac{27}{2} + \frac{1}{3} + 162 + \frac{27(25)}{2} - \frac{125}{3} - 162(5)\)

Finally, calculating the value:

\(\text{Area} = \frac{27}{2} + \frac{1}{3} + 162 + \frac{675}{2} - \frac{125}{3} - 810\)

\(\text{Area} = \frac{27}{2} + \frac{1}{3} + \frac{486}{3} + \frac{675}{2} - \frac{125}{3} - \frac{2430}{3}\)

\(\text{Area} = \frac{900}{6} + \frac{2}{6} + \frac{2430}{6} + \frac{1350}{6} - \frac{250}{6} - \frac{2430}{6}\)

(\text{Area} = \frac{900 + 2 + 2430 + 1350 - 250 - 2430}{6}\)

(\text{Area} = \frac{4002}{6}\)

(\text{Area} = 667\) square units

Therefore, the area of the region between the two curves is 667 square units.

To learn more about integral click here:

brainly.com/question/24580494

#SPJ11


I WILL GIVE GOOD RATE FOR GOOD ANSWER
Question 3 Linear Systems. Solve the system of equations S below in R3. x + 2y + 5z = 2 (S): 3x + y + 4z = 1 2.c – 7y + z = 5

Answers

The values of x = -9/19, y = -14/19, and z = 15/19 in linear system of equation S.

What is linear system of equation?

A system of linear equations (also known as a linear system) in mathematics is a grouping of one or more linear equations involving the same variables.

Suppose as given equations are,

x + 2y + 5z = 2                      ......(1)

3x + y + 4z = 1                       ......(2)

2x - 7y + z = 5                       ......(3)

Written in Matrix format as follows:

AX = Z

[tex]\left[\begin{array}{ccc}1&2&5\\3&1&4\\2&-7&1\end{array}\right] \left[\begin{array}{c}x&y&z\end{array}\right]=\left[\begin{array}{c}2&1&5\end{array}\right][/tex]

Apply operations as follows:

R₂ → R₂ - 3R₁, R₃ → R₃ - 2R₁

[tex]\left[\begin{array}{ccc}1&2&5\\0&-5&-11\\0&-11&-9\end{array}\right] \left[\begin{array}{c}x&y&z\end{array}\right]=\left[\begin{array}{c}2&-5&1\end{array}\right][/tex]

R₃ → 5R₃ - 11R₁

[tex]\left[\begin{array}{ccc}1&2&5\\0&-5&-11\\0&0&76\end{array}\right] \left[\begin{array}{c}x&y&z\end{array}\right]=\left[\begin{array}{c}2&-5&60\end{array}\right][/tex]

Solve equations,

x + 2y + 5z = 2                ......(4)

-5y - 11z = -5                    ......(5)

76z = 60                          ......(6)

From equation (6),

z = 60/76

z = 15/19

Substitute value of z in equation (5) to evaluate y,

-5y - 11(15/19) = -5

5y + 165/19 = 5

5y = -70/19

y = -14/19

Similarly, substitute values of y and z equation (4) to evaluate the value of x,

x + 2y + 5z = 2

x + 2(-14/19) + 5(15/19) = 2

x = 2 + 28/19 - 75/19

x = -9/19

 

Hence, The values of x = -9/19, y = -14/19, and z = 15/19 in linear system of equation S.

To learn more about Linear system from the given link.

https://brainly.com/question/28732353

#SPJ4

if an architect uses the scale 1/4 in. = 1 ft. how many inches represents 12 ft.

Answers

12 feet is equivalent to 3 inches according to the given Scale.

In the given scale, 1/4 inch represents 1 foot. To determine how many inches represent 12 feet, we can set up a proportion using the scale:

(1/4 inch) / (1 foot) = x inches / (12 feet)

To solve for x, we can cross-multiply:

(1/4) * (12) = x

3 = x

Therefore, 3 inches represent 12 feet.

