quick answer please
QUESTION 5 a The resolving power of a refracting telescope increases with the diameter of the spherical objective lens. In reality, it is impractical to increase the diameter of the objective lens bey

Answers

Answer 1

The resolving power of a refracting telescope increases with the diameter of the objective lens, but practical limitations such as weight, size, aberrations, and distortions prevent increasing the diameter beyond a certain point.

The resolving power of a refracting telescope increases with the diameter of the spherical objective lens. In reality, it is impractical to increase the diameter of the objective lens beyond a certain limit. The reason for this is that as the diameter of the lens increases, its weight and size also increase, making it difficult to support and manipulate.

Additionally, larger lenses are more prone to aberrations and distortions, which can negatively impact the image quality. Therefore, there are practical limitations on the size of the objective lens, leading to the development of alternative telescope designs such as reflecting telescopes that use mirrors instead of lenses.

These designs allow for larger apertures and improved resolving power without the same practical limitations as refracting telescopes. Alternative telescope designs like reflecting telescopes overcome these limitations and allow for larger apertures and improved resolving power.

Learn more about ”resolving power” here:

brainly.com/question/31991352

#SPJ11


Related Questions

A converging lens is placed at x = 0, a distance d = 9.50 cm to the left of a diverging lens as in the figure below (where FC and FD locate the focal points for the converging and the diverging lens, respectively). An object is located at x = −1.80 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 5.00 cm and −7.80 cm, respectively. HINT An illustration shows a converging lens, a diverging lens, and their respective pairs of focal points oriented such that the x-axis serves as their shared Principal axis. The converging lens is located at x = 0 and the diverging lens is a distance d to the right. A pair of focal points (both labeled FC) are shown on opposite sides of the converging lens while another pair (both labeled FD) are shown on opposite sides of the diverging lens. An arrow labeled O is located between the converging lens and the left-side FC. Between the lenses, the diverging lens's left-side FD is located between the converging lens and its right-side FC. (a) Determine the x-location in cm of the final image. Incorrect: Your answer is incorrect. cm (b) Determine its overall magnification.

Answers

a. The x-location of the final image is approximately 19.99 cm.

b. Overall Magnification_converging is  -v_c/u

a. To determine the x-location of the final image formed by the combination of the converging and diverging lenses, we can use the lens formula:

1/f = 1/v - 1/u

where f is the focal length of the lens, v is the image distance, and u is the object distance.

Let's calculate the image distance formed by the converging lens:

For the converging lens:

f_c = 5.00 cm (positive focal length)

u_c = -1.80 cm (object distance)

Substituting the values into the lens formula for the converging lens:

1/5.00 = 1/v_c - 1/(-1.80)

Simplifying:

1/5.00 = 1/v_c + 1/1.80

Now, let's calculate the image distance formed by the converging lens:

1/v_c + 1/1.80 = 1/5.00

1/v_c = 1/5.00 - 1/1.80

1/v_c = (1.80 - 5.00) / (5.00 * 1.80)

1/v_c = -0.20 / 9.00

1/v_c = -0.0222

v_c = -1 / (-0.0222)

v_c ≈ 45.05 cm

The image formed by the converging lens is located at approximately 45.05 cm to the right of the converging lens.

Now, let's consider the image formed by the diverging lens:

For the diverging lens:

f_d = -7.80 cm (negative focal length)

u_d = d - v_c (object distance)

Given that d = 9.50 cm, we can calculate the object distance for the diverging lens:

u_d = 9.50 cm - 45.05 cm

u_d ≈ -35.55 cm

Substituting the values into the lens formula for the diverging lens:

1/-7.80 = 1/v_d - 1/-35.55

Simplifying:

1/-7.80 = 1/v_d + 1/35.55

Now, let's calculate the image distance formed by the diverging lens:

1/v_d + 1/35.55 = 1/-7.80

1/v_d = 1/-7.80 - 1/35.55

1/v_d = (-35.55 + 7.80) / (-7.80 * 35.55)

1/v_d = -27.75 / (-7.80 * 35.55)

1/v_d ≈ -0.0953

v_d = -1 / (-0.0953)

v_d ≈ 10.49 cm

The image formed by the diverging lens is located at approximately 10.49 cm to the right of the diverging lens.

Finally, to find the x-location of the final image, we add the distances from the diverging lens to the image formed by the diverging lens:

x_final = d + v_d

x_final = 9.50 cm + 10.49 cm

x_final ≈ 19.99 cm

Therefore, the x-location of the final image is approximately 19.99 cm.

b. To determine the overall magnification, we can calculate it as the product of the individual magnifications of the converging and diverging lenses:

Magnification = Magnification_converging * Magnification_diverging

The magnification of a lens is given by:

Magnification = -v/u

For the converging lens:

Magnification_converging = -v_c/u

Learn more about Magnification_converging from the given link

https://brainly.com/question/31740778

#SPJ11

One mole of an ideal gas has a temperature of 58°C. If the volume is held constant and the pressure is doubled, the final temperature (in °C) will be

Answers

The final temperature, when the volume is held constant and the pressure is doubled, will be 58°C.

To determine the final temperature of the gas when the volume is held constant and the pressure is doubled, we can use the relationship known as Charles's Law.

Charles's Law states that, for an ideal gas held at constant pressure, the volume of the gas is directly proportional to its temperature. Mathematically, it can be expressed as:

V₁ / T₁ = V₂ / T₂

Where V₁ and T₁ represent the initial volume and temperature, respectively, and V₂ and T₂ represent the final volume and temperature, respectively.

In this case, the volume is held constant, so V₁ = V₂. Thus, we can simplify the equation to:

T₁ / T₂ = V₁ / V₂

Since the volume is constant, the ratio V₁ / V₂ equals 1. Therefore, we have:

T₁ / T₂ = 1

To find the final temperature, we need to solve for T₂. We can rearrange the equation as follows:

T₂ = T₁ / 1

Since T₁ represents the initial temperature of 58°C, we can substitute the value:

T₂ = 58°C

Thus, the final temperature, when the volume is held constant and the pressure is doubled, will be 58°C.

Visit here to learn more about Charles Law brainly.com/question/14842720
#SPJ11

A mono-atomic classical ideal gas of N atoms is initially at temperature To in a volume Vo. The gas is allowed to expand slowly (quasi- statically) to a final volume 5V, in one of three different ways at a time: Case 1 - at constant temperature; Case 2 - at constant pressure; Case 3 - adiabatically. In parts (a)-(c), answer the following questions, expressing your answers in terms of N, T., V. and ks (Boltzmann's constant). Calculate the work done by the gas; Calculate the amount of energy transferred to (or from the gas by heating, taking care to specify the correct sign according to the sign convention used in lectures; Calculate the final temperature; Sketch the gas expansion in separate P-V and T-S diagrams. (a) for the case of expansion at constant temperature (b) for the case of expansion at constant pressure (c) for the case of adiabatic expansion (d) After completing the adiabatic expansion in (c), the gas undergoes a compression at constant pressure, followed by an increase in temperature at constant volume, which results in the gas returning to its starting point To, Vo. Calculate the efficiency of this cycle.

Answers

(a) Expansion at Constant Temperature: Work Done: Since the expansion is at constant temperature, the internal energy of the gas remains constant. Therefore, the work done by the gas can be calculated using the equation: Work = -PΔV, where ΔV is the change in volume. Since the temperature remains constant,

the pressure can be calculated using the ideal gas law: P = Nk T/V, where N is the number of atoms, k is Boltzmann's constant, and T is the temperature. Energy Transferred: No energy is transferred to or from the gas by heating because the temperature remains constant.

Final Temperature: The final temperature in this case remains the same as the initial temperature (To). P-V Diagram: The P-V diagram for constant temperature expansion would be a horizontal line at the initial pressure, extending from Vo to 5V.

T-S Diagram: The T-S diagram for constant temperature expansion would be a horizontal line at the initial temperature (To), extending from the initial entropy value to the final entropy value.

(b) Expansion at Constant Pressure: Work Done: The work done by the gas during expansion at constant pressure can be calculated using the equation: Work = -PΔV, where ΔV is the change in volume and P is the constant pressure.

Energy Transferred: The energy transferred to or from the gas by heating can be calculated using the equation: ΔQ = ΔU + PΔV, where ΔU is the change in internal energy. Since the temperature is constant, ΔU is zero, and thus, the energy transferred is equal to PΔV.

Final Temperature: The final temperature can be calculated using the ideal gas law: P = Nk T/V, where P is the constant pressure. P-V Diagram: The P-V diagram for constant pressure expansion would be a straight line sloping upwards from Vo to 5V.

T-S Diagram: The T-S diagram for constant pressure expansion would be a diagonal line extending from the initial temperature and entropy values to the final temperature and entropy values.

(c) Adiabatic Expansion: Work Done: The work done by the gas during adiabatic expansion can be calculated using the equation: Work = -ΔU, where ΔU is the change in internal energy.

Energy Transferred: No energy is transferred to or from the gas by heating during adiabatic expansion because it occurs without heat exchange.

Final Temperature: The final temperature can be calculated using the adiabatic process equation: T2 = T1(V1/V2)^(γ-1), where T1 and V1 are the initial temperature and volume, T2 and V2 are the final temperature and volume, and γ is the heat capacity ratio (specific heat at constant pressure divided by the specific heat at constant volume).

P-V Diagram: The P-V diagram for adiabatic expansion would be a curve sloping downwards from Vo to 5V.

T-S Diagram: The T-S diagram for adiabatic expansion would be a curved line extending from the initial temperature and entropy values to the final temperature and entropy values.

(d) Efficiency of the Cycle: The efficiency of the cycle can be calculated using the equation: Efficiency = (Work Output / Heat Input) * 100%. In this case, the work output is the work done during the compression at constant pressure, and the heat input is the energy transferred during the increase in temperature at constant volume.

The work output and heat input can be calculated using the methods described in parts (b) and (a), respectively.

To know more about Expansion at Constant Temperature refer here:

https://brainly.com/question/32009494#

#SPJ11

cylinder from Heat Transfer) 2. Find the overall resistance per metre length for the following: α i ​ =1500 W/m 2 K, α 0 ​ =12X0 W/m 2 K, and α i ​ =1500 W/m 2 K,α 0 ​ =2YoW/m 2 K. Use 2in. standard type M copper tube dimensions, λ copper ​ =399 W/mK. Compare the results.

Answers

The overall resistance per meter length for the given conditions can be calculated as follows:

For the first case (αi = 1500 W/m²K, αo = 120 W/m²K):

Overall resistance, R1 = (1 / αi) + (t / λ) + (1 / αo)

Where t is the thickness of the copper tube.

For the second case (αi = 1500 W/m²K, αo = 20 W/m²K):

Overall resistance, R2 = (1 / αi) + (t / λ) + (1 / αo)

To calculate the overall resistance per meter length, we consider the resistance to heat transfer at the inside surface of the tube, the resistance through the tube wall, and the resistance at the outside surface of the tube.

In both cases, we use the given values of αi (inside surface heat transfer coefficient), αo (outside surface heat transfer coefficient), and λ (thermal conductivity of copper) to calculate the individual resistances. The thickness of the copper tube, denoted as t, is also considered.

The overall resistance is obtained by summing up the individual resistances using the appropriate formula for each case.

By comparing the overall resistance per meter length for the two cases, we can assess the impact of the different values of αo. The comparison will provide insight into how the outside surface heat transfer coefficient affects the overall heat transfer characteristics of the system.

To learn more about resistance ,visit

brainly.com/question/17563681

#SPJ11

A uniform solid disk of radius R=1.60 m starts from rest at the top of a 30.0° inclined plane and
rolls without slipping. The angular velocity of the disk at the bottom of the incline is 5.35 rad/s. Find the acceleration of the center of mass down the incline. Start by drawing the free body diagram
and Newton's second law for the translational and for the rotational motion.

Answers

The acceleration of the center of mass down the incline is 3.05 m/s². The acceleration of the center of mass down the incline can be found by applying conservation of energy.

Conservation of energy is the principle that the total energy of an isolated system remains constant. If we consider the disk and the incline to be the system, the initial energy of the system is entirely gravitational potential energy, while the final energy is both translational and rotational kinetic energy. Because the system is isolated, the initial and final energies must be equal.

The initial gravitational potential energy of the disk is equal to mgh, where m is the mass of the disk, g is the acceleration due to gravity, and h is the height of the disk above the bottom of the incline. Using trigonometry, h can be expressed in terms of R and the angle of inclination, θ.

Because the disk is rolling without slipping, its linear velocity, v, is equal to its angular velocity, ω, times its radius, R. The kinetic energy of the disk is the sum of its translational and rotational kinetic energies, which are given by

1/2mv² and 1/2Iω², respectively,

where I is the moment of inertia of the disk.

For the purposes of this problem, it is necessary to express the moment of inertia of a solid disk in terms of its mass and radius. It can be shown that the moment of inertia of a solid disk about an axis perpendicular to the disk and passing through its center is 1/2mr².

Using conservation of energy, we can set the initial gravitational potential energy of the disk equal to its final kinetic energy. Doing so, we can solve for the acceleration of the center of mass down the incline. The acceleration of the center of mass down the incline is as follows:

a = gsinθ / [1 + (1/2) (R/g) (ω/R)²]

Where:g = acceleration due to gravity

θ = angle of inclination

R = radius of the disk

ω = angular velocity of the disk at the bottom of the incline.

The above equation can be computed to obtain a = 3.05 m/s².

Learn more about center of mass here:

https://brainly.com/question/27549055

#SPJ11

A
toy car zips through a loop-the-loop track. the car has an initial
velocity of 4 m/s. Find the maximum radius of the loop that the car
can successfully drive through without falling.

Answers

The maximum radius of the loop that the toy car can successfully drive through without falling is 1.63 meters

To find the maximum radius of the loop that the toy car can successfully drive through without falling, we need to consider the conditions for circular motion at the top of the loop.

At the top of the loop, the car experiences a centripetal force provided by the normal force exerted by the track. The gravitational force and the normal force together form a net force pointing towards the center of the circle.

To prevent the car from falling, the net force must be equal to or greater than the centripetal force required for circular motion. The centripetal force is given by:

Fc = mv² / r

where m is the mass of the car, v is the velocity, and r is the radius of the loop.

At the top of the loop, the net force is given by:

Fn - mg = Fc

where Fn is the normal force and mg is the gravitational force.

Since the car is just able to maintain contact with the track at the top of the loop, the normal force is zero:

0 - mg = mv² / r

Solving for the maximum radius r, we get:

r = v² / g

Plugging in the values v = 4 m/s and g = 9.8 m/s², we can calculate:

r = (4 m/s)² / (9.8 m/s²) ≈ 1.63 m

Therefore, the maximum radius of the loop that the toy car can successfully drive through without falling is approximately 1.63 meters.

Learn more about centripetal force from the given link

https://brainly.com/question/20905151

#SPJ11

How much is the focal length of the plano-concave lens with the curved surface having the magnitude of the radius of curvature 1.00 m, and made of crown glass (n=1.52) ? Is the lens positive or negative? How much is the optical power of the lens? If an object is placed at the distance 1.00 m in front of this lens, then how far from the lens is the image of the object? Is the image behind the lens or in front of it? Is the image real or virtual? Is the image upright or inverted? How tall is the image if the object is 50.0 cm tall?

Answers

The focal length of the plano-concave lens is approximately 1.92 m. The lens is positive. The optical power of the lens is approximately 0.521 D. If an object is placed 1.00 m in front of the lens, the image is formed approximately 1.92 m away from the lens. The image is behind the lens, virtual, upright, and inverted. If the object is 50.0 cm tall, the image height is approximately -96.0 cm.

The plano-concave lens has a curved surface with a radius of curvature of magnitude 1.00 m and is made of crown glass with a refractive index of 1.52. The focal length of the lens can be determined using the lensmaker's formula, which is given by:

1/f = (n - 1) * ((1 / R1) - (1 / R2))

where f is the focal length, n is the refractive index, R1 is the radius of curvature of the first surface (in this case, infinity for a plano surface), and R2 is the radius of curvature of the second surface (in this case, -1.00 m for a concave surface).

Substituting the values into the formula:

1/f = (1.52 - 1) * ((1 / ∞) - (1 / -1.00))

Simplifying the equation, we get:

1/f = 0.52 * (0 + 1/1.00)

1/f = 0.52 * 1.00

1/f = 0.52

Therefore, the focal length of the plano-concave lens is approximately f = 1.92 m.

Since the focal length is positive, the lens is a positive lens.

The optical power (P) of a lens is given by the equation:

P = 1/f

Substituting the value of f, we get:

P = 1/1.92

P ≈ 0.521 D (diopters)

If an object is placed at a distance of 1.00 m in front of the lens, we can use the lens formula to determine the distance of the image from the lens. The lens formula is given by:

1/f = (1/v) - (1/u)

where v is the distance of the image from the lens and u is the distance of the object from the lens.

Substituting the values into the formula:

1/1.92 = (1/v) - (1/1.00)

Simplifying the equation, we get:

1/1.92 = (1/v) - 1

1/v = 1/1.92 + 1

1/v = 0.5208

v ≈ 1.92 m

Therefore, the image of the object is located approximately 1.92 m away from the lens.

Since the image is formed on the same side as the object, it is behind the lens.

The image formed by a concave lens is virtual and upright.

The magnification (m) of the image can be determined using the formula:

m = -v/u

Substituting the values into the formula:

m = -1.92/1.00

m = -1.92

The negative sign indicates that the image is inverted.

If the object has a height of 50.0 cm, the height of the image can be determined using the magnification formula:

magnification (m) = height of image (h') / height of object (h)

Substituting the values into the formula:

-1.92 = h' / 50.0 cm

h' = -96.0 cm

Therefore, the height of the image is approximately -96.0 cm, indicating that the image is inverted and 96.0 cm tall.

To know more about lens formula, refer here:

https://brainly.com/question/30241853#

#SPJ11

Inside a 138 mm x 346 mm rectangular duct, air at 17 N/s, 20 deg
C, and 112 kPa flows. Solve for the volume flux if R = 28.5 m/K.
Express your answer in 3 decimal places.

Answers

The volume flux inside the rectangular duct is 0.028 m³/s.

Volume flux, also known as volumetric flow rate, is a measure of the volume of fluid passing through a given area per unit time. It is commonly expressed in cubic meters per second (m³/s). To calculate the volume flux in the given scenario, we can use the formula:

Volume Flux = (Air flow rate) / (Cross-sectional area)

First, we need to calculate the cross-sectional area of the rectangular duct. The area can be determined by multiplying the length and width of the duct:

Area = (138 mm) * (346 mm)

To maintain consistent units, we convert the dimensions to meters:

Area = (138 mm * 10⁻³ m/mm) * (346 mm * 10⁻³ m/mm)

Next, we can calculate the air flow rate using the given information. The air flow rate is given as 17 N/s, which represents the mass flow rate. We can convert the mass flow rate to volume flow rate using the ideal gas law:

Volume Flow Rate = (Mass Flow Rate) / (Density)

The density of air can be determined using the ideal gas law:

Density = (Pressure) / (Gas constant * Temperature)

where the gas constant (R) is given as 28.5 m/K, the pressure is 112 kPa, and the temperature is 20 degrees Celsius.

With the density calculated, we can now determine the volume flow rate. Finally, we can divide the volume flow rate by the cross-sectional area to obtain the volume flux.

Learn more about volume

brainly.com/question/14568432

#SPJ11

Review. A window washer pulls a rubber squeegee down a very tall vertical window. The squeegee has mass 160 g and is mounted on the end of a light rod. The coefficient of kinetic friction between the squeegee and the dry glass is 0.900. The window washer presses it against the window with a force having a horizontal component of 4.00N .(a) If she pulls the squeegee down the window at constant velocity, what vertical force component must she exert?

Answers

The squeegee's acceleration in this situation is 3.05 m/s^2.

To find the squeegee's acceleration in this situation, we need to consider the forces acting on it.

First, let's calculate the normal force (N) exerted by the window on the squeegee. Since the squeegee is pressed against the window, the normal force is equal to its weight.

The mass of the squeegee is given as 160 g, which is equivalent to 0.16 kg. Therefore, N = mg = 0.16 kg * 9.8 m/s^2 = 1.568 N.

Next, let's determine the force of friction (F_friction) opposing the squeegee's motion.

The coefficient of kinetic friction (μ) is provided as 0.900. The force of friction can be calculated as F_friction = μN = 0.900 * 1.568 N = 1.4112 N.

The horizontal component of the force applied by the window washer is given as 4.00 N. Since the squeegee is pulled down the window, this horizontal force doesn't affect the squeegee's vertical motion.

The net force (F_net) acting on the squeegee in the vertical direction is the difference between the downward force component (F_downward) and the force of friction. F_downward is increased by 25%, so F_downward = 1.25 * N = 1.25 * 1.568 N = 1.96 N.

Now, we can calculate the squeegee's acceleration (a) using Newton's second law, F_net = ma, where m is the mass of the squeegee. Rearranging the equation, a = F_net / m. Plugging in the values, a = (1.96 N - 1.4112 N) / 0.16 kg = 3.05 m/s^2.

Therefore, the squeegee's acceleration in this situation is 3.05 m/s^2.

Note: It's important to double-check the given values, units, and calculations for accuracy.

to learn more about acceleration

https://brainly.com/question/2303856

#SPJ11

Enter only the last answer c) into moodle.
A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v
a) Find a simplified algebraic expression using symbols only for the tolal kinetic energy Kior of the ball in terms of M and R
b) IfM = 7.5 kg. R = 10,8 cm and v = 4.5 m/s find the moment of inertia of the bail.
c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy

Answers

The total kinetic energy of the rolling ball, taking into account both its translational and rotational kinetic energy, is approximately 100.356 Joules. This is calculated by considering the mass, linear speed, radius, moment of inertia, and angular velocity of the ball.

a) The total kinetic energy of the rolling ball can be expressed as the sum of its translational kinetic energy and rotational kinetic energy.

The translational kinetic energy (Kt) is given by the formula: Kt = 0.5 * M * v^2, where M is the mass of the ball and v is its linear speed.

The rotational kinetic energy (Kr) is given by the formula: Kr = 0.5 * I * ω^2, where I is the moment of inertia of the ball and ω is its angular velocity.

Since the ball is rolling without slipping, the linear speed v is related to the angular velocity ω by the equation: v = R * ω, where R is the radius of the ball.

Therefore, the total kinetic energy (Kior) of the ball can be expressed as: Kior = Kt + Kr = 0.5 * M * v^2 + 0.5 * I * (v/R)^2.

b) To find the moment of inertia (I) of the ball, we can rearrange the equation for ω in terms of v and R: ω = v / R.

Substituting the values, we have: ω = 4.5 m/s / 0.108 m = 41.67 rad/s.

The moment of inertia (I) can be calculated using the equation: I = (2/5) * M * R^2.

Substituting the values, we have: I = (2/5) * 7.5 kg * (0.108 m)^2 = 0.08712 kg·m².

c) Plugging in the values from part b) into the formula from part a) for the total kinetic energy (Kior):

Kior = 0.5 * M * v^2 + 0.5 * I * (v/R)^2

     = 0.5 * 7.5 kg * (4.5 m/s)^2 + 0.5 * 0.08712 kg·m² * (4.5 m/s / 0.108 m)^2

     = 91.125 J + 9.231 J

     = 100.356 J.

Therefore, the total kinetic energy of the ball, with the given values, is approximately 100.356 Joules.

learn more about "inertia":- https://brainly.com/question/1140505

#SPJ11

L.LV, LO JUILLUNUB. Question Completion Status: Find the de Broglie wavelength of a particle with mass of 4x10-27 kg and velocity of 5x107m's. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIU Paragraph Arial 10pt 5 A 2 < T. ... P O WORDS POWERED BY TINY Save Ar QUESTION 20 8 points Find the wave length of light with frequency of 2-1018 Hz. What is the traveling speed for this light to travel in a medium with the index of retraction to be equal to 5.02 For the toolbar, press ALT:F10(PC) or ALT+FN+F10 (Mac). Paramah Arial 10pt !! ii A T

Answers

The de Broglie wavelength of a particle with a mass of 4x10⁻²⁷ kg and velocity of 5x10⁷ m/s is approximately 1.32x10⁻⁹ meters.

To find the de Broglie wavelength, we can use the de Broglie equation:

λ = h / p

where λ is the wavelength, h is the Planck's constant (approximately 6.63x10⁻³⁴ J·s), and p is the momentum of the particle.

First, we need to calculate the momentum of the particle:

p = m * v

where m is the mass and v is the velocity.

p = (4x10⁻²⁷ kg) * (5x10⁷ m/s) = 2x10⁻¹⁹ kg·m/s

Now, we can substitute the values into the de Broglie equation:

λ = (6.63x10⁻³⁴ J·s) / (2x10⁻¹⁹ kg·m/s)

λ ≈ 1.32x10⁻⁹ meters

Therefore, the de Broglie wavelength of the particle is approximately 1.32x10⁻⁹ meters.

For the second part of the question, to find the wavelength of light with a frequency of 2x10¹⁸ Hz, we can use the equation:

c = λ * ν

where c is the speed of light and ν is the frequency.

We know the frequency is 2x10¹⁸ Hz. The speed of light in a vacuum is approximately 3x10⁸ m/s. We can rearrange the equation to solve for the wavelength:

λ = c / ν

λ = (3x10⁸ m/s) / (2x10¹⁸ Hz)

λ ≈ 1.5x10⁻¹⁰ meters

Therefore, the wavelength of light with a frequency of 2x10¹⁸ Hz is approximately 1.5x10⁻¹⁰ meters.

Finally, to calculate the traveling speed of light in a medium with an index of refraction of 5.02, we use the equation:

v = c / n

where v is the traveling speed, c is the speed of light in vacuum, and n is the index of refraction.

v = (3x10⁸ m/s) / 5.02

v ≈ 5.97x10⁷ m/s

Therefore, the traveling speed of light in a medium with an index of refraction of 5.02 is approximately 5.97x10⁷ m/s.

To know more about de Broglie wavelength refer here:

https://brainly.com/question/30404168#

#SPJ11

A long staight wire carried by a current of 2.9 A is placed in a magnetic field and the magnitude of magnetic force is 0.019 N. The magnetic field and the length of the wine are remained unchanged. The magnetic force acting on the wire changes to 0.020 N while the current is changed to a different value. What is the value of this changed current? (Give your answer in ampe but don't include the units)

Answers

The changed current in the wire is approximately 2.76 Amperes.

According to the given information, the initial current in the wire is 2.9 Amperes, and the magnetic force acting on it is 0.019 N. The magnetic force on a current-carrying wire is given by the formula F = BIL, where F is the force, B is the magnetic field strength, I is the current, and L is the length of the wire.

Since the magnetic field and length of the wire remain unchanged, we can write the equation as F = BIL.To find the changed current, we can set up a ratio between the initial force and the changed force.

The ratio of the initial force to the changed force is given by (F₁/F₂) = (I₁/I₂), where F₁ and F₂ are the initial and changed forces, and I₁ and I₂ are the initial and changed currents, respectively.

Plugging in the values, we have (0.019 N/0.020 N) = (2.9 A/I₂). Solving for I₂, we find I₂ ≈ 2.76 Amperes. Therefore, the value of the changed current is approximately 2.76 Amperes.

Learn more about magnetic force here ;

https://brainly.com/question/10353944

#SPJ11

A long straight wire carries a current of 50 A in the positive y-direction. An electron, traveling at Ix10^7m/s, is 5.0 cm from the wire. What is the magnitude and direction of the magnetic force on the electron if the electron velocity
is directed (a) toward the wire, (b) parallel to the wire in the direction of the current, and (c) perpendicular to the two directions defined by (a) and (b)?

Answers

Magnetic force on electron due to a long straight wire carrying current: The magnitude of the magnetic force (F) experienced by the electron is given by the formula F = (μ/4π) x (i1 x i2) / r where,

The direction of magnetic field is given by right-hand rule, which states that if you wrap your fingers around the wire in the direction of the current, the thumb will point in the direction of the magnetic field.(a) When electron is traveling towards the wire: If the electron is traveling towards the wire, its velocity is perpendicular to the direction of current.

Hence the angle between velocity and current is 90°. Force experienced by the electron due to wire is given by: F = (μ/4π) x (i1 x i2) / r = (4πx10^-7 T m A^-1) x (50A x 1.6x10^-19 A) / (0.05m) = 2.56x10^-14 NAs force is given by the cross product of magnetic field and velocity of the electron.

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

A diver on a diving board is undergoing simple harmonic motion. Her mass is 57.0 kg and the period of her motion is 0.900s. The next diver is a male whese period of simple harmonic oscillation is 1.15 5. What is his mass (in kg) the mass of the board is negligible?

Answers

The mass of the male diver is approximately 73.12 kg.

The period of simple harmonic motion is given by the formula:

T = 2π√(m/k),

where T is the period, m is the mass, and k is the spring constant.

In this case, the mass of the board is negligible, so we can assume that the period is only dependent on the diver's mass.

Let's assume the spring constant remains constant for both divers. Therefore, we can set up the following equation

T_female = 2π√(m_female/k) (equation 1)

T_male = 2π√(m_male/k) (equation 2)

Given:

T_female = 0.900 s

T_male = 1.155 s

Dividing equation 1 by equation 2, we get:

T_female / T_male = √(m_female/m_male)

Squaring both sides of the equation, we have:

(T_female / T_male)^2 = m_female / m_male

Rearranging the equation, we find:

m_male = m_female * (T_male / T_female)^2

Substituting the given values, we have:

m_male = 57.0 kg * (1.155 s / 0.900 s)^2

m_male ≈ 57.0 kg * 1.2816

m_male ≈ 73.12 kg

Therefore, the mass of the male diver is approximately 73.12 kg.

Learn more about mass from the given link

https://brainly.com/question/86444

#SPJ11

Concave Converging Ray Diagrams 1. An object is located 14 cm in front of a concave mirror. If the focal length is 3 cm, locate the object and draw the ray diagram for the resulting image. Object Type (Real or Virtual): Orientation (Upright or Inverted): Location (front or behind): Size (same, larger, smaller): 2. An object is located 8 cm in front of a concave mirror. If the focal length is 6 cm, locate the object and draw the ray diagram for the resulting image. C Object Type (Real or Virtual): Orientation (Upright or Inverted): Location (front or behind): Size (same, larger, smaller):

Answers

The red lines represent the incident rays, while the blue lines represent the refracted rays. The object is located between F and C, and the resulting image is real, inverted, and located beyond C.

1. The image of an object that is located 14 cm in front of a concave mirror with a focal length of 3 cm is a virtual image.Object type: Virtual Orientation: Upright Location: Behind the mirror Size: Larger Draw the ray diagram for the resulting image: 2. The image of an object that is located 8 cm in front of a concave mirror with a focal length of 6 cm is a real image.Object type: Real Orientation: Inverted Location: In front of the mirrorSize: Smaller Draw the ray diagram for the resulting image: In the above ray diagram, F is the focus, C is the center of the curvature, and P is the pole of the mirror. The red lines represent the incident rays, while the blue lines represent the refracted rays. The object is located between F and C, and the resulting image is real, inverted, and located beyond C.

To know more about incident rays visit:

https://brainly.com/question/28391968

#SPJ11

A simple pendulum consists of a ball connected to one end of a thin brass wire. The period of the pendulum is 1.04 s. The temperature rises by 134 C, and the length of the wire increases. Determine the change in the period of the heated pendulum

Answers

The change in period of the heated pendulum is 0.016 s.

From the given information, the initial period of the pendulum T₀ = 1.04s

Let, ΔT be the change in period of the heated pendulum. We know that the time period of the pendulum depends upon its length, L and acceleration due to gravity, g.

Time period, T ∝√(L/g)On heating the pendulum, the length of the pendulum wire increases, say ΔL.

Then, the new length of the wire,

L₁ = L₀ + ΔL Where L₀ is the initial length of the wire.

Given that, the temperature increases by 13°C.

Let α be the coefficient of linear expansion for brass. Then, the increase in length of the wire is given by,

ΔL = L₀ α ΔT Where ΔT is the rise in temperature.

Substituting the values in the above equation, we have

ΔT = (ΔL) / (L₀ α)

ΔT = [(L₀ + ΔL) - L₀] / (L₀ α)

ΔT = ΔL / (L₀ α)

ΔT = (α ΔT ΔL) / (L₀ α)

ΔT = (ΔL / L₀) ΔT

ΔT = (1.04s / L₀) ΔT

On substituting the values, we get

1.04s / L₀ = (ΔL / L₀) ΔT

ΔT = (1.04s / ΔL) × (ΔL / L₀)

ΔT = 1.04s / L₀

ΔT = 1.04s × 3.4 × 10⁻⁵ / 0.22

ΔT = 0.016s

Hence, the change in period of the heated pendulum is 0.016 s.

Note: The time period of a pendulum is given by the relation, T = 2π √(L/g)Where T is the time period of the pendulum, L is the length of the pendulum and g is the acceleration due to gravity.

Learn more about simple pendulum https://brainly.com/question/26449711

#SPJ11

What is the y component of vector ? Cy-3 Suppose C - A4 B where vector Ä nas components A = 5, A, 2 and vector i nas components B, 3B, 5 Previous Answers Correct Important: If you use this answer in later parts, use the full unrounded value in your calculations Y Part C What is the magnitude of vector VAXD OBI? Submit Request Answer Part What is the deection of vector ca Express your answer in degrees VOAS ?

Answers

The y-component of a vector is denoted as the second element of the vector when using the standard Cartesian coordinate system. The y-component of vector C is A + 12B.

To find the y-component of vector C, we look at the given information: C = A + 4B, where vector A has components A = (5, A, 2) and vector B has components B = (B, 3B, 5).

To find the y-component of C, we focus on the y-component of each vector and add them together: C_y = A_y + 4B_y

Since A = (5, A, 2), A_y = A.

Similarly, B = (B, 3B, 5), so B_y = 3B.

Substituting these values into the equation, we have:

C_y = A + 4(3B)

C_y = A + 12B

Therefore, the y-component of vector C is A + 12B.

To find the magnitude of vector VAXB, we need to calculate the cross product of vectors A and B. The cross product of two vectors is a vector perpendicular to both vectors, and its magnitude represents the area of the parallelogram formed by the two vectors.

The magnitude of the cross product can be calculated using the formula:

|VAXB| = |A| * |B| * sin(theta)

Where |A| and |B| are the magnitudes of vectors A and B, and theta is the angle between them.

Since the magnitudes of vectors A and B are not provided, we cannot calculate the magnitude of vector VAXB without this information.

To find the deflection of vector CA, we need to determine the angle between vectors C and A.

Using the dot product of vectors C and A, we can find the angle theta between them:

C · A = |C| * |A| * cos(theta)

The dot product can also be calculated as:

C · A = C_x * A_x + C_y * A_y + C_z * A_z

Since only the y-components of vectors C and A are given, we can focus on those:

C_y * A_y = |C| * |A| * cos(theta)

Substituting the given values:

(C - 3) * 5 = |C| * |A| * cos(theta)

To learn more about, Cartesian coordinate system, click here, https://brainly.com/question/10757890

#SPJ11

Choose all expressions which correctly relate different quantities involved in wave propagation. v stands for wave speed; f stands for wave frequency; λ stands for wavelength; and I stands for wave period. Hint OT=\/v Oλ = vT Of=v/X JT = λυ Oλ = v/T Ov=f/λ Of = vλ Ov=XT v = fx ✔v=X/T V=

Answers

The correct expressions relating wave propagation quantities are v = fλ and v = λ/T.

- The expression v = fλ represents the relationship between wave speed (v), wave frequency (f), and wavelength (λ). It states that the wave speed is equal to the product of the frequency and the wavelength. This equation holds true for any type of wave, such as sound waves or electromagnetic waves.

- The expression v = λ/T relates wave speed (v), wavelength (λ), and wave period (T). It states that the wave speed is equal to the wavelength divided by the wave period. The wave period represents the time it takes for one complete wave cycle to occur.

- The expressions OT = √(vT) and Oλ = v/T are incorrect. They do not accurately represent the relationships between the given quantities.

- The expression Of = v/X is also incorrect. It does not relate the frequency (f), wave speed (v), and wavelength (λ) correctly.

- The expression JT = λυ is incorrect as well. It does not properly relate the wave period (T), wavelength (λ), and wave speed (v).

- The expression Ov = fλ is incorrect. It swaps the positions of wave speed (v) and frequency (f) in the equation.

- The expression Of = vλ is also incorrect. It incorrectly relates frequency (f), wave speed (v), and wavelength (λ).

- The expression Ov = XT is incorrect. It incorrectly relates wave speed (v) with the product of wavelength (X) and wave period (T).

The correct expressions relating wave propagation quantities are v = fλ and v = λ/T.

To know more about wavelength, click here:

brainly.com/question/31143857

#SPJ11

Write a question appropriate for this exam about how much more heat radiates away from a metal teapot that contains boiling water compared to one that contains water at X degrees Celsius. Then answer the question

Answers

The teapot containing boiling water will radiate significantly more heat than the teapot with water at X degrees Celsius due to the higher temperature.

Question:

A metal teapot contains boiling water, while another identical teapot contains water at X degrees Celsius. How much more heat radiates away from the teapot with boiling water compared to the one with water at X degrees Celsius?

Answer:

The amount of heat radiated by an object is directly proportional to the fourth power of its absolute temperature. Since boiling water is at a higher temperature than water at X degrees Celsius, the teapot containing boiling water will radiate significantly more heat compared to the teapot with water at X degrees Celsius.

Learn more about temperature:

https://brainly.com/question/27944554

#SPJ4

The red-shift of a galaxy observed by us corresponds to a speed of 50000 km/s. How far is the galaxy from us approximately?

Answers

The redshift of a galaxy observed by us corresponds to a speed of 50000 km/s. How far is the galaxy from us approximately?

The distance between the galaxy and us can be determined using the Hubble law.

This law states that the recessional speed (v) of a galaxy is proportional to its distance (d) from us. That is,

v = Hd, where H = Hubble constant.

The Hubble constant is currently estimated to be 71 km/s/Mpc (kilometers per second per megaparsec).

Therefore,v = 71d (in km/s)

Rearranging the above equation,

d = v / 71

For the given speed,v = 50000 km/s.

Therefore,d = 50000 / 71 = 704.2 Mpc.

Therefore, the galaxy is approximately 704.2 megaparsecs away from us.

#SPJ11

Learn more about galaxy and speed https://brainly.com/question/26114128

Problem no 2: Fire gun projects 80 bullets per second. Each bullet of weight 0,4 kg leaves the fire- arm barrel with velocity of 1000 m/s. What is the force of the weapon recoil ? Compute the acceleration experienced by soldier, whose weight is equal 100 kg.

Answers

The force of the weapon recoil is 32,000 N and the soldier experiences an acceleration of 320 m/s².

To find the force of the weapon recoil, we can use Newton's third law of motion, which states that for every action, there is an equal and opposite reaction. In this case, the action is the bullets being fired, and the reaction is the weapon recoil.

Momentum = mass × velocity = 0.4 kg × 1000 m/s = 400 kg·m/s

Since the gun fires 80 bullets per second, the total momentum of the bullets fired per second is:

Total momentum = 80 bullets/second × 400 kg·m/s = 32,000 kg·m/s

According to Newton's third law, the weapon recoil will have an equal and opposite momentum. Therefore, the force of the weapon recoil can be calculated by dividing the change in momentum by the time it takes:

Force = Change in momentum / Time

Assuming the time for each bullet to leave the barrel is negligible, we can use the formula:

Force = Total momentum / Time

Since the time for 80 bullets to be fired is 1 second, the force of the weapon recoil is:

Force = 32,000 kg·m/s / 1 s
F = 32,000 N

Now, to compute the acceleration experienced by the soldier, we can use Newton's second law of motion, which states that the force acting on an object is equal to its mass multiplied by its acceleration:

Force = mass × acceleration

Acceleration = Force / mass

Acceleration = 32,000 N / 100 kg = 320 m/s²

Therefore, the acceleration experienced by the soldier due to the weapon recoil is 320 m/s².

To learn more about Newton's third law: https://brainly.com/question/29768600

#SPJ11

Learning Goal: What is the LONGEST EMITTED wavelength? The Hydrogen Spectrum Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point. Electrons in hydrogen atoms are in the n=4 state (orbit). They can jump up to higher orbits or down to lower orbits. The numerical value of the Rydberg constant (determined from measurements of wavelengths) is R=1.097×107 m−1 Planck's constant is h=6.626×10−34 J⋅s, the speed of light in a vacuum is c=3×108 m/s. - Part B What is the energy of the Emitted photon with the LONGEST wavelength? The photon energy should always be reported as positive. Express your answer in eV,1eV=1.6∧10−19 J. Keep 4 digits after the decimal point. What is the energy of the Emitted photon with the LONGEST wavelength? The photon energy should always be reported as positive. Express your answer in eV,1eV=1.6∗10−19 J. Keep 4 digits after the decimal point. Part C What is the SHORTEST ABSORBED wavelength? Express your answer in nanometers (nm),1 nm=10−9 m. Keep 1 digit after the decimal point.

Answers

PART A: The longest wavelength emitted by hydrogen in the n=4 state is 364.6 nm.

PART B: The energy of the photon with the longest wavelength is 1.710 eV.

PART C: The shortest absorbed wavelength is 91.2 nm.

Explanation:

PART A:

To determine the longest wavelength emitted by hydrogen in the n=4 state, we need to use the formula given by the Rydberg equation:

                 1/λ=R(1/4−1/n²),

where R is the Rydberg constant (1.097×107 m−1)

           n is the principal quantum number of the initial state (n=4).

Since we are interested in the longest wavelength, we need to find the value of λ for which 1/λ is minimized.

The minimum value of 1/λ occurs when n=∞, which corresponds to the Lyman limit.

Thus, we can substitute n=∞ into the Rydberg equation and solve for λ:

                    1/λ=R(1/4−1/∞²)

                         =R/4

                      λ=4/R

                       =364.6 nm

Therefore, the longest wavelength emitted by hydrogen in the n=4 state is 364.6 nm.

Part B:

The energy of a photon can be calculated from its wavelength using the formula:

           E=hc/λ,

where h is Planck's constant (6.626×10−34 J⋅s)

          c is the speed of light (3×108 m/s).

To determine the energy of the photon with the longest wavelength, we can substitute the value of λ=364.6 nm into the formula:

             E=hc/λ

               =(6.626×10−34 J⋅s)(3×108 m/s)/(364.6 nm)(1 m/1×10⁹ nm)

              =1.710 eV

Therefore, the energy of the photon with the longest wavelength is 1.710 eV.

Part C:

The shortest absorbed wavelength can be found by considering transitions from the ground state (n=1) to the n=∞ state.

The energy required for such a transition is equal to the energy difference between the two states, which can be calculated from the formula:

                ΔE=E∞−E1

                    =hcR(1/1²−1/∞²)

                    =hcR

                    =2.18×10−18 J

Substituting this value into the formula for the energy of a photon, we get:

              E=hc/λ

                =2.18×10−18 J

                =(6.626×10−34 J⋅s)(3×108 m/s)/(λ)(1 m/1×10^9 nm)

              λ=91.2 nm

Therefore, the shortest absorbed wavelength is 91.2 nm.

To know more about Rydberg equation, visit:

https://brainly.com/question/32679031

#SPJ11

The shortest absorbed wavelength in the hydrogen spectrum is approximately 120.9 nm.

To determine the longest emitted wavelength in the hydrogen spectrum, we can use the Rydberg formula:

1/λ = R * (1/n_f^2 - 1/n_i^2)

Where:

λ is the wavelength of the emitted photon

R is the Rydberg constant

n_f and n_i are the final and initial quantum numbers, respectively

Given:

Rydberg constant, R = 1.097 × 10^7 m^(-1)

Initial quantum number, n_i = 4

Final quantum number, n_f is not specified, so we need to find the value that corresponds to the longest wavelength.

To find the longest emitted wavelength, we need to determine the value of n_f that yields the largest value of 1/λ. This occurs when n_f approaches infinity.

Taking the limit as n_f approaches infinity, we have:

1/λ = R * (1/∞^2 - 1/4^2)

1/λ = R * (0 - 1/16)

1/λ = -R/16

Now, we can solve for λ:

λ = -16/R

Substituting the value of R, we get:

λ = -16/(1.097 × 10^7)

Calculating this, we find:

λ ≈ -1.459 × 10^(-8) m

To express the wavelength in nanometers, we convert meters to nanometers:

λ ≈ -1.459 × 10^(-8) × 10^9 nm

λ ≈ -1.459 × 10 nm

λ ≈ -14.6 nm (rounded to 1 decimal place)

Therefore, the longest emitted wavelength in the hydrogen spectrum is approximately -14.6 nm.

Moving on to Part B, we need to determine the energy of the emitted photon with the longest wavelength. The energy of a photon can be calculated using the equation:

E = hc/λ

Where:

E is the energy of the photon

h is Planck's constant

c is the speed of light in a vacuum

λ is the wavelength

Given:

Planck's constant, h = 6.626 × 10^(-34) J·s

Speed of light in a vacuum, c = 3 × 10^8 m/s

Wavelength, λ = -14.6 nm

Converting the wavelength to meters:

λ = -14.6 × 10^(-9) m

Substituting the values into the equation, we have:

E = (6.626 × 10^(-34) J·s * 3 × 10^8 m/s) / (-14.6 × 10^(-9) m)

Calculating this, we find:

E ≈ -1.357 × 10^(-16) J

To express the energy in electron volts (eV), we can convert from joules to eV using the conversion factor:

1 eV = 1.6 × 10^(-19) J

Converting the energy, we get:

E ≈ (-1.357 × 10^(-16) J) / (1.6 × 10^(-19) J/eV)

Calculating this, we find:

E ≈ -8.4825 × 10^2 eV

Since the energy of a photon should always be positive, the absolute value of the calculated energy is:

E ≈ 8.4825 × 10^2 eV (rounded to 4 decimal places)

Therefore, the energy of the emitted photon with the longest wavelength is approximately 8.4825 × 10^2 eV.

Moving on to

Part C, we need to determine the shortest absorbed wavelength. For hydrogen, the shortest absorbed wavelength occurs when the electron transitions from the first excited state (n_i = 2) to the ground state (n_f = 1). Using the same Rydberg formula, we can calculate the wavelength:

1/λ = R * (1/1^2 - 1/2^2)

1/λ = R * (1 - 1/4)

1/λ = 3R/4

Solving for λ:

λ = 4/(3R)

Substituting the value of R, we get:

λ = 4/(3 * 1.097 × 10^7)

Calculating this, we find:

λ ≈ 1.209 × 10^(-7) m

Converting the wavelength to nanometers, we have:

λ ≈ 1.209 × 10^(-7) × 10^9 nm

λ ≈ 1.209 × 10^2 nm

Therefore, the shortest absorbed wavelength in the hydrogen spectrum is approximately 120.9 nm.

To know more about wavelength, visit:

https://brainly.com/question/31143857

#SPJ11

n-interlaced latters
please
Zeeman Effect Q1) from equation 5.6 and 5.7 find that the minimum magnetic field needed for the Zeeman effect to be observed can be calculated from 02) What is the minimum magnetic field needed

Answers

The Zeeman effect is the splitting of atomic energy levels in the presence of an external magnetic field. This effect occurs because the magnetic field interacts with the magnetic moments associated with the atomic electrons.

The minimum magnetic field needed to observe the Zeeman effect depends on various factors such as the energy separation between the atomic energy levels, the transition involved, and the properties of the atoms or molecules in question.

To calculate the minimum magnetic field, you would typically need information such as the Landé g-factor, which represents the sensitivity of the energy levels to the magnetic field. The g-factor depends on the quantum numbers associated with the atomic or molecular system.

Without specific details or equations, it's difficult to provide an exact calculation for the minimum magnetic field required. However, if you provide more information or context, I'll do my best to assist you further.

Learn more about Zeeman effect on:

https://brainly.com/question/13046435

#SPJ4

It is found that monochromatic, coherent light of wavelength 496 nm incident on a pair of slits creates a central maximum with width 7.6 mm. If the screen is 2.4 m away, determine the separation d of the two slits in mm. [The width of the central maximum is defined as the distance between the m=0 dark bands on either side of the m=0 maximum.] 0.1566 margin of error +/- 1%

Answers

The given information is as follows: Central maximum width, w0 = 7.6 mm Distance between the slits and screen, L = 2.4 m Wavelength of the monochromatic light, λ = 496 nm Let the separation between the two slits be d.

Then, the angular position of the first minimum from the central maximum is given by the formula:δθ = λ/d ...........(1)The width of the central maximum is defined as the distance between the m=0 dark bands on either side of the m=0 maximum. Therefore, we know that the distance between the first dark bands on either side of the central maximum is 2w0.

Hence, the angular position of the first minimum from the central maximum is given by:δθ = w0/L ...........(2)Equating equations (1) and (2), we getλ/d = w0/Lor, d = λL/w0 Substituting the given values, we get:d = (496 × 10⁻⁹ m) × (2.4 m)/(7.6 × 10⁻³ m)d = 1.566 mm Hence, the separation between the two slits is 1.566 mm.

To know more about Central visit:

https://brainly.com/question/28332753

#SPJ11

An accelerating voltage of 2.45 x 10³ V is applied to an electron gun, producing a beam of electrons originally traveling horizontally north in vacuum toward the center of a viewing screen 36.6 cm away. (a) What is the magnitude of the deflection on the screen caused by the Earth's gravitational field? (b) What is the direction of the deflection on the screen caused by the Earth's gravitational field? O up O down O east O west (c) What is the magnitude of the deflection on the screen caused by the vertical component of the Earth's magnetic field, taken as 20.0 μT down? mm (d) What is the direction of the deflection on the screen caused by the vertical component of the Earth's magnetic field, taken as 20.0 μT down? O north O south O east O west (e) Does an electron in this vertical magnetic field move as a projectile, with constant vector acceleration perpendicular to a constant northward component of velocity? Yes O No (f) Is it a good approximation to assume it has this projectile motion? Yes O No Explain.

Answers

The magnitude of the deflection on the screen caused by the Earth's gravitational field can be calculated as below: F_gravity = m * g, where m = mass of electron, g = acceleration due to gravity = 9.8 m/s².

F_gravity = 9.1 x 10⁻³¹ kg * 9.8 m/s² = 8.91 x 10⁻³⁰ N Force on the electron will be F = q * E, where q = charge on electron = 1.6 x 10⁻¹⁹ C, E = electric field = V / d, where V = accelerating voltage = 2.45 x 10³ V, d = distance from the electron gun to the screen = 36.6 cm = 0.366 m.

E = V / d = 2.45 x 10³ V / 0.366 m = 6.68 x 10³ V/mF = q * E = 1.6 x 10⁻¹⁹ C * 6.68 x 10³ V/m = 1.07 x 10⁻¹⁵ N Force on the electron due to the Earth's gravitational field = F_gravity = 8.91 x 10⁻³⁰ NNet force on the electron = F_net = √(F_gravity² + F²)F_net = √(8.91 x 10⁻³⁰ N)² + (1.07 x 10⁻¹⁵ N)² = 1.07 x 10⁻¹⁵ NAngle of deflection = tan⁻¹(F_gravity / F) = tan⁻¹(8.91 x 10⁻³⁰ / 1.07 x 10⁻¹⁵) = 0.465°Magnitude of deflection = F_net * d / (q * V) = 1.07 x 10⁻¹⁵ N * 0.366 m / (1.6 x 10⁻¹⁹ C * 2.45 x 10³ V) = 1.47 x 10⁻³ mm(b) The direction of the deflection on the screen caused by the Earth's gravitational field is down.

To know more about magnitude visit:

https://brainly.com/question/28714281

#SPJ11

Nitrogen 13 has 7 protons and a half life of 600 seconds. What is the activity in Ci after 81.124 minutes? The initial mass of the nitrogen 13 is 91.998 micrograms. The mass of N13 is 13.005799 g/mole.

Answers

The activity of Nitrogen 13 after 81.124 minutes is calculated to be X Ci using the decay formula and given information on half-life and initial mass.

0.1352 half-lives. Remaining mass = [tex]91.998 μg * (1/2)^0^.^1^3^5^2[/tex] 1 [tex]Ci = 3.7 x 10^1^0[/tex] disintegrations per second.

Calculate the number of half-lives:

81.124 minutes is equivalent to 81.124/600 = 0.1352 half-lives.

Calculate the remaining mass:

Since half-life represents the time it takes for half of the radioactive substance to decay, we can calculate the remaining mass of Nitrogen 13 using the formula:

Remaining mass = [tex]Initial mass * (1/2)^(n^u^m^b^e^r ^o^f ^h^a^l^f^-^l^i^v^e^s^)[/tex]

Remaining mass = [tex]91.998 μg * (1/2)^0^.^1^3^5^2[/tex]

Calculate the activity:

The activity of a radioactive substance is the rate at which it decays, expressed in terms of disintegrations per unit of time. It is given by the formula:

Activity = ([tex]Remaining mass / Molar mass) * (6.022 x 10^2^3 / half-life)[/tex]

Here, the molar mass of Nitrogen 13 is 13.005799 g/mole.

Activity = [tex](Remaining mass / 13.005799 g/mole) * (6.022 x 10^2^3 / 600 seconds)[/tex]

Convert the activity to Ci (Curie) using the conversion factor: 1 [tex]Ci = 3.7 x 10^1^0[/tex] disintegrations per second.

Learn more about half-life

brainly.com/question/31666695

#SPJ11

A ball is shot from the top of a 35 m tower as shown in the figure. The ball has an initial velocity vi = 80 m/s at an angle  = 25. Calculate the change in momentum of the ball between the launch point and the impact point G if the ball has a mass of 200 g. Calculate the average force on the ball between points P and G.

Answers

The change in momentum of the ball between the launch point and the impact point G is approximately -20.665 kg*m/s. The average force on the ball between points P and G is approximately -8.67 N.

To calculate the change in momentum, we need to determine the initial and final momentum of the ball. Using the formula p = m * v, where p represents momentum, m represents mass, and v represents velocity, we find the initial momentum by multiplying the mass of the ball (0.2 kg) by the initial velocity (80 m/s). The initial momentum is 16 kg*m/s. Next, we calculate the final momentum by considering the vertical and horizontal components separately. The time taken for the ball to reach the ground can be determined using the formula t = sqrt(2h/g), where h is the height of the tower (35 m) and g is the acceleration due to gravity (approximately 9.8 m/s²). Substituting the values, we find t ≈ 2.38 s. Calculating the final vertical velocity using v_f = v_i + at, with a being the acceleration due to gravity, we find v_f ≈ -23.324 m/s. The final momentum is then obtained by multiplying the mass of the ball by the final velocity, resulting in a value of approximately -4.665 kg*m/s. The change in momentum is calculated by finding the difference between the initial and final momentum. Thus, Δp = -4.665 kgm/s - 16 kgm/s ≈ -20.665 kg*m/s. This represents the change in momentum of the ball between the launch point and the impact point G. To determine the average force between points P and G, we utilize the formula F_avg = Δp / Δt, where Δt is the time interval. As we already calculated the time taken to reach the ground as 2.38 s, we substitute the values to find F_avg ≈ -20.665 kg*m/s / 2.38 s ≈ -8.67 N. Therefore, the average force on the ball between points P and G is approximately -8.67 N.

To learn more about change in momentum, Click here:

https://brainly.com/question/2193212

#SPJ11

Figure P31.48 shows a low-pass filter: the output voltage is taken across the capacitor in an L-R-C seriescircuit. Derive an expression for Vout / Vs, the ratio of the output and source voltage amplitudes, as a function of the angular frequency ω of the source. Show that when ω is large, this ratio is proportional to ω-2 and thus is very small, and show that the ratio approaches unity in the limit of small frequency.

Answers

Answer:

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ω

Explanation:

To derive the expression for Vout / Vs, the ratio of the output and source voltage amplitudes in a low-pass filter, we can analyze the behavior of the

circuit.

In an L-R-C series circuit, the impedance (Z) of the circuit is given by:

Z = R + j(ωL - 1 / ωC)

where R is the

resistance

, L is the inductance, C is the capacitance, j is the imaginary unit, and ω is the angular frequency of the source.

The output voltage (Vout) can be calculated using the voltage divider rule:

Vout = Vs * (Zc / Z)

where Vs is the source voltage and Zc is the impedance of the capacitor.

The impedance of the capacitor is given by:

Zc = 1 / (jωC)

Now, let's substitute the expressions for Z and Zc into the voltage divider equation:

Vout = Vs * (1 / (jωC)) / (R + j(ωL - 1 / ωC))

To simplify the expression, we can multiply the numerator and denominator by the complex conjugate of the denominator:

Vout = Vs * (1 / (jωC)) * (R - j(ωL - 1 / ωC)) / (R + j(ωL - 1 / ωC)) * (R - j(ωL - 1 / ωC))

Expanding the denominator and simplifying, we get:

Vout = Vs * (R - j(ωL - 1 / ωC)) / (R + jωL - j / (ωC) - jωL + 1 / ωC + (ωL - 1 / ωC)²)

Simplifying further, we obtain:

Vout = Vs * (R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC))

The magnitude of the output voltage is given by:

|Vout| = |Vs * (R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC))|

To find the ratio Vout / Vs, we divide the magnitude of the output voltage by the magnitude of the source voltage:

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC))|

Now, let's simplify this expression further.

We can write the complex quantity in the numerator and denominator in polar form as:

R - j(ωL - 1 / ωC) = A * e^(-jφ)

and

R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωC) = B * e^(-jθ)

where A, φ, B, and θ are real numbers.

Taking the magnitude of the numerator and denominator:

|A * e^(-jφ)| = |A| = A

and

|B * e^(-jθ)| = |B| = B

Therefore, we have:

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ωv

Vout / Vs = |(R - j(ωL - 1 / ωC)) / (R + (ωL - 1 / ωC)² - j(2ωL + 1 / ω

Learn more about

voltage

here:

brainly.com/question/32002804

#SPJ11

Switch Si is closed. Switch S2 has been in position a for a long time. It is now switched to position b. R Derive an expression for the current i in the inductance as a function of time. Show all your work and box your answer. 200 When the switch S, is thrown to position b, the battery is no longer part of the circuit and the current decreases.

Answers

The current in the inductance does not change over time and remains constant.

To derive an expression for the current (i) in the inductance as a function of time, we can use the concept of inductance and the behavior of an inductor in response to a change in current.

When the switch S2 is in position a, the battery is part of the circuit, and the current in the inductor is established and steady. Let's call this initial current i₀.

When the switch S2 is switched to position b, the battery is no longer part of the circuit. This change in the circuit configuration causes the current in the inductor to decrease. The rate at which the current decreases is determined by the inductance (L) of the inductor.

According to Faraday's law of electromagnetic induction, the voltage across an inductor is given by:

V = L * di/dt

Where V is the voltage across the inductor, L is the inductance, and di/dt is the rate of change of current with respect to time.

In this case, since the battery is disconnected, the voltage across the inductor is zero (V = 0). Therefore, we have:

0 = L * di/dt

Rearranging the equation, we can solve for di/dt:

di/dt = 0 / L

The rate of change of current with respect to time (di/dt) is zero, indicating that the current in the inductor does not change instantaneously when the switch is moved to position b. The current will continue to flow in the inductor at the same initial value (i₀) until any other external influences come into play.

Therefore, the expression for the current (i) in the inductance as a function of time can be written as:

i(t) = i₀

The current remains constant (i₀) until any other factors or external influences affect it.

Hence, the current in the inductance does not change over time and remains constant.

Visit here to learn more about current brainly.com/question/3434785

#SPJ11

The energy of a photon is given by 480eV. What is the energy of the photon in the unit of J? Answer the value that goes into the blank: The energy of the photon is ×10−17 J. Question 8 Answer the value that goes into the blank. The energy of a single photon with frequency f=8.2×1017 Hz is ×10−15 J. Question 9 Answer the value that goes into the blank. The energy of a single photon with wavelength λ=0.74 nm is ×10−16 J.

Answers

Rhe energy of a photon with a value of 480 eV is 7.68 × 10^−17 J. For a photon with a frequency of 8.2 × 10^17 Hz, the energy is 5.4272 × 10^−16 J. And for a photon with a wavelength of 0.74 nm, the energy is 2.83784 × 10^−16 J.

The energy of a photon with a given value of 480 eV can be converted to joules by using the conversion factor: 1 eV = 1.6 × 10^−19 J.

Therefore, the energy of the photon is 480 × 1.6 × 10^−19 J, which is equal to 7.68 × 10^−17 J.

In question 8, the frequency of the photon is given as f = 8.2 × 10^17 Hz. The energy of a single photon can be calculated using the formula E = hf, where h is Planck's constant (6.626 × 10^−34 J·s).

Substituting the given values, we get E = 6.626 × 10^−34 J·s × 8.2 × 10^17 Hz, which simplifies to 5.4272 × 10^−16 J.

Therefore, the energy of the photon is 5.4272 × 10^−16 J.

In question 9, the wavelength of the photon is given as λ = 0.74 nm. The energy of a single photon can also be calculated using the formula E = hc/λ, where c is the speed of light (3 × 10^8 m/s).

Substituting the given values,

we get E = (6.626 × 10^−34 J·s × 3 × 10^8 m/s) / (0.74 × 10^−9 m), which simplifies to 2.83784 × 10^−16 J.

Therefore, the energy of the photon is 2.83784 × 10^−16 J.

To learn more about photon here brainly.com/question/33017722

#SPJ11

Other Questions
.A. Communicate to the healthcare team one's personalbias on difficult healthcare decisions that impact one'sability to provide care during the home care visit.(Description of the competency)(Exam The volume of a cone is 763. 02 cubic inches. The radius and height of the cone are equal. What is the radius of the cone? Use 3. 14 for Place the descriptions into the proper order to represent positive feedback to regain homeostasis. A uniform electric field has a magnitude of 10 N/C and is directed upward. A charge brought into the field experiences a force of 50 N downward. The charge must be A. +50 C. B. - 50 C. C. +0.5 C. D -0.5 C Pretest: Unit 3Question 15 of 70Which object is a point?A.B..C.D. Adie is rolled 36 times. What is the expected numbee of times that a2 or 3 will appear You will be working with all three of the primary transcripts that you created bove; wild-type (normal); G to C, and AG: Splicing of the primary transcript is one modification required to make mature mRNA in eukaryotes_ Type the mRNA that results with the at the left of the paper. Splicing enzymes recognize the 5' end of introns that have the following sequence: MAG|GTRAGT where M is either A or C and R is either A or G_ Splicing enzymes recognize the 3' end of introns that have the following sequence: CAGIG The is the separation of the exon and the intron at both ends of the intron_ Exons are bold, introns are not:Provide the mature mRNA that results from the primary transcript of the wild-type allele when it undergoes splicing Type it out so you do not make mistake and can read it. I ONLY NEED HELP WITH QUESTION 6 SHOWING HOW TO USE EXCEL FORMULA WHEN FINDING THE ANSWER:EXERCISE 8: USING "LOOKUP" AND "COUNTIF" FUNCTIONS TO RANK EMPLOYEE PERFORMANCE Managers often like to rank employees performance. One scheme called "20-70-10," or more disparagingly as "Rank and Yank," categorizes the top 20 percent of employees as "Best," the middle 70 percent of employees "Near Best," and the bottom 10 percent as "Below Best." Go to the "Excel Student Spreadsheets BUS 2000" and click on the tab/worksheet labeled "Lookup". There you will find the performance ratingson a ten-point scalefor 20 employees. Each employee has 3 performance ratings. In the 5th Column, or Column E, calculate the average performance rating for each employee to one decimal place. Then, in the 6th Column, or Column F, use the LOOKUP function below to classify the employees. o =LOOKUP(E2,{0,4,9,10},{"Below Best", "Near Best", "Best"}) The Lookup formula is structured as follows: E2 is the Cell containing the data for which the calculation should be made. 0 to 4 is the classification of "Below Best". 4 to 9 is the classification of "Near Best". 9 to 10 is the classification of "Best". The words "Below Best", "Near Best", and "Best" are placed for each of the three classifications according to an employees average rating. Using the results, do the following: 1. List the names of the "Best" employees 2. List the names of the "Near Best" employees 3. List the names of the "Below Best" employees Next, redefine the Lookup function to classify employees as "Above Average" and "Below Average" based on whether they scored above or below an average of 5 in their three performance scores. Place the results in the 7th Column, or Column G. Next, were going to count how many employees were categorized as either "Above Average" or "Below Average". Place the following results in cells B23 and B24. 4. How many people scored "Above Average?" 5. How many people scored "Below Average?"To answer these questions, use the COUNTIF function. Its form is =COUNTIF(G2:G21, "Above Average"), where G2:G21 is the range of cells. In this example, the function counts the number of employees that were "Above Average" according to the former classification.Lastly, you will notice that more people scored "Above Average" than "Below Average" using 5 as the cut point. Redefine the LOOKUP formula so that a roughly equal number of employees are classified as "Above Average" and as "Below Average." 6. What is the new cutoff point? Pre-keratin filaments are abundantly found in which epidermal stratum or strata? What has changed in the industry to reduce medical errors since the To Err is Human: Building a Safer Health System (Links to an external site.) report was published in 1999?I feel as if the strategic guide not only opened the minds as well as knowledge of others when it came to medical errors. I say this to say I feel around 1999 people wasn't as informed as they are now. When it comes to being informed people just did what they thought could get them by then , and now they doing what's right as well as what's best for the patient . Also as you go along as you see other people doing things a certain way , you sometimes get adapted to what's going on around us & learn from it .Do you think there is a disconnect between health care policies, protocols, procedures, or processes?Explain your rationale and provide an example.I do feel like there could be an disconnect , I think its all about how you look at things as well as how you take things in . When it comes to the disconnect its not just about the matter of operating procedures its more so about the roots of the elements when it comes to social teaching .What are two solutions or recommendations to minimize medical errors in the health care industry?This topic is so important I feel as though you cannot go wrong with all the knowledge you can learn from health industry itself. Two solutions I say that can minimize medical errors is being knowledgeable/doing your own research & don't assume , always speak up making sure everyone knows everything that should be known. Compute the theoretical flow time for an order of 8 circuitboards, 40 circuit boards, 120 circuit boards, and 800 circuitboards. Do the computation using the appropriate equipment wheneverthere is Calculate the body surface area of a patient who welchs 111 ks and is 159 cm in het BSA (m2) - 3000 Find the degree of the polynomial y 52-5z +6-3z After the injection of a local anesthetic agent, an incision was made on the patients right side at the site of the medical canthal tendon. After careful dissection, the lacrimal sac was identified and removed. _____________________________________Using the punch biopsy method, a specimen was taken from the right external auditory canal. ___________________________________A patient presented with a fistula of the left salivary gland. This area was incised to expose the fistula, and the operating microscope was used to get better view of the fistula for the purpose of closure. ____________________________________ Biue Spruce Inc. has been manufacturing its own shades for its table lamps. The company Is currently operating at 1000 of capacity. and variable manufacturing overhead is charged to production at the rate of 50% of direct labour costs. The direct materlais and direct labour costs per unit to make the lampshades are $4.90 and $5.80, respectively. Normal production is 48,300 table lamps per vear. A supplier offers to make the lampshades at a price of $13.80 per unit. If Blue Spruce Inc. accepts the wupplier s offer, all variable manufacturing costs will be eliminated, but the $43,900 of fuxed manufacturing overhead currently being charged to the lampthates will have to be absorbed by other products. (a) Prepare the incremental analysis for the decision to make or buy the lampshades. (Round answers to 0 decimal ploces, es. 5.275. If an amount reduces the net income then enter with a negative sign preceding the number eg, 15,000 or parenthesis es, (15,000). While aitemate approaches are possible, irrelevant fixed costs should be included in both options when solving this problem). sketch a parabola with the given characteristicThe lowest point on the parabola is (0. -1). Determine the cost of goods sold. Exercise 2: Prepare the journal entries to record the transaction (purchase transactions) Feb . 5 purchased merchandise from Best Company for $5,000 Feb .10 purchased equipment on account for $6,000. Feb . 12 paid freight costs of $600 on merchandise purchased from Best companyFeb . 15 returned damaged merchandise to Best Company and was granted a $400 credit for returned merchandise Feb .20 paid the amount due to Best Company in full. Let's say you build an egg drop machine that is decently constructed and considered competent. You of course will have protective devices/equipment surrounding the egg to prevent it from breaking. You will also have a parachute for obvious reasons. Describe using intuition and advanced physics diction how the parachute and protective cushioning equipment surrounding the egg reduce the amount of force that will act upon the egg as soon as it hits the surface. I want you to describe this using the impulse momentum- changing law. Draw diagrams with intuition if necessary. The impulse-momentum theorem states that the change in momentum of an object equals the impulse applied to it. The impulse-momentum theorem is logically equivalent to Newton's second law of motion (the force law). Briefly, explain some of the challenges the new CEO faced when he was appointed. (6 marks) At what rate must the potential difference between the plates of a parallel-plate capacitor with a 2.2 uF capacitance be changed to produce a displacement current of 2.0 A? Steam Workshop Downloader