The correct answer is d) Laboratory findings include markedly elevated levels of serum a fetoprotein.
Teratomas are a type of cancer that develops in germ cells, which are the cells in the body that develop into eggs or sperm. Teratomas are unusual because they can include tissues such as hair, teeth, and bone. Teratomas can affect both males and females and are often discovered in childhood or adolescence. They can be treated effectively with surgery and other treatments. However, some teratomas may not be entirely removed during surgery, and the tumor may return.Most teratomas are benign, but some can be cancerous, and this is more likely in older people.
Men with a particular type of testicular teratoma known as seminoma have an increased risk of developing other cancers, such as lung cancer and non-Hodgkin's lymphoma, in the future.Laboratory findings include markedly elevated levels of serum a fetoproteinIn a testicular teratoma, an elevated serum alpha-fetoprotein (AFP) level is found in about 40-60% of cases, and this level is specific. If a man has a raised AFP level, he should have an ultrasound or CT scan to check for the presence of a testicular teratoma. Therefore, the most likely pathology of this disorder is laboratory findings include markedly elevated levels of serum a fetoprotein.
To know more about fetoprotien visit the link
https://brainly.com/question/28027110
#SPJ11
Mention the types of blood tubes with the appropriate use of
each of them in detail ?
Please answer in writing on the keyboard and not in handwriting
1. Red-top tube: Used for routine serum testing and blood bank procedures. 2. Lavender-top tube: Used for complete blood count (CBC) and blood cell morphology. 3. Blue-top tube: Used for coagulation studies and tests that require citrate plasma.
1. Red-top tube (plain tube): This tube does not contain any additives. It is commonly used for routine serum testing, such as chemistry panels, lipid profiles, and liver function tests. It is also used for blood bank procedures, including blood typing and cross-matching.
2. Lavender-top tube (EDTA tube): This tube contains ethylenediaminetetraacetic acid (EDTA) as an anticoagulant. It is used for complete blood count (CBC) tests, which include red blood cell count, white blood cell count, and platelet count. The EDTA helps prevent clotting and preserves cell morphology for accurate analysis.
3. Blue-top tube (sodium citrate tube): This tube contains sodium citrate as an anticoagulant. It is used for coagulation studies, such as prothrombin time (PT), activated partial thromboplastin time (aPTT), and other tests that require citrate plasma. Sodium citrate binds calcium ions, inhibiting the coagulation process and allowing accurate assessment of blood clotting factors. These are just a few examples of blood collection tubes, and there are other types available for specific tests and purposes. Proper selection of the blood tube ensures accurate and reliable laboratory results by providing the appropriate anticoagulant or additive required for the specific testing requirements.
learn more about blood tubes here:
https://brainly.com/question/27835014
#SPJ11
When an oxygen molecule binds to the deoxyhemoglobin, multiple conformational changes happen that switch the hemoglobin from a T state to an R state. Describe the key conformational changes that happen that lead to the switch of Hemoblogin to an R state, starting with oxygen binding.
Oxygen binding to deoxyhemoglobin induces conformational changes, including breaking salt bridges, subunit movement, and transition to the R state. This enhances oxygen affinity and facilitates oxygen release in tissues.
When an oxygen molecule binds to deoxyhemoglobin, it triggers a series of conformational changes that convert hemoglobin from a T (tense) state to an R (relaxed) state. This transition is known as the oxygenation of hemoglobin. Here are the key conformational changes that occur:
Oxygen binding: Oxygen molecules (O2) bind to the iron (Fe) atoms present in the heme groups of hemoglobin. Each hemoglobin molecule can bind up to four oxygen molecules.Breaking salt bridges: Upon oxygen binding, the interaction between the positively charged histidine residues in the hemoglobin molecule and negatively charged residues in the neighboring subunits is weakened. This leads to the breaking of salt bridges, allowing for structural changes.Subunit movement: The breaking of salt bridges induces a movement of the subunits within the hemoglobin molecule. This movement involves the rotation and translation of the α (alpha) and β (beta) subunits relative to each other.T-to-R transition: As the subunits move, the hemoglobin molecule undergoes a transition from the T state to the R state. In the T state, the hemoglobin has a low affinity for oxygen, while in the R state, it has a high affinity for oxygen.Structural changes: The transition to the R state leads to a rearrangement of the quaternary structure of hemoglobin. The movement of the subunits and changes in their interactions result in an overall conformational change, including alterations in the positions of helices and other structural elements.Oxygen release: In the R state, oxygen molecules are held more tightly within the heme groups. This allows oxygen to be released more readily to the tissues during oxygen exchange in the lungs.It's important to note that these conformational changes are reversible, and hemoglobin can switch back to the T state when oxygen is released. The binding and release of oxygen by hemoglobin are essential for its function in oxygen transport throughout the body.
To learn more about hemoglobin, Visit:
https://brainly.com/question/11211560
#SPJ11
List the hormones that influence reabsorption and secretion in the kidney nephron. Describe the method of action for these hormones? Compare and contrast Type 1 and Type 2 diabetes
The hormones that influence reabsorption and secretion in the kidney nephron are anti-diuretic hormone (ADH) and aldosterone.
Both hormones act on different segments of the kidney nephron to regulate water balance and blood pressure.
Method of action of hormones Anti-Diuretic Hormone (ADH) also called Vasopressin is secreted from the posterior pituitary gland and it controls the water balance in the body by acting on the collecting duct of the nephron to increase its water permeability, therefore promoting water reabsorption.
Aldosterone, on the other hand, is secreted from the adrenal cortex and it acts on the distal convoluted tubule and the collecting ducts of the nephron to promote sodium reabsorption and potassium secretion.
Type 1 and Type 2 diabetes mellitus
Comparison of Type 1 and Type 2 diabetes:Type 1 Diabetes:
Type 1 diabetes is known as juvenile-onset or insulin-dependent diabetes. It is a condition that is characterized by the body's inability to produce insulin. Type 1 diabetes is usually diagnosed at a young age, before the age of 20 years, hence the name juvenile diabetes.Type 2 Diabetes:Type 2 diabetes is known as adult-onset diabetes. It is a condition characterized by the body's inability to use insulin effectively. Unlike Type 1 diabetes, Type 2 diabetes is usually diagnosed in adults, but it can occur at any age. It is linked with lifestyle factors such as obesity, physical inactivity and unhealthy diet.
Know more about diabetes
https://brainly.com/question/31689207
#SPJ11
Name
two accessory organs of digestive system that come in direct
contact of food
Two accessory organs of the digestive system that come in direct contact with food are the salivary glands and the pancreas.
Salivary Glands: The salivary glands, including the parotid, sublingual, and submandibular glands, produce saliva. Saliva contains enzymes such as amylase that begin the digestion of carbohydrates in the mouth. When we chew food, the salivary glands release saliva, which moistens the food, making it easier to swallow and initiating the breakdown of starches into simpler sugars.
Pancreas: The pancreas is a glandular organ located behind the stomach. It has both endocrine and exocrine functions. The exocrine portion of the pancreas secretes digestive enzymes, including pancreatic amylase, lipase, and proteases, into the small intestine. These enzymes are crucial for the digestion of carbohydrates, fats, and proteins. The pancreas also produces sodium bicarbonate, which neutralizes the acidic chyme from the stomach, creating a more optimal pH for the digestive enzymes to function effectively.
Both the salivary glands and the pancreas contribute to the breakdown of food by secreting enzymes that aid in the digestion process.
Learn more about lipase
https://brainly.com/question/3449211
#SPJ11
Which of the following is a correct sequence of events in cellular respiration?
The correct sequence of events in cellular respiration is option a: glycolysis, citric acid cycle, electron transport chain.
During cellular respiration, glucose is broken down to produce energy in the form of ATP. The process starts with glycolysis, which occurs in the cytoplasm and involves the breakdown of glucose into pyruvate molecules. Glycolysis generates a small amount of ATP and NADH.
The pyruvate molecules produced in glycolysis enter the mitochondria, where the citric acid cycle, also known as the Krebs cycle, takes place. In this cycle, the pyruvate is further broken down, releasing carbon dioxide and generating NADH and FADH2 as electron carriers. The citric acid cycle also produces a small amount of ATP.
The electron carriers NADH and FADH2 then participate in the electron transport chain, which is located in the inner membrane of the mitochondria. In the electron transport chain, the electrons from NADH and FADH2 are transferred through a series of protein complexes, creating a flow of electrons that drives the synthesis of ATP. This process is known as oxidative phosphorylation.
Therefore, the correct sequence of events in cellular respiration is glycolysis, citric acid cycle, and electron transport chain, as stated in option a.
For more such answers on cellular respiration
https://brainly.com/question/14158795
#SPJ8
Question
Which of the following is the correct sequence of events in cellular respiration?
a. glycolysis, citric acid cycle, electron transport chain
b. glycolysis, preparatory reaction, citric acid cycle, electron transport chain
c. glycolysis, electron transport chain, preparatory reaction
d. citric acid cycle, glycolysis, electron transport chain, preparatory reaction
e. citric acid cycle, electron transport, glycolysis, preparatory reaction
During the eighth week 1) all organ systems have appeared. 2) ossification begins. 3) eyes, ears and nose are noticeable. 4) mother begins to feel movement.
Out of the given options, the statement that is true for the eighth week is, "All organ systems have appeared."The development of a fetus begins from fertilization until birth, which takes around 38 weeks.
At eight weeks, the embryo develops into a fetus, and most of the organs have already been formed, including the organs of the digestive system, cardiovascular system, and nervous system. During the eighth week, the fetus's internal organs become more structured and start to function. Also, the facial features are more recognizable, including the eyes, ears, and nose. Bones and cartilage begin to form, and the process of ossification begins, although it will not complete until well after birth.
By the end of the eighth week, the fetus will be approximately 1 inch long and weigh less than an ounce. It will start moving, although the mother will not feel it yet. It is not until about 16-22 weeks that the mother feels the baby's first movements, which are commonly referred to as "quickening." Therefore, statement 4 is not true for the eighth week of fetal development.
To learn more about organ systems here
https://brainly.com/question/13278945
#SPJ11
Explain why a defective valve cannot be detected by an ECG and a
damaged AV node cannot be detected in listening to the heard
sounds. What is the correct test for each defect ?
An ECG cannot detect a defective valve because it is a test that measures the electrical activity of the heart. While the ECG can detect abnormal electrical activity in the heart, it cannot provide a direct diagnosis of valve function.
Similarly, the damage to the AV node cannot be detected by listening to heart sounds because it is not a physical problem with the heart. It is a problem with the electrical signals that control the heart's rhythm. Therefore, echocardiography is the best test to detect a defective valve.
An echocardiogram uses sound waves to produce images of the heart and can provide a direct visualization of the valves. On the other hand, an electrophysiological study (EPS) is the best test to detect a damaged AV node. EPS is an invasive test that involves threading thin, flexible wires through a vein in the groin and into the heart.
Learn more about echocardiography
https://brainly.com/question/32139215
#SPJ11
QUESTION 3 With the aid of a diagram, discuss the cause of the long action potential and the plateau phase in the action potential of the cardiac muscle (Please note provide a diagram and a discussion) [10]
In the action potential of the cardiac muscle, the plateau phase and long action potential are caused by the movement of ions through specific channels in the cell membrane. The cardiac action potential is divided into five phases: 0, 1, 2, 3, and 4.
The long action potential of the cardiac muscle is primarily due to the extended duration of the plateau phase, which is observed between phases 1 and 3. The diagram is as follows:
Plateau phase: During the plateau phase, there is a temporary balance between outward K+ current and inward Ca₂+ current. It occurs as a result of the opening of voltage-gated Ca₂+ channels and the closing of K+ channels, resulting in Ca₂+ influx and K+ efflux. The plateau phase of the cardiac action potential can last for up to 300 milliseconds, and it is responsible for the prolonged refractory period of the cardiac muscle.
This refractory period prevents the heart from experiencing tetanic contractions, which can result in arrhythmias. This plateau phase also ensures that the cardiac muscle contracts in a coordinated and rhythmic manner. The mechanism behind the plateau phase is unique to the cardiac muscle, as it does not occur in skeletal or smooth muscles.
This property allows the heart to function effectively as a pump, maintaining a steady flow of blood to the rest of the body.
To learn more about the plateau phase here
https://brainly.com/question/9641008
#SPJ11
CASE STUDY: Jen, a 29 year old woman, has come to you, an Exercise Physiologist, for a structured exercise program. She is in her second trimester and her doctor has cleared her to start resistance training exercise. Jen, who has been jogging regularly before and during pregnancy, recently saw the video posted above and wants your opinion on whether or not she should do the exercises shown in the video. Her friends have told her that jumping rope and running could cause her to go into labor, and that intense exercise will cause her baby to be underweight. Using the ACSM Guidelines and the Greggarticle, respond to this video and counsel Jen on how to safely start a resistance training program during pregnancy. Your response should be about 1 page in length, 12 point font, double spaced. 1. Can Jen perform ALL of the exercises in the video? Can she perform ANY of them? DESCRIBE why or why not. 2. Are there risks to what's shown in the video? DESCRIBE what they are. Please be specific. 3. Are the comments made by her friends accurate? Be sure to use evidence to support your answer. 4. What are some pregnancy specific signs/symptoms indicating that Jen should slow down or stop? Refer to the specific signs/symptoms the warrant termination of exercise during pregnancy!
Jen, as a pregnant woman, it is essential to engage in regular physical activity, as it benefits the health of the mother and the developing fetus. According to the ACSM guidelines, pregnant women are recommended to engage in at least 150 minutes of moderate-intensity physical activity each week.
1.Jen can perform some of the exercises but not all of them. Jen can perform the goblet squats, band rows, reverse lunges, shoulder presses, and side planks from the video. Jen can’t perform the double-leg jumps, single-leg hops, or burpees because of the high-intensity nature of the exercises and the risk of injury.
2. There are several risks to what is shown in the video. The high-intensity nature of some of the exercises can put too much stress on Jen’s body and lead to injuries, and the abdominal exercises may cause abdominal separation.
3. Jen's friends are incorrect in their comments. High-intensity exercise is safe for pregnant women and does not cause the baby to be underweight or induce labor. In fact, resistance training during pregnancy can help reduce the risk of gestational diabetes and preeclampsia, and improve the health of the baby.
4.Some pregnancy-specific signs/symptoms indicating that Jen should slow down or stop include vaginal bleeding, contractions, dizziness, shortness of breath, chest pain, calf pain or swelling, headache, muscle weakness, and amniotic fluid leakage. If Jen experiences any of these symptoms, she should stop exercising immediately and seek medical attention.
However, as a pregnant woman, Jen needs to be cautious about the type and intensity of exercises she performs, especially during resistance training. It is crucial to use moderate resistance and avoid high-intensity exercises as they put too much stress on the body, leading to injury.The exercises shown in the video can be performed by Jen but not all of them. It is safe for Jen to perform exercises such as goblet squats, band rows, reverse lunges, shoulder presses, and side planks. Jen should avoid high-intensity exercises such as double-leg jumps, single-leg hops, or burpees as they may cause injury and put unnecessary stress on her body.Jen's friends are incorrect in their comments about the exercise routine. High-intensity exercise is safe for pregnant women and does not cause the baby to be underweight or induce labor. In fact, resistance training during pregnancy can help reduce the risk of gestational diabetes and preeclampsia, and improve the health of the baby.However, there are risks to what is shown in the video, especially the high-intensity exercises. The abdominal exercises may cause abdominal separation, and the high-intensity exercises may put too much stress on Jen’s body, leading to injury.There are pregnancy-specific signs/symptoms that indicate that Jen should slow down or stop exercising. These include vaginal bleeding, contractions, dizziness, shortness of breath, chest pain, calf pain or swelling, headache, muscle weakness, and amniotic fluid leakage. If Jen experiences any of these symptoms, she should stop exercising immediately and seek medical attention.
So, Jen can safely perform resistance training exercises, but she should avoid high-intensity exercises. It is also essential to follow the ACSM guidelines and be cautious about the type and intensity of exercises performed during pregnancy. Jen should watch out for pregnancy-specific signs/symptoms and stop exercising immediately if she experiences any of them.
To know more about ACSM guidelines visit:
brainly.com/question/32254371
#SPJ11
What is bilirubin and how/why is it formed? What are two ways the body can make it soluble in blood? Please draw upon what was covered in our slides or video presentations to answer this question in your own words.
Bilirubin is a yellow pigment derived from the breakdown of heme, a component of red blood cells. It is formed when old or damaged red blood cells are broken down in the liver, spleen, and bone marrow. Bilirubin is insoluble in water, so it needs to be made soluble in blood for its excretion. This is achieved through a two-step process.
In the first step, bilirubin is conjugated with glucuronic acid in the liver, forming conjugated bilirubin. This conjugation reaction makes bilirubin water-soluble and able to be excreted in bile. The conjugated bilirubin is then transported to the small intestine.
In the second step, in the small intestine, the conjugated bilirubin undergoes further modification by the action of bacteria. It is converted into urobilinogen, a soluble form of bilirubin. Some urobilinogen is reabsorbed into the bloodstream and eventually eliminated through the kidneys, giving urine its characteristic yellow color. The remaining urobilinogen is further converted into stercobilin, which gives feces its brown color.
Thus, through conjugation in the liver and modification in the small intestine, the body ensures that bilirubin becomes soluble in the blood and can be effectively eliminated from the body.
learn more about "liver ":- https://brainly.com/question/16342711
#SPJ11
Which enzymes would cut the human dna?which enzymes would cut the plasmid without disrupting the function of amp gene?which enzymes would produce sticky ends?which one satisfies all 3 requirements
Restriction enzymes cut DNA into fragments at specific nucleotide sequences. Different restriction enzymes are used to generate fragments of different lengths and with different end structures to enable the assembly of DNA sequences with precise junctions.
The human DNA can be cut by a variety of restriction enzymes which are listed below:Enzymes that cut human DNA:
AluI (AGCT)MboI (GATC)HaeIII (GGCC)BamHI (GGATCC)BclI (TGATCA)BglII (AGATCT)BstEII (GGTNACC)BstXI (CCANNNNNNTGG)Enzymes that cut plasmids without disrupting the function of amp gene:
To cut plasmids without disrupting the function of the amp gene, EcoRI and XhoI are the most appropriate enzymes to be used because they both produce sticky ends without disrupting the function of the amp gene.
Enzymes that produce sticky ends:Enzymes that generate sticky ends include EcoRI, BamHI, HindIII, KpnI, XhoI, and SalI.One enzyme that satisfies all 3 requirements:
EcoRI is an enzyme that cuts human DNA, produces sticky ends, and cuts plasmids without disrupting the function of the amp gene. Therefore, EcoRI satisfies all the 3 requirements mentioned in the question.
To know more about Restriction enzymes visit:
https://brainly.com/question/30973647
#SPJ11
1. What is the condition called when the placenta implants in a way that blocks the cervical opening? ___________________
2. With this type of labor, pain is felt in the abdomen at irregular intervals, it does not get worse, and it does not change with walking. 3. What is it called? __________________
4. When two non-homologous chromosomes break and exchange portions it is called: ___________________
5. What gene causes embryos to develop into males?__________________________
6. Where is the center located that controls urination?_____________________
7. What waste product from muscle cells is not reabsorbed by the kidneys? _______________
7. Urea, ammonia, creatinine, uric acid, and urobilin are collectively known as: _________________________
8. When one kidney is removed, what happens to the size of the remaining kidney? ____________
1. Placenta previa is the condition called when the placenta implants in a way that blocks the cervical opening. Placenta previa is a pregnancy-related complication. It is a condition in which the placenta is implanted in the lower uterus, covering or nearly covering the cervix's opening. It can cause significant bleeding before and during delivery, which can be life-threatening for both mother and child.
2. The type of labor described in this statement is called Braxton Hicks contractions. They are sporadic contractions that can be felt in the abdomen and, sometimes, in the groin.
3. Braxton Hicks contractions is the name given to this type of pain.
4. Translocation is the term used when two non-homologous chromosomes break and exchange portions. It's a rare type of genetic mutation that can have serious consequences.
5. The SRY gene is responsible for causing embryos to develop into males. It is a sex-determining gene that is located on the Y chromosome.
6. The center that controls urination is located in the brain. The pons and the medulla oblongata are two areas of the brain that are responsible for controlling urination.
7. Urobilin is the waste product from muscle cells that is not reabsorbed by the kidneys. Urobilin is a yellow pigment that is excreted from the body in feces and urine.
8. The size of the remaining kidney increases when one kidney is removed. After the removal of one kidney, the remaining kidney compensates for the loss of function by growing in size and increasing its filtration rate.
To know more about gene , visit;
https://brainly.com/question/1480756
#SPJ11
The light reactions produce ________, which are used in the Calvin cycle. The Calvin cycle releases ________, which return to the light reactions.
The light reactions produce ATP and NADPH, which are used in the Calvin cycle. The Calvin cycle releases ADP and NADP+, which return to the light reactions. The light-dependent reactions, also known as the light reactions, are the first phase of photosynthesis in which light energy is captured and converted into chemical energy in the form of ATP and NADPH.
These products are then utilized in the dark reactions to reduce carbon dioxide and synthesize carbohydrates. The light reactions require pigments, primarily chlorophylls and carotenoids, which are found in the thylakoid membranes of the chloroplasts. When light strikes these pigments, the energy is absorbed and used to drive the transfer of electrons along an electron transport chain. This flow of electrons produces a proton gradient that powers ATP synthesis and the reduction of NADP+ to NADPH.
The Calvin cycle, also known as the dark reactions or the light-independent reactions, is the second phase of photosynthesis. It takes place in the stroma of the chloroplasts and uses the ATP and NADPH produced during the light reactions to fix carbon dioxide into organic molecules, such as glucose. The Calvin cycle releases ADP and NADP+ which return to the light reactions to be recharged with energy.
To know more about energy visit-
https://brainly.com/question/8630757
#SPJ11
3. Appositional growth is growth in diameter. True or False? 4. The diameter of the medullary cavity stays the same throughout our life. True or False? 5. Type of bone growth; stops when the epiphyseal plate becomes the epiphyseal line. 6. Type of bone growth; known as bone modeling. 7. Hormones, stimulate growth of skeleton before puberty.. 8. Hormone produced in the pituitary gland, stimulates bone growth.. 9. Hormone produced in the thyroid gland, stimulates bone growth. 10. Hormones, stimulate osteoblasts. 11. Hormones, stimulate osteoclasts. 12. Hormones, promote conversion of epiphyseal plate into the epiphyseal line. 13. Hormones, trigger the growth spurt at puberty.. 14. Three organs: and 15. Bone cells, liquefy bone matrix and release calcium into the blood. 16. Bone cells, build bone matrix and deposit calcium into bone. 17. Bone cells, source of osteoblasts.. 18. Mature bone cells, maintain the health of osseous tissue. 19. In hypocalcemia, . 20. In hypercalcemia,.. 21. When osteoblasts are activated, Ca++ moves from 22. When osteoclasts are activated. Ca++ moves from 23. When osteoblasts are inhibited. Ca deposition 24. When osteoclasts are inhibited, Ca deposition_ 25. If we can absorb more Ca++ from the intestine, Ca blood levels will. 26. If we absorb less Ca++ from the intestine, Ca blood levels will 27. If kidneys can reabsorb more Ca++, Ca blood levels will 28. If kidneys can eliminate more Ca++, Ca blood levels will 29. Cells of osseous tissue, responsible for bone deposition_ 30. Cells of osseous tissue, responsible for bone resorption. 31. Osteoclasts are more active in what conditions? 32. Osteoblasts are more active in what conditions? activate vit. D and transform it into is released from the parathyroid gland, causing calcium to be released from bones. is released from the thyroid gland. to to (increases or decreases). (increases or decreases). (increase or decrease) (increase or decrease) (increase or decrease) (increase or decrease)
Appositional growth is growth in diameter is a True statement. Appositional growth occurs when bone diameter grows wider or thicker during modeling.
The bone deposition occurs on the outer surface, and the resorption occurs on the inner surface of the bone. The diameter of the medullary cavity stays the same throughout our life. The diameter of the medullary cavity is variable throughout our life. During bone growth, the diameter of the medullary cavity increases. Type of bone growth; stops when the epiphyseal plate becomes the epiphyseal line. Endochondral ossification is a form of bone growth that stops when the epiphyseal plate becomes the epiphyseal line. Type of bone growth; known as bone modeling.
Bone modeling is a type of bone growth. It involves the shaping of the bone as a result of the mechanical forces imposed on it. Hormones, stimulate the growth of the skeleton before puberty. Growth hormones stimulate the growth of the skeleton before puberty. Hormone produced in the pituitary gland, stimulates bone growth. The hormone produced in the pituitary gland that stimulates bone growth is somatotropin (STH). Hormone produced in the thyroid gland, stimulates bone growth. Thyroid hormones, such as thyroxine, stimulate bone growth. Hormones, stimulate osteoblasts. The hormone that stimulates osteoblasts is estrogen. Hormones, stimulate osteoclasts. Parathyroid hormones stimulate osteoclasts.
Learn more about Appositional growth:
https://brainly.com/question/30647117
#SPJ11
The questions cover key concepts and facts about bone growth, modeling and resorption. They touch upon the roles of hormones, the function of different bone cells and the effects of calcium levels on the activity of these cells.
Explanation:3. Appositional growth is growth in diameter. True. This type of growth occurs in the periosteum where new bone tissue is added to the surface.
4. The diameter of the medullary cavity stays the same throughout our life. False. It actually increases with age as bone marrow slowly gets replaced by fat in a process known as yellow marrow conversion.
5. The type of growth that stops when the epiphyseal plate becomes the epiphyseal line is known as longitudinal growth.
6. Bone modeling is the process that causes change in bone shape.
7. Growth hormone and thyroid hormone stimulate the growth of a skeleton before puberty.
8. Growth hormone, produced in the pituitary gland, stimulates bone growth.
9. Thyroid hormone, produced in the thyroid gland, also stimulates bone growth.
16. Osteoblasts are bone cells that build the bone matrix and deposit calcium into the bone.
17. Osteoprogenitor cells are the source of osteoblasts.
31. Osteoclasts are more active in conditions of low blood calcium levels, as they break down bone to release calcium.
32. Osteoblasts are more active in conditions of high blood calcium levels, as they use this calcium to build new bone tissue.
Learn more about Bone Growth here:https://brainly.com/question/34201379
#SPJ12
Which of the following factors will result in increased drag? Select one: a. lower humidity b. lower barometric pressure c. warmer air temperature d. higher elevation
Among the following factors, lower barometric pressure is the factor that will result in increased drag.
Drag is a force that opposes the motion of an object through a fluid. It is also known as air resistance, fluid friction, or simply resistance. This force is created due to the interaction between the solid object and the fluid it is passing through. The amount of drag depends on several factors, such as the size and shape of the object, the velocity of the object, and the properties of the fluid. The drag force acts in the opposite direction to the motion of the object, slowing it down. An increase in drag will result in a decrease in velocity.
There are several factors that affect the amount of drag, including the following factors:Air temperatureAir densityHumidityAltitudeBarometric pressureVelocitySurface roughnessShape of the objectOut of the given options, lower barometric pressure is the factor that will result in increased drag. As barometric pressure decreases, the air density also decreases, which means there will be less air molecules to exert a force on the object. This results in a decrease in lift and an increase in drag. So, option B is the correct answer.
Learn more about barometric pressure here:https://brainly.com/question/3083348
#SPJ11
To generate conventional transgenic mice, DNA will be injected into:
Group of answer choices
-embryonic stem (ES) cells
-fertilized mouse eggs
To determine success of homologous recombination of targeting vector in ES cells, Northern blotting will be utilized.
Group of answer choices
-Yes
-No
In the CRISPR/Cas9 system, guide RNA directs the enzyme to cut the DNA at a specific site in the genome.
Group of answer choices
-True
-False
To generate conventional transgenic mice, DNA will be injected into fertilized mouse eggs. The statement "To determine the success of homologous recombination of the targeting vector in ES cells, Northern blotting will be utilized" is True. The statement "In the CRISPR/Cas9 system, guide RNA directs the enzyme to cut the DNA at a specific site in the genome" is also True.
A transgenic animal is one that carries a foreign gene that has been transferred to it. Transgenic mice, for example, can be used to study gene function or the creation of human disease models. To generate transgenic mice, DNA is injected into the pronucleus of a fertilized mouse egg.
The egg is then implanted into a pseudopregnant foster mother's uterus, and the offspring is screened for the presence of the transgene. To determine the success of homologous recombination of the targeting vector in ES cells, Northern blotting will be utilized. True.
Homologous recombination (HR) is a genetic exchange between two identical or very similar nucleotide sequences. HR has been used in ES cells to generate a conditional knockout of a gene of interest. The CRISPR/Cas9 system uses guide RNA to direct the enzyme to cut the DNA at a specific site in the genome.
Guide RNA is one of the key components of the CRISPR-Cas9 system. Guide RNA directs Cas9 to the correct site in the genome so that it can make the necessary modifications or insertions or deletions.
To learn more about DNA
https://brainly.com/question/2131506
#SPJ11
What is a possible reason for high-risk behavior seen in males across cultures? a. High risk behaviors can bring more reproductive possibilities b. High risk behaviors are more fun c. High risk behaviors are necessary for species survival
d. High risk behaviors are learned and passed down from father to son
A possible reason for high-risk behavior seen in males across cultures is that high-risk behaviors can bring more reproductive possibilities. The answer is A. High-risk behaviors can bring more reproductive possibilities.
How does high-risk behavior bring more reproductive possibilities?
The reason why males tend to engage in high-risk behavior is that it increases their attractiveness to potential mates. High-risk behavior is often seen as a sign of courage and bravery, which are desirable traits in a mate. These traits signal to potential mates that the male is a good provider, protector, and father figure.
High-risk behavior may include things like extreme sports, reckless driving, or substance abuse. Although these behaviors can be dangerous, males are willing to take the risk to increase their attractiveness to potential mates. However, this behavior is not necessarily adaptive or beneficial to the species' survival since there is a high chance that this behavior will lead to harm or even death.
Learn more about high-risk behaviors from the given link
https://brainly.com/question/32662925
#SPJ11
A patient is suffering a tumour which is causing hypersecretion of a insulin from their pancreas. For each of the following statements, say whether you think the statement is TRUE or FALSE, followed by a short justification of why you came to that conclusion. The patients blood glucose levels would be high The tumour will disrupt normal function because blood glucose is usually controlled by the body monitoring the amount of insulin in the blood.
The patient's blood glucose levels would be low, and the tumour will disrupt normal function because blood glucose is usually controlled by the body monitoring the amount of insulin in the blood. True.
The patient suffering from a tumor that is causing hypersecretion of insulin from the pancreas will lead to a decrease in the level of blood glucose in the patient's body. Insulin is responsible for decreasing the blood glucose level of the body. So, the high level of insulin in the blood will lead to a drop in the blood glucose level of the body.The statement that the tumour will disrupt normal function because blood glucose is usually controlled by the body monitoring the amount of insulin in the blood is true.
This is because tumors that secrete excessive insulin can cause a disease known as insulinoma. Insulinoma is a type of pancreatic tumor that results in hyperinsulinemia or excessive insulin secretion. Hyperinsulinemia leads to recurrent hypoglycemia, which can be deadly. This can lead to disruption of normal functions and also cause other complications like neurological disorders, headaches, confusion, and seizures, etc.
Learn more about blood glucose:
https://brainly.com/question/32746634
#SPJ11
a The drug Aflac was investigated as a possible inhibitor of a Dehydrogenase that acts on pregnenolone as a substrate in steroid synthesis. The activity of the Dehydrogenase was measured in the presence and the absence of 10 M Aflac. [Pregnenolone, uM] vo without I (pmol/min) vo with I (pmol/min) 1.0 0.00106 0.00079 5.0 0.00327 0.00242 10.0 0.00439 0.00326 20.0 0.00529 0.00395 Which of the following statements are False? Multiple answers: I A. The Km (M) in the absence of Aflac is 2.4. B. The Km (M) in the absence of Aflac is 5.4 C. The Km (uM) in the presence of Aflac is 2.4. D. The Km (M) in the presence of Aflac is 5.3. E. The Vmax (pmol/min) in the absence of Aflac is 6.8 x 10-3. F. The Vmax (pmol/min) in the presence of Aflac is 5.0 x 10-3. G. The x intercept in the absence of Aflac is -0.186. H. The x-intercept in the presence of Aflac is-0.188. Aflac binds to a site other than the active site on the Dehydrogenase. 1.
Option B is the false statement. It states that the Km values in the absence of Aflac are 5.4 and 5.3, respectively, based on the provided data. Both figures are correct: 2.4.
How to determine the correct statementOption B. The Km (M) in the absence of Aflac is 5.4, and option D. The Km (M) in the presence of Aflac is 5.3 are the statements that are not true.
The true statements are options A. The Km (M) in the absence of Aflac is 2.4., C. The Km (uM) in the presence of Aflac is 2.4, options E. The Vmax (pmol/min) without any Aflac is 6.8 x 10-3, options F. The Vmax (pmol/min) in the absence of Aflac is 6.8 x 10-3., options G. The Vmax (pmol/min) in the absence of Aflac is 6.8 x 10-3., and options H.The x-intercept in the presence of Aflac is-0.188.
Aflac binds to a site other than the active site on the Dehydrogenase.
Learn more about Dehydrogenase here:
https://brainly.com/question/29997944
#SPJ4
The given data for the drug Aflac was investigated as a possible inhibitor of a Dehydrogenase that acts on pregnenolone as a substrate in steroid synthesis. The activity of the Dehydrogenase was measured in the presence and the absence of 10 M Aflac. The given data is as follows:
[Pregnenolone, uM] vo without I (pmol/min) vo with I (pmol/min)
1.000 106 0.000795
5.000 327 0.002421
10.000 439 0.003262
15.000 529 0.00395
The following statements are False:
Statement A: Km (M) in the absence of Aflac is 2.4.
The calculation of Km will be done using the Lineweaver-Burk Plot equation:
1/vo = Km / Vmax (1/[S]) + 1/Vmax
y-intercept = 1/Vmax = 0.186 (approx)
Slope = Km/Vmax = 2.4/0.0068 = 352.94
Km = slope / y-intercept = 352.94 / 0.186 = 1896.7 mM = 1.8967 M
Thus, statement A is false.
Statement D: Km (M) in the presence of Aflac is 5.3.
1/vo = Km / Vmax (1/[S]) + 1/Vmax
y-intercept = 1/Vmax = 0.188 (approx)
Slope = Km/Vmax = 5.3/0.005 = 1060
Km = slope / y-intercept = 1060/0.188 = 5.6 mM = 5600 μM
Thus, statement D is false.
Statement E: The Vmax (pmol/min) in the absence of Aflac is 6.8 x 10-3.
The y-intercept value is 1/Vmax. The y-intercept value from the graph is 0.186.
Vmax value can be calculated by taking the reciprocal of the y-intercept.
Vmax = 1/0.186 = 5.37 pmol/min
Thus, statement E is false.
Statement G: The x-intercept in the absence of Aflac is -0.186.
The x-intercept value is -1/Km. The x-intercept value from the graph is -1/352.94 = -0.0028.
Therefore, statement G is false.
The correct statement is:
Aflac binds to a site other than the active site on the Dehydrogenase.
Therefore, the false statements are A, D, E, and G.
Learn more about acceleration from the given link
https://brainly.com/question/30881290
#SPJ11
Without surfactant... ◯ There is no immune function in the alveoli ◯ Debris is not removed from the alveoli ◯ Gases would exchange in the alveoli ◯ Alveoli collapse with every exhalation
Without surfactants, alveoli would collapse with every exhalation.
Surfactant is a complex substance produced in the lungs. Surfactant lowers the surface tension of the alveoli walls and reduces the forces that are required to keep the alveoli open. It is responsible for keeping the lungs inflated and reducing the effort required to breathe by preventing the collapse of the air sacs during exhalation. In the absence of surfactant, alveoli would collapse with every exhalation.
When we breathe, the air we inhale fills our lungs. Our lungs are composed of tiny sacs called alveoli, which are responsible for exchanging gases between the air we breathe and our bloodstream. These alveoli are lined with a thin film of fluid that creates surface tension, which makes it difficult for the alveoli to expand and contract. This surface tension makes it harder to breathe, and without surfactant, the alveoli would collapse with every exhalation. The lack of surfactant would lead to lung diseases such as acute respiratory distress syndrome (ARDS) in which the alveoli can collapse and become stiffened, making it difficult to breathe.
Learn more about Surfactant at https://brainly.com/question/15817583
#SPJ11
_______ results from common nerve pathways where sensory impulses and synapses of the skin intertwine and follow the same path. A) proprioception B) referred pain C) sympathetic response D) this type of pain is not possible
Referred pain results from common nerve pathways where sensory impulses and synapses of the skin intertwine and follow the same path. The correct option is B) referred pain.
Referred pain is a form of pain that is felt at a location other than the location of the painful stimulus. This occurs because sensory nerves from several regions converge and enter the spinal cord at the same point. As a result, the spinal cord can mistake incoming sensory impulses for originating from a neighboring part of the body, resulting in referred pain.
The most common type of referred pain is felt in the chest, arm, or jaw during a heart attack. The patient feels pain in the left arm, chest, or jaw, which are all locations where pain has been referred.
To learn more about sensory impulses here
https://brainly.com/question/30564621
#SPJ11
Find three examples from current events that promote indigenous
knowledge of the landscape applied to modern environmental
problems
Three examples from current events that promote indigenous knowledge of the landscape applied to modern environmental problems are:
Indigenous-led conservation initiatives: Many indigenous communities are taking the lead in environmental conservation efforts, drawing on their traditional knowledge of the land to protect and restore ecosystems. Indigenous land management practices: Indigenous communities around the world are showcasing sustainable land management practices that prioritize ecological balance and resilience. For instance, the use of controlled burns by indigenous people in Australia has been recognized as an effective method to prevent wildfires and support biodiversity. Collaborative resource management partnerships: Governments and organizations are increasingly recognizing the value of incorporating indigenous knowledge into decision-making processes.
learn more about:- Indigenous land management practices here
https://brainly.com/question/31022944
#SPJ11
Match the protein to its description/function. Structural alignment protein of the thin filament ◯ Titin ◯ Troponin ◯ CaV ◯ Nebulin ◯ Actin ◯ Ca2+ATPase ◯ Myosin ◯ AChR ◯ RYR ◯ Tropomyosin ◯ Nat-K+-ATPase
Structural alignment protein of the thin filament: j. Tropomyosin
Tropomyosin is a fibrous protein that plays a crucial role in the structural alignment of the thin filament in muscle cells. It is a long, filamentous molecule that runs along the groove of the actin filament, covering its active sites. Tropomyosin helps regulate muscle contraction by controlling the interaction between actin and myosin.In a resting muscle, tropomyosin is positioned in a way that it obstructs the binding sites on actin, preventing the myosin heads from attaching and initiating muscle contraction. This inhibitory effect is further supported by the troponin complex.When a muscle is stimulated to contract, calcium ions (Ca2+) bind to the troponin complex, causing a conformational change. This change allows tropomyosin to shift its position, exposing the active sites on actin and allowing myosin to bind. The interaction between actin and myosin leads to muscle contraction.Therefore, tropomyosin acts as a regulatory protein, modulating the interaction between actin and myosin and controlling muscle contraction. It helps ensure that muscle contraction occurs only when calcium ions are present, preventing unnecessary or uncontrolled muscle activity.
The correct format of question should be:
Match the protein to its description/function.
Structural alignment protein of the thin filament
a. Titin
b. Troponin
c. CaV
d. Nebulin
e. Actin
f. Ca2+ATPase
g. Myosin
h. AChR
i. RYR
j. Tropomyosin
k. Nat-K+-ATPas
To learn more about muscle cells, Visit:
https://brainly.com/question/15441674
#SPJ11
The hypothalamus ________.
Group of answer choices
A. is the thermostat of the body because it regulates temperature in the preoptic area
B. can be stimulated by sensory information from other brain areas, changes in CSF composition, and chemical stimuli in blood
C. contains the mammillary bodies
D. produces 2 important hormones that are stored in the posterior pituitary gland
E. All of the above
The hypothalamus is the thermostat of the body because it regulates temperature in the preoptic area. The correct option is A.
The hypothalamus is a structure located beneath the thalamus and above the brainstem. It has numerous essential roles, including controlling appetite, regulating hormones, and controlling temperature.
The hypothalamus functions as the thermostat of the body because it regulates temperature in the preoptic area. It acts as a thermometer, sensing changes in the temperature of blood and relaying that information to the rest of the body.
Other brain areas, changes in cerebrospinal fluid (CSF) composition, and chemical stimuli in the blood can all stimulate the hypothalamus. In addition, the hypothalamus controls the pituitary gland, which is responsible for regulating various hormones in the body. The hypothalamus also produces two important hormones that are stored in the posterior pituitary gland: antidiuretic hormone (ADH) and oxytocin. Therefore, the correct option is A.
To learn more about the hypothalamus here
https://brainly.com/question/32900534
#SPJ11
Illustration 2: Compact Bone. Create an illustration clearly showing the structures listed below. Label the structures on the illustration.
• Blood vessels • Canaliculi • Central canal • Circumferential lamellae • Concentric lamellae • Lacunae • Nerve • Osteocyte • Osteon • Periosteum
Here is an illustration of compact bone:
Explanation of the structures labeled in the illustration:
Blood vessels: These are tiny tubes that carry blood throughout the body and supply nutrients and oxygen to bone tissues. Canaliculi: These are microscopic canals between the lacunae of ossified bone, through which long cytoplasmic extensions of osteocytes travel and exchange nutrients, gases, and waste products.
Central canal: It is a cylindrical channel that runs through the core of an osteon, parallel to its long axis. It contains blood vessels and nerves.
Circumferential lamellae: These are layers of bone matrix that run parallel to the surface of compact bone, just beneath the periosteum and endosteum.
Concentric lamellae: These are layers of calcified matrix arranged around a central canal, forming the osteon of compact bone.
Lacunae: These are small cavities in the bone matrix, containing bone cells (osteocytes) and located between the lamellae.
Nerve: These are a bundle of fibers that transmit impulses of sensation to the brain or spinal cord.Osteocyte: They are the mature bone cells responsible for maintaining the bone matrix.
Osteon: It is the structural unit of compact bone, consisting of concentric layers of bone matrix called lamellae, surrounding a central canal.
Periosteum: This is a membrane that covers the outer surface of bones, consisting of an outer fibrous layer and an inner osteogenic layer that gives rise to bone cells and bone-forming tissue.
Know more about compact bone
https://brainly.com/question/8564043
#SPJ11
The thoracic duct ascends through the posterior mediastinum, between the thoracic aorta on the left and the azygos vein on the right. Question 1 options:
True
False
True. The thoracic duct is the largest lymphatic vessel in the body and plays a crucial role in the lymphatic system. It begins in the abdomen, near the second lumbar vertebra, and ascends through the posterior mediastinum of the thoracic cavity.
It runs behind the esophagus and in front of the vertebral bodies, alongside the thoracic aorta on the left side. As it continues its ascent, it curves to the left and passes behind the aortic arch and left bronchus. Eventually, it reaches the base of the neck, where it drains into the left subclavian vein.
This anatomical pathway allows the thoracic duct to effectively collect lymphatic fluid from the lower extremities, abdomen, and left upper body, and return it to the bloodstream.
learn more about lymphatic vessel here
https://brainly.com/question/32904099
#SPJ11
How can the Darwinian concept of descent with modification explain the evolution of such complex structures as the vertebrate eye?
The Darwinian concept of descent with modification explains the evolution of complex structures like the vertebrate eye through gradual changes over long periods of time. Through natural selection, small variations in eye structure that conferred even slight advantages in vision would have been favored, leading to the accumulation of modifications and the development of increasingly complex eyes over generations.
The Darwinian concept of descent with modification explains the evolution of complex structures like the vertebrate eye. Over time, small variations or mutations in eye structure occurred within a population. Individuals with advantageous traits in vision had higher chances of survival and reproduction. These advantageous traits were passed on to offspring, gradually accumulating modifications. The eye's evolution began with simple light-sensitive cells, which became more specialized and organized through genetic mutations and natural selection. Each stage of improvement in visual capability provided advantages for survival, leading to the development of increasingly complex eye structures. The process occurred over millions of years, resulting in the intricate and sophisticated eyes found in vertebrates today. This process demonstrates how gradual changes and selection can drive the evolution of complex structures.
To know more about The Darwinian concept of descent click here,
https://brainly.com/question/30772109
#SPJ11
Match the skeletal muscle with its correct origin. Some answers may be used more than once. ✓ Sartorius A. Glenoid fossa and coracoid process ✓ Adductor Longus B. Inferior glenoid fossa and posterior upper humerus Biceps femoris C. Processes of lumbar vertebrae via lumbrosacral fasicae Biceps brachii D. Superior to the posterior part of the femoral condyles ✓ Peroneal Longus E. Upper shaft of the Fibula Pronator teres F. Lateral epicondyle of the humerus Gastrocnemius G. Anterior surfaces of ribs 3-5 Gluteus maximus H. Acromion and distal clavicle Deltoid 1. Pubic Tubercle v Tensor fasciae latae J. Ischial tuberosity Extensor carpi radialis brevis K. Anerior portion iliac crest Pectoralis minor L. Supraspinous fossa of scapula ✓ Flexor carpi ulnaris M. Posterior iliac crest and sacrum Triceps brachii N. Medial epicondyle of the humerus ✓ Latissimus dorsi O. Anterior Superior Iliac Spine (ASIS) ✓ Semimembranosus ✓ Brachioradialis Supraspinatus
The sartorius muscle originates from the anterior superior iliac spine (ASIS) and the superior part of the notch between the anterior superior iliac spine (ASIS) and the anterior inferior iliac spine (AIIS).
The sartorius muscle is a long, strap-like muscle that runs diagonally across the front of the thigh. It has the longest muscle fiber length in the human body.
The sartorius muscle originates from two points: the anterior superior iliac spine (ASIS) and the superior part of the notch between the anterior superior iliac spine (ASIS) and the anterior inferior iliac spine (AIIS). The anterior superior iliac spine (ASIS) is a bony projection at the front of the iliac crest, which is the upper margin of the hip bone.
The anterior inferior iliac spine (AIIS) is a bony projection located just below the anterior superior iliac spine (ASIS). The sartorius muscle plays a role in flexing, abducting, and laterally rotating the hip joint, as well as flexing the knee joint.
It is involved in actions such as sitting cross-legged or crossing one leg over the other while standing.
Learn more about sartorius muscle originates
brainly.com/question/9184695
#SPJ11
QUESTION 17 Acetylcholine is released by all of these neurons, except O somatic motor neurons O all preganglionic neurons of the ANS O all sensory neurons O by the postganglionic parasympathetic neurons QUESTION 18 The effect of beta-blocker drugs (block beta-receptors) is to O decrease blood pressure O Increase blood sugar levels O increase blood pressure O decrease blood sugar levels
QUESTION 19 The secretions of the adrenal medulla act to supplement the effects of_____
Acetylcholine is released by all of these neurons except sensory neurons. Among the neurons, sensory neurons are not among the neurons that release acetylcholine.
These neurons receive information from sensory receptors throughout the body and convey this information to the spinal cord and brain for processing. The two types of sensory neurons are somatic and visceral sensory neurons.
Question 18:The effect of beta-blocker drugs (block beta-receptors) is to decrease blood pressure. Beta-blocker drugs block the effects of the hormone epinephrine (adrenaline), which causes the heart to beat faster and with more force. This reduces blood pressure.
Question 19:The secretions of the adrenal medulla act to supplement the effects of the sympathetic nervous system.
The sympathetic nervous system controls the body's "fight or flight" response, while the adrenal medulla secretes epinephrine (adrenaline) and norepinephrine (noradrenaline) to support this response by increasing the heart rate, blood pressure, and glucose levels in the bloodstream.
To learn more about Acetylcholine visit here:
brainly.com/question/29855206
#SPJ11
PART TEN (INTRODUCTION )
1. Concerning TBW a. 2'3 of the TBW outside the cell b, Blood volume is 5% of the body weight c. male has less water than female
d. Dentin has the lowest water ratio than bone pump 2. Which of the following is correct :
a. The most abundant intracellular cations is Na b b. Peripheral proteins acts as carriers c. Hypertonic solution causing no changes in the cell volume d. Isotonic solution causing cell shrinking 3. An example of co-transport is a. Na+-K+ pump b. Ca++ pump c. Na+- H+ 4. d. Na+- glucose transport
4. Gases such as oxygen and carbon dioxide across the plasma membrane by: a. secundary active transport b. passive diffusion through the lipid bilayer c. a specific gas transport proteins. d. primary active transport. 5. Transport of substances against concentration gradient known as a. simple diffusion
b. Facilitated diffusion c. Osmosis d. Primary active transport 6. An example of primary active transport is a. Na+-K+ pump b. Ca-H transport c. Na+- H+ pump d. Na+ - glucose transport 7. Transport of substances with concentration gradient known as a Hard diffusion b. Facilitated diffusion c. Osmosis d. Primary active transport 8- Homeostasis is refer to : a. Plasma b. ISF c. ECF
d. ICF
9. All of the following correct for integral proteins EXCEPT a. They act as receptors b. They act as channels c. They act as enzymes d. They act as pumps 10. Transport of proteins out of the cell is carried by: a. Phagocytosis b. Exocytosis c. Pincytosis d. Facilitated diffusion 11. Co-transport is known as:
a - transport of one substance in th
The correct statement is that co-transport is known as transport of one substance in the same direction as the other.
1. Concerning TBW a. 2'3 of the TBW outside the cell b, Blood volume is 5% of the body weight c. male has less water than female d. Dentin has the lowest water ratio than bone pump. The correct statement about TBW is that the blood volume is 5% of the body weight.
2. Which of the following is correct : a. The most abundant intracellular cations is Na b b. Peripheral proteins acts as carriers c. Hypertonic solution causing no changes in the cell volume d. Isotonic solution causing cell shrinking. The correct statement is that peripheral proteins act as carriers.
3. An example of co-transport is a. Na+-K+ pump b. Ca++ pump c. Na+- H+
4. d. Na+- glucose transport. Na+-glucose transport is an example of co-transport.4. Gases such as oxygen and carbon dioxide across the plasma membrane by: a. secondary active transport b. passive diffusion through the lipid bilayer c. a specific gas transport proteins. d. primary active transport. The correct statement is that gases such as oxygen and carbon dioxide move across the plasma membrane by passive diffusion through the lipid bilayer.
5. Transport of substances against concentration gradient known as a. simple diffusion b. Facilitated diffusion c. Osmosis d. Primary active transport. Transport of substances against concentration gradient is known as primary active transport.
6. An example of primary active transport is a. Na+-K+ pump b. Ca-H transport c. Na+- H+ pump d. Na+ - glucose transport. The correct statement is that Na+-K+ pump is an example of primary active transport.
7. Transport of substances with concentration gradient known as a Hard diffusion b. Facilitated diffusion c. Osmosis d. Primary active transport. Transport of substances with concentration gradient is known as facilitated diffusion.
8- Homeostasis is referred to as ECF. The correct option is ECF, which is Extracellular fluid.
9. All of the following correct for integral proteins EXCEPT a. They act as receptors b. They act as channels c. They act as enzymes d. They act as pumps. The correct option is that they act as enzymes.
10. Transport of proteins out of the cell is carried out by Exocytosis. The correct option is exocytosis.
11. Co-transport is known as transport of one substance in the same direction as the other. The correct statement is that co-transport is known as transport of one substance in the same direction as the other.
Learn more about co-transport
https://brainly.com/question/33252938
#SPJ11