According to the scale, for every 1/4 inch on the drawing, it represents 1 foot in actual measurement. So if we multiply the number of feet by the scale factor of 1/4 inch per foot, we get the corresponding measurement in inches.

In this case, since we have 12 feet, we can multiply 12 by the scale factor of 1/4 inch per foot:

12 feet * (1/4 inch per foot) = 12 * 1/4 = 3 inches

Hence, 12 feet is equivalent to 3 inches according to the given scale.

To know more about Scale.

https://brainly.com/question/30241613

#SPJ8

approximate to four decimal places
Find the series for: √√1+x 5 Use you're series 5 to approximate: 1.01

Answers

Using the series approximation, √√(1.01) is approximately 1.0039 (rounded to four decimal places).

To find the series for √√(1+x), we can start with the Maclaurin series expansion for √(1+x) and then take the square root of the result.

The Maclaurin series expansion for √(1+x) is:

√(1+x) = 1 + (1/2)x - (1/8)x^2 + (1/16)x^3 - (5/128)x^4 + ...

Now, let's take the square root of this series:

√(√(1+x)) = (1 + (1/2)x - (1/8)x^2 + (1/16)x^3 - (5/128)x^4 + ...)^0.5

Using binomial series expansion, we can approximate this series:

√(√(1+x)) ≈ 1 + (1/2)(1/2)x - (1/8)(1/2)(1/2-1)x^2 + (1/16)(1/2)(1/2-1)(1/2-2)x^3 - (5/128)(1/2)(1/2-1)(1/2-2)(1/2-3)x^4 + ...

Simplifying the coefficients, we have:

√(√(1+x)) ≈ 1 + (1/4)x - (1/32)x^2 + (1/128)x^3 - (5/1024)x^4 + ...

Now, we can use this series to approximate the value of √√(1.01).

Let's substitute x = 0.01 into the series:

√√(1.01) ≈ 1 + (1/4)(0.01) - (1/32)(0.01)^2 + (1/128)(0.01)^3 - (5/1024)(0.01)^4

Evaluating this expression, we get:

√√(1.01) ≈ 1 + 0.0025 - 0.000003125 + 0.00000001220703 - 0.000000000009536743

Simplifying further, we find:

√√(1.01) ≈ 1.00390625

Therefore, using the series approximation, √√(1.01) is approximately 1.0039 (rounded to four decimal places).

Learn more about series approximation: https://brainly.com/question/31396645

#SPJ11

In a subsurface system, we have reverse faulting, a pressure is identified at the depth of
2,000 ft with A = 0.82. Given this information, calculate: the total maximum horizontal stress
Shmaz given friction angle 4 = 30°.

Answers

To calculate the total maximum horizontal stress (Shmax) in a subsurface system with reverse faulting, we can use the formula:

Shmax = P / A

where P is the pressure at the given depth and A is the stress ratio. Given: Depth = 2,000 ft, A = 0.8, Friction angle (φ) = 30°

First, we need to calculate the vertical stress (σv) at the given depth using the equation:

σv = ρ g  h

where ρ is the unit weight of the overlying rock, g is the acceleration due to gravity, and h is the depth.

Next, we can calculate the effective stress (σ') using the equation:

σ' = σv - Pp

where Pp is the pore pressure.

Assuming the pore pressure is negligible, σ' is approximately equal to σv.

Finally, we can calculate Shmax using the formula:

Shmax = σ' * (1 + sin φ) / (1 - sin φ)

Substituting the given values into the equations, we can calculate Shmax. However, the unit weight of the rock and the value of g are required to complete the calculation.

Learn more about horizontal stress (Shmax) here:

https://brainly.com/question/31642399

#SPJ11

f a ball is thrown into the air with a velocity of 20 ft/s, its height (in feet) after t seconds is given by y=20t−16t2. find the velocity when t=8

Answers

The velocity of the ball when t = 8 seconds is -236 ft/s.

To find the velocity when t = 8 for the given equation y = 20t - 16t^2, we need to calculate the derivative of y with respect to t. The derivative of y represents the rate of change of y with respect to time, which corresponds to the velocity.

Let's go through the steps:

1. Start with the given equation: y = 20t - 16t^2.

2. Differentiate the equation with respect to t using the power rule of differentiation. The power rule states that if you have a term of the form x^n, its derivative is nx^(n-1). Applying this rule, we get:

  dy/dt = 20 - 32t.

  Here, dy/dt represents the derivative of y with respect to t, which is the velocity.

3. Now we can substitute t = 8 into the derivative equation to find the velocity at t = 8:

  dy/dt = 20 - 32(8) = 20 - 256 = -236 ft/s.

Therefore, when t = 8, the velocity of the ball is -236 ft/s. The negative sign indicates that the ball is moving downward.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

Let 2 4t, y= 6t – 3t. = day Determine as a function of t, then find the concavity to the parametric curve at t = 2. (Hint: It dr? dy dạy would be helpful to simplify as much as possible before finding dc day dra day -(2) = dra

Answers

The concavity of the parametric curve at t = 2 is concave downwards as the second derivative is negative.

Given that 2 4t, y= 6t – 3t = day (1)

To determine the function of t, we have to substitute the value of t from equation (1) in the first equation.

2 = 4t, or t = 2/4 = 1/2Put t = 1/2 in the first equation, we get:

2(1/2)4t = 8t

Substitute t = 1/2 in the second equation, we get:

y = 6t – 3t = 3t = 3(1/2) = 3/2

Thus, the function of t is y = 3/2.

For finding the concavity of the parametric curve, we need to find the second derivative of y with respect to x by using the following formula:-

[tex]d^2y/dx^2[/tex] = (d/dt) [(dy/dx)/(dx/dt)]

Let us find the first derivative of y with respect to x. By using the chain rule, we get:-

dy/dx = (dy/dt)/(dx/dt)

Now, simplify the given expression by using the values from equation (1)

.dy/dt = 3 dx/dt = 4

The value of dy/dx is:- dy/dx = (3)/(4)

Now, find the second derivative of y with respect to x by using the formula.-

[tex]d^2y/dx^2[/tex] = (d/dt) [(dy/dx)/(dx/dt)]

Put the values of dy/dx and dx/dt in the above formula.-

[tex]d^2y/dx^2[/tex] = (d/dt) [(3/4)/4] = - (3/16)

So, the concavity of the parametric curve at t = 2 is concave downwards as the second derivative is negative. The value of the second derivative of the given function is -3/16.

Learn more about concavity :

https://brainly.com/question/32385727

#SPJ11

Let h(x) = óg(x) 8+f(x) Suppose that f(2)=-3, f'(2) = 3,g(2)=-1, and g'(2)=4. Find h' (2).

Answers

According to the given values, h'(2) = 7.

Let h(x) = g(x) + f(x). We are given that f(2) = -3, f'(2) = 3, g(2) = -1, and g'(2) = 4.

To find h'(2), we first need to find the derivative of h(x) with respect to x. Since h(x) is the sum of g(x) and f(x), we can use the sum rule for derivatives, which is:

h'(x) = g'(x) + f'(x)

Now, we can plug in the given values for x = 2:

h'(2) = g'(2) + f'(2)
h'(2) = 4 + 3
h'(2) = 7

Therefore, we can state that h'(2) = 7.

To learn more about derivatives visit : https://brainly.com/question/28376218

#SPJ11








5. Let r(t)=(cost,sint,t). a. Find the unit tangent vector T. b. Find the unit normal vector N. Hint. As a check, your answers from a and b should be orthogonal.

Answers

a. The unit tangent vector T of the curve r(t) = (cos(t), sin(t), t) is given by T(t) = (-sin(t), cos(t), 1).

b. The unit normal vector N of the curve is given by N(t) = (-cos(t), -sin(t), 0). The unit tangent vector and the unit normal vector are orthogonal to each other.

a. To find the unit tangent vector T, we first need to find the derivative of r(t).

Taking the derivative of each component, we have:

r'(t) = (-sin(t), cos(t), 1).

Next, we find the magnitude of r'(t) to obtain the length of the tangent vector:

| r'(t) | = [tex]\sqrt{ ((-sin(t))^2 + (cos(t))^2 + 1^2 )[/tex] = [tex]\sqrt{( 1 + 1 + 1 )}[/tex] = [tex]\sqrt(3)[/tex].

To obtain the unit tangent vector, we divide r'(t) by its magnitude:

[tex]T(t) = r'(t) / | r'(t) | =(-sin(t)/\sqrt(3), cos(t)/\sqrt(3), 1/\sqrt(3))\\= (-sin(t)/\sqrt(3), cos(t)/\sqrt(3), 1/\sqrt(3))[/tex]

b. The unit normal vector N is obtained by taking the derivative of the unit tangent vector T with respect to t and normalizing it:

N(t) = (d/dt T(t)) / | d/dt T(t) |.

Differentiating T(t), we have:

d/dt T(t) = [tex](-cos(t)/\sqrt(3), -sin(t)/\sqrt(3), 0)[/tex]

Taking the magnitude of d/dt T(t), we get:

| d/dt T(t) | = [tex]\sqrt( (-cos(t)/\sqrt(3))^2 + (-sin(t)/\sqrt(3))^2 + 0^2 )[/tex] = [tex]\sqrt(2/3)[/tex]

Dividing d/dt T(t) by its magnitude, we obtain the unit normal vector:

N(t) = [tex](-cos(t)/\sqrt(2), -sin(t)/\sqrt(2), 0)[/tex]

The unit tangent vector T(t) and the unit normal vector N(t) are orthogonal to each other, as their dot product is zero:

T(t) · N(t) = [tex](-sin(t)/\sqrt(3))(-cos(t)/\sqrt(2)) + (cos(t)/\sqrt(3))(-sin(t)/\sqrt(2))[/tex] + [tex](1/\sqrt(3))(0)[/tex] = 0.

Therefore, the unit tangent vector T(t) = [tex](-sin(t)/\sqrt(3), cos(t)/\sqrt(3)[/tex], [tex]1/\sqrt(3))[/tex] and the unit normal vector N(t) = [tex](-cos(t)/\sqrt(2), -sin(t)/\sqrt(2), 0)[/tex]are orthogonal to each other.

Learn more about Vector here:

https://brainly.com/question/29740341

#SPJ11

Integration and volumes Consider the solld bounded by the two surfaces z=f(x,y)=1-3and z = g(x,y) = 2.2 and the planes y = 1 and y = -1 2 1.5 N 1 0.5 0 o 0.5 0 -0.5 y -0.5 0.5 X 0.5 0.5 -0.5 у 0.5

Answers

The solid bounded by the surfaces [tex]z=f(x,y)=1-3*x and z=g(x,y)=2.2[/tex], and the planes y=1 and y=-1, can be calculated by evaluating the volume integral over the given region.

To calculate the volume of the solid, we need to integrate the difference between the upper and lower surfaces with respect to x, y, and z within the given bounds. First, we find the intersection of the two surfaces by setting f(x,y) equal to g(x,y), which gives us the equation[tex]1-3*x = 2.2.[/tex]Solving for x, we find x = -0.4.

Next, we set up the triple integral in terms of x, y, and z. The limits of integration for x are -0.4 to 0, the limits for y are -1 to 1, and the limits for z are f(x,y) to g(x,y). The integrand is 1, representing the infinitesimal volume element.

Using these limits and performing the integration, we can calculate the volume of the solid bounded by the given surfaces and planes.

Learn more about Integration here

brainly.com/question/5028068

#SPJ11

The function f(x) = – 2x + 27:02 – 48. + 8 has one local minimum and one local maximum. This function has a local minimum at = with value and a local maximum at x = with value Question Help: Video

Answers

The function f(x) = – 2x² + 27x² – 48x + 8 has one local minimum and one local maximum. This function has a local minimum at x = 12/13 with value = 52.

What is the exponential function?

An exponential function is a mathematical function of the form: f(x) = aˣ

where "a" is a constant called the base, and "x" is a variable. Exponential functions can be defined for any base "a", but the most common base is the mathematical constant "e" (approximately 2.71828), known as the natural exponential function.

To find the local minimum of the function f(x) = -2x² + 27x² - 48x + 8, we need to determine the critical points of the function.

First, we take the derivative of the function f(x) with respect to x:

f'(x) = d/dx (-2x² + 27x² - 48x + 8)

= -4x + 54x - 48

= 52x - 48

Next, we set the derivative equal to zero to find the critical points:

52x - 48 = 0

Solving for x, we have:

52x = 48

x = 48/52

x = 12/13

So, the critical point occurs at x = 12/13.

To determine if this critical point is a local minimum or maximum, we can examine the second derivative of the function.

Taking the second derivative of f(x):

f''(x) = d²/dx² (-2x² + 27x² - 48x + 8)

= d/dx (52x - 48)

= 52

Since the second derivative f''(x) = 52 is a positive constant, it indicates that the function is concave up everywhere, implying that the critical point x = 12/13 is a local minimum.

To find the value of the function at the local minimum, we substitute x = 12/13 into the original function:

f(12/13) = -2(12/13)² + 27(12/13)² - 48(12/13) + 8

Evaluating the expression, we can find the value of the function at the local minimum.

Hence, The function f(x) = – 2x² + 27x² – 48x + 8 has one local minimum and one local maximum. This function has a local minimum at x = 12/13 with value = 52.

To learn more about the exponential function visit:

https://brainly.com/question/30241796

#SPJ4








2 Find an of a line that is an equation of tangent to the curve y = Scos 2x and whose slope is a minimum.

Answers

To find the equation of a line that is tangent to the curve y = Scos(2x) and has a minimum slope, we need to determine the point of tangency and the corresponding slope.

First, let's find the derivative of the curve y = Scos(2x) with respect to x. Taking the derivative, we have dy/dx = -2Ssin(2x).

To find the minimum slope, we need to find the value of x where dy/dx = -2Ssin(2x) is minimized. Since sin(2x) has a maximum value of 1 and a minimum value of -1, the minimum slope occurs when sin(2x) = -1.

Setting -1 equal to sin(2x), we have -1 = sin(2x). Solving this equation, we find that 2x = -π/2 + 2πn, where n is an integer.

Dividing both sides by 2, we get x = -π/4 + πn.

Now, we can find the corresponding y-coordinate by substituting x into the original equation y = Scos(2x). Substituting x = -π/4 + πn into y = Scos(2x), we get y = Scos(-π/2 + 2πn) = Ssin(2πn) = 0.

Therefore, the point of tangency is given by the coordinates (-π/4 + πn, 0).

Now that we have the point of tangency, we can find the slope of the tangent line. The slope is given by the derivative dy/dx evaluated at the point of tangency. Substituting x = -π/4 + πn into dy/dx = -2Ssin(2x), we have the slope of the tangent line as -2Ssin(-π/2 + 2πn) = 2S.

Therefore, the equation of the tangent line is y = 2S(x - (-π/4 + πn)) = 2Sx + πS/2 - πSn.

To find the equation of the tangent line to the curve y = Scos(2x) with a minimum slope, we need to find the point of tangency and the corresponding slope. By taking the derivative of the curve, we find dy/dx = -2Ssin(2x). To minimize the slope, we set sin(2x) equal to -1, which leads to x = -π/4 + πn. Substituting this x-value into the original equation, we find the corresponding y-coordinate as 0. Therefore, the point of tangency is (-π/4 + πn, 0). Evaluating the derivative at this point gives us the slope of the tangent line as 2S. Thus, the equation of the tangent line is y = 2Sx + πS/2 - πSn.

To learn more about tangent line click here : brainly.com/question/31617205

#SPJ11

How do the Factor Theorem and the Remainder Theorem work together to help you to find the zeros of a function? Give an example of how to apply these concepts. List at least two ways that you know if a number is a zero of a polynomial function.

Answers

The Factor Theorem and the Remainder Theorem work together to help find the zeros of a polynomial function.

The Factor Theorem: The Factor Theorem states that if a polynomial function f(x) has a factor (x - a), then f(a) = 0. In other words, if (x - a) is a factor of the polynomial, substituting a into the polynomial will result in a zero.
The Remainder Theorem: The Remainder Theorem states that if a polynomial function f(x) is divided by (x - a), then the remainder of that division is equal to f(a). In other words, if you divide the polynomial by (x - a), the remainder obtained will be the value of f(a).
By using these theorems together, we can find the zeros of a polynomial function. Here's an example:

Example:
Consider the polynomial function f(x) = x^3 - 4x^2 - 7x + 10. We want to find the zeros of this function.

Using the Factor Theorem:
To apply the Factor Theorem, we check if (x - a) is a factor of the polynomial. We can start by trying some values of a.
Let's try a = 1:
f(1) = (1)^3 - 4(1)^2 - 7(1) + 10 = 1 - 4 - 7 + 10 = 0
So, (x - 1) is a factor, and x = 1 is a zero of the function.

Using the Remainder Theorem:
To apply the Remainder Theorem, we can divide the polynomial f(x) by (x - a) and check the remainder. If the remainder is zero, then a is a zero of the function.
Let's try a = -2:
Dividing f(x) by (x - (-2)), we get:
f(x) = x^3 - 4x^2 - 7x + 10
Remainder = f(-2) = (-2)^3 - 4(-2)^2 - 7(-2) + 10 = -8 - 16 + 14 + 10 = 0
So, (x + 2) is a factor, and x = -2 is a zero of the function.

Therefore, the zeros of the function f(x) = x^3 - 4x^2 - 7x + 10 are x = 1 and x = -2.

Ways to determine if a number is a zero of a polynomial function:

1. By applying the Factor Theorem: If substituting the number into the polynomial gives a result of zero, then that number is a zero of the function.
2. By applying the Remainder Theorem: If dividing the polynomial by (x - a) gives a remainder of zero, then a is a zero of the function.

I hope this helps! :)

the csma/cd algorithm does not work in wireless lan because group of answer choices
a. wireless host does not have enough power to work in s duplex mode. b. of the hidden station problem. c. signal fading could prevent a station at one end from hearing a collision at the other end. d. all of the choices are correct.

Answers

The correct option for the csma/cd algorithm does not work in wireless lan because group of answer choices is option d. all of the choices are correct.

The CSMA/CD (Carrier Sense Multiple Access with Collision Detection) algorithm is specifically designed for wired Ethernet networks. In wireless LAN (Local Area Network) environments, this algorithm is not suitable due to multiple reasons, and all of the choices mentioned in the answer options are correct explanations for why CSMA/CD does not work in wireless LANs.

a. Wireless hosts in a LAN typically operate on battery power and may not have enough power to work in a full-duplex mode, which is required for CSMA/CD.

b. The hidden station problem is a significant issue in wireless networks. When multiple wireless stations are present in the network, one station may be unable to sense the transmissions of other stations due to physical obstacles or distance. This can lead to collisions and degradation in network performance, making CSMA/CD ineffective.

c. Signal fading is a common phenomenon in wireless communication, especially over longer distances. Fading can result in variations in signal strength and quality, which can prevent a station at one end of the network from accurately detecting collisions or transmissions from other stations, leading to increased collision rates and decreased efficiency.

Therefore, due to power limitations, the hidden station problem, and signal fading, the CSMA/CD algorithm is not suitable for wireless LANs, making option d, "all of the choices are correct," the correct answer.

To know more about CSMA/CD refer here:

https://brainly.com/question/13260108?#

#SPJ11

The correlation between a respondent's years of education and his or her annual income is r = 0.87 Which of the following statements is true? a. 76% of the variance in annual income can be explained by respondents' years of education. b. 13% of the variance in annual income can be explained by respondents' years of education. c. 87% of the variance in annual income can be explained by respondents' years of education. d. 24% of the variance in annual income can be explained by respondents' years of education.

Answers

Answer:

A) 76% of the variance in annual income can be explained by respondents' years of education.

Step-by-step explanation:

Given our correlation coefficient, r=0.87, we can calculate R²=0.7569, which helps show a proportion of the variance for a dependent variable that's explained by the independent variable.

In this case, 76% of the variance in annual income, our dependent variable, can be explained by respondents' years of education, the independent variable.

answer: 3x/8 - sin(2x)/4 + sin(4x)/32 + C
Hello I need help with the question.
I've included the instructions for this question, so please read
the instructions carefully and do what's asked.
I've als

Answers

 The given expression is 3x/8 - sin(2x)/4 + sin(4x)/32 + C. We are asked to generate the answer and provide a summary and explanation in 150 words, divided into two paragraphs.

The answer to the given expression is a function that involves multiple terms including polynomial and trigonometric functions. It can be represented as 3x/8 - sin(2x)/4 + sin(4x)/32 + C, where C is the constant of integration.Explanation:
The given expression is a combination of polynomial and trigonometric terms. The first term, 3x/8, represents a linear function with a slope of 3/8. The second term, -sin(2x)/4, involves the sine function with an argument of 2x. It introduces oscillatory behavior with a negative amplitude and a frequency of 2. The third term, sin(4x)/32, also involves the sine function but with an argument of 4x. It introduces another oscillatory behavior with a positive amplitude and a frequency of 4.The constaconstantnt of integration, C, represents the arbitrary constant that arises when integrating a function. It accounts for the fact that the derivative of a constant is zero. Adding C allows for the flexibility of different possible solutions to the differential equation or anti-derivative.
In summary, the given expression represents a function that combines linear and trigonometric terms, with each term contributing to the overall behavior of the function. The constant of integration accounts for the arbitrary nature of integration and allows for a family of possible.

Learn more about expression here

https://brainly.com/question/24101038



#Spj11

Other Questions
Attending behavior includes the following nonverbal components EXCEPTA)attentive body languageB)eye contactC)verbal trackingD)vocal qualities Two part question: Which choice best expresses one of the author's main claims in this article?A Too many people think that the way to avoid obesity is to eat less fat.Too many people think that the way to avoid obesity is to eat less fat.B School lunches have created the obesity epidemic.School lunches have created the obesity epidemic.C Obesity is mainly connected to food being overmarketed.Obesity is mainly connected to food being overmarketed.D People should know that portion size adds calories to meals.Part 2: Which two sentences from the passage best support the answer to Question 1?A This will send a clear message to students that healthy eating is a priority for the school and community.This will send a clear message to students that healthy eating is a priority for the school and community.B However there are increasing numbers of food and beverage options at school from which students choose their meals and snacks.However there are increasing numbers of food and beverage options at school from which students choose their meals and snacks.C If we want to reverse the obesity epidemic we must get this point across, perhaps by demanding visible calorie labeling in restaurants and fast food establishments, and other policies that address the environment of food choice.If we want to reverse the obesity epidemic we must get this point across, perhaps by demanding visible calorie labeling in restaurants and fast food establishments, and other policies that address the environment of food choice.D Recently, investigators have pointed out that one result of our overabundant, overmarketed food supply is an increase in the amounts of food sold and consumed at any one time.Recently, investigators have pointed out that one result of our overabundant, overmarketed food supply is an increase in the amounts of food sold and consumed at any one time.E In the public there is a surprising conceptual gap: a virtual absence of intuitive understanding that larger portions contribute more calories. which below is important in trophic niche partition in cichlids?group of answer choicesbody sizemouth shapefin colorfin shapespawning behavoir a firm's real capacity is not limited by members of its supply chain. question 3select one: true false Which of these computes days' sales in receivables? a)Receivables turnover/ 365 b)Accounts receivables/ 365 c)365/ sales d)365/ Receivables turnover Solve each equation. Remember to check for extraneous solutions. 2+x/6x=1/6x the most lucrative activity of public accountants typically is what is the minimum energy needed to change the speed of a 1600-kg sport utility vehicle from 15.0 m/s to 40.0 m/s? Find the interest rate required for an investment of $3000 to grow to $3500 in 6 years if interest is compounded as follows. a.Annually b.Quartery a. Write an equation which relates the investment of $3000,the desired value of $3500,and the time period of 6 years in terms of r. the yearly interest rate written as a decimal),and m,the number of compounding periods per year The required annual interest rate interest is compounded annuatly is % (Round to two decimal places as needed.) b.The required annual interest rate if interest is compounded quarterly is % Round to two decimal places as needed. IMPLEMENTATION #1. In an effort to improve trust in doctors at my local hospital, I start a weekly meet-your-doctors Q&A session. I randomly invite half of the patients at my hospital to attend these weekly sessions. The other half are not invited and are not eligible to attend. They are my control group. I administer a trust-in-doctors measure to all patients at the hospital at the conclusion of the weekly Q&A sessions to compare levels of trust between groups. Because I have access to patient files, I can identify which of the patients at the weekly meetings and which of the patients in my control group had a pre-existing mental illness that was known to the hospital. This allows me to compare the efficacy of these weekly meetings separately for people with and without a diagnosed mental illness. Identify the design type Briefly explain why you think this study is the design you think it is. True experimentPerson by treatment quasi-experimentCross-sectional differentialCross-sectional correlationalCross-sequentialNatural experiment suppose that when an individual's income increases, their total tax paid increases and average tax rate stays the same. this income tax is: 50 A vida, game console manufacturer allow's retailers lo accept dafective units so that they can be repaired and sold as refurbished. Which supply chain integraton strategy is the video game console manufacturer using? Lean supply chain Reverse logistics Backward vertical Integration Competitive bidding with retailers NEXT > BOOKMARK a 1.0 kg ball hits the floor with a velocity of 2.0 m/s and bounces back up with a velocity of 1.5 m/s. what is the balls change in momentum As firms grow, owner managers rarely need to hire functional specialists to handle the increased information-processing burden. Is this statement true or false?A. TrueB. False Determine the type of reaction, predict the product and balance the equation for the following:LiOH + HBr ---> question content area which of the following is required by the sarbanes-oxley act? a.a report on internal control b.a vertical analysis c.a price-earnings ratio d.a common-sized statemen Quality ethnographic writing should include which of the following perspectives?a. emicb. eticc. both emic and eticd. neither emic nor etic: all bias must be removed In a Statement of Retained Earnings, which statement is correct? Multiple Choice O Both cash dividends and stock dividends would be deducted, only for common stock. Statement of Retained Earnings is a rollforward presenting the opening balance for the period, plus net income for the year, minus all dividends. It may be adjusted for prior period errors, if significant. Prior period adjustments are always a deduction from opening Retained Earnings balance. Ending Retained Earnings balance excludes Net Income for the year. Consider the following information about travelers on vacation (based partly on a recent travelocity poll): 40% check work email, 30% use a cell phone to stay connected to work, 25% bring a laptop with them, 23% both check work email and use a cell phone to stay connected, and 51% neither check work email nor use a cell phone to stay connected nor bring a laptop. in addition, 88 out of every 100 who bring a laptop also check work email, and 70 out of every 100 who use a cell phone to stay connected also bring a laptop. What is the probability that someone who brings a laptop on vacation also uses a cell phone? write a recursive program with recursive mathematical function for computing x^\n for a positive n integer. Steam Workshop Downloader