loop coincides with the wire. Calculate the magnitude of the force exerted on the loop

Answers

Answer 1

A loop coincides with the wire.

To calculate the magnitude of the force exerted on the loop, we can use the formula:

F = BILsinθ, where F is the magnitude of the force exerted on the loop, B is the magnetic field strength, I is the current flowing through the wire, L is the length of the loop, and θ is the angle between the magnetic field and the plane of the loop.

Since the loop coincides with the wire, the angle θ between the magnetic field and the plane of the loop is 0 degrees. Therefore, sinθ = sin0 = 0. So the formula simplifies to:

F = BIL x 0 = 0

The force exerted on the loop is zero.

To learn about magnitude here:

https://brainly.com/question/30337362

#SPJ11


Related Questions

Water is pumped up to a water tower, which is 92.0m high. The flow rate up to the top of the tower is 75.0 L/s and each liter of water has a mass of 1.00 kg. What power is required to keep up this flow rate to the tower? (pls explain steps!)

Answers

The power required is  66.09 kW for maintaining a flow rate of 75.0 L/s to a water tower that stands 92.0m high, the steps for calculation will be explained.

The power required to maintain the flow rate to the water tower can be determined by considering the amount of work needed to lift the water against gravity.

First, we need to find the mass of water being pumped per second. Since each litre of water has a mass of 1.00 kg, the mass of water per second would be:

75.0 kg/s (75.0 L/s * 1.00 kg/L).

Next, calculate the work done to lift the water. The work done is given by the formula:

W = mgh,

where m is the mass, g is the acceleration due to gravity (approximately 9.8 m/s²), and h is the height of the tower.

Plugging in the values,

[tex]W = (75.0 kg/s) * (9.8 m/s^2) * (92.0 m)[/tex]

= 66,090 J/s (or 66.09 kW).

Therefore, the power required to maintain the flow rate of 75.0 L/s to the tower is approximately 66.09 kW. This power is needed to overcome the gravitational force and lift the water to the height of the tower.

Learn more about gravitational force here:

https://brainly.com/question/32609171

#SPJ11

A separate excited motor with PN 18kW UN 220V, IN-94A, n№=1000rpm, Ra=0.150, calculate: (a) Rated electromagnetic torque TN (b) No-load torque To (c) Theoretically no-load speed no (d) Practical no-load speed no (e) Direct start current Istart

Answers

(a) The value of the rated electromagnetic torque TN is 0.17 N.m.

(b) The value of the No-load torque is 3.29 N.m.

(c) The value of the theoretically no-load speed is 411.8 V.

(d) The value of the practical no-load speed is 410.8 V.

(e) The value of the direct start current, is 470 A.

What is the value of Rated electromagnetic torque TN?

(a) The value of the rated electromagnetic torque TN is calculated as follows;

TN = (PN × 60) / (2π × Nn)

where;

PN is the rated power =  18 kW.Nn is the rated speed = 1000 rpm

TN = ( 18 x 60 ) / (2π x 1000 )

TN = 0.17 N.m

(b) The value of the No-load torque is calculated as;

To = (UN × IN) / (2π × Nn)

where;

IN is the rated current = 94AUN is the rated voltage = 220V

To = (UN × IN) / (2π × Nn)

To = (220 x 94 ) / ((2π x 1000 )

To = 3.29 N.m

(c) The value of the theoretically no-load speed is calculated as;

no = (UN - (Ra × IN)) / K

where;

Ra is the armature resistance = 0.15 ΩK is a constant = 0.5, assumed.

no = ( 220 - (0.15 x 94) / (0.5)

no = 411.8 V

(d) The value of the practical no-load speed is calculated as;

no = (UN - (Ra × IN) - (To × Ra)) / K

no = (220 - (0.15 x 94) - (3.29 x 0.15) ) / 0.5

no = 410.8 V

(e) The value of the direct start current, is calculated as;

Istart = 5 × IN

Istart = 5 x 94 A

Istart = 470 A

Learn more about No-load torque here: https://brainly.com/question/31324009

#SPJ4

how to calibrate the refractometer ? (NO PICTURE )

Answers

A refractometer is an optical instrument used to measure the refractive index of a substance. Calibration is essential to ensure the instrument is measuring accurately. Below are the steps to calibrate a refractometer:Step 1: Zero Calibration. Fill the prism dish with distilled water, and allow it to come to the room temperature.

Hold the refractometer in such a way that it receives light through the prism. Now, adjust the prism's focus until you see a clear dividing line. Place two or three drops of distilled water on the prism surface, and let it spread out to cover the whole prism. Close the cover plate and wait for a few seconds for the reading to stabilize. If the reading is not zero, adjust the zero adjustment screw.Step 2: Calibration with StandardsChoose a suitable reference material and make sure it has a refractive index close to the substance being measured. Clean the prism surface, add a drop of the reference material, and allow it to spread. Take the reading, and it should match with the reference values. If not, adjust the calibration screw on the side of the refractometer until the reading matches the reference value.Step 3: RinseClean the prism surface with distilled water, and wipe it dry with a clean cloth. It is essential to remove all the traces of reference material before measuring any other substance. If the instrument is not in use for a long time, it is better to clean the prism with a mixture of alcohol and distilled water.

To know more about calibrate visit:

https://brainly.com/question/3520695

#SPJ11

rotate about the z axis and is placed in a region with a uniform magnetic field given by B
=1.45 j
^

. (a) What is the magnitude of the magnetic torque on the coil? N⋅m (b) In what direction will the coil rotate? clockwise as seen from the +z axis counterclockwise as seen from the +z axis

Answers

(a) The magnitude of the magnetic torque on the coil is `0.0725 N·m`.

Given, B= 1.45 j ^T= 0.5 seconds, I= 4.7,  AmpereN = 200 turn

sr = 0.28 meter

Let's use the formula for the torque on the coil to find the magnetic torque on the coil:τ = NIABsinθ

where,N = a number of turns = 200 turns

I = current = 4.7 AB = magnetic field = 1.45 j ^A = area = πr^2 = π(0.28)^2 = 0.2463 m^2θ = angle between the magnetic field and normal to the coil.

Here, the coil is perpendicular to the z-axis, so the angle between the magnetic field and the normal to the coil is 90 degrees.

Thus,τ = NIABsin(θ) = (200)(4.7)(1.45)(0.2463)sin(90)≈0.0725 N·m(b) The coil will rotate counterclockwise as seen from the +z axis.

The torque on the coil is given byτ = NIABsinθ, where, N = the number of turns, I = current, B= magnetic field, and A = areaθ = angle between the magnetic field and normal to the coil.

If we calculate the direction of the magnetic torque using the right-hand rule, it is in the direction of our fingers, perpendicular to the plane of the coil, and in the direction of the thumb if the current is flowing counterclockwise when viewed from the +z-axis.

The torque is exerting a counterclockwise force on the coil. Therefore, the coil will rotate counterclockwise as seen from the +z axis.

To learn about torque here:

https://brainly.com/question/17512177

#SPJ11

Consider a circular sunspot, which has a temperature of 4000 K while the rest of the surface of the Sun has a temperature of 6000 K. a) What is the wavelength of maximum emission of the sunspot? HINT: This is once again an application of Wien's Law. It will tell us the "color" of the sunspot. b) Compare the luminosity of this sunspot to that of a section of the Sun with the same area HINT: Here we use the Luminosity formula. Remember to show all your work! c) The sunspot is so dark because it is seen against the backdrop of the much brighter Sun. Describe what the sunspot would look like if it were separated from the Sun. HINT: Use your answers from the previous two sections to put together an answer for this question. d) What is the surface area of this sunspot, if it has the same radius as the Earth, in square centimeters? What is the area of a light bulb whose filament is 2 cm in radius? How does the luminosity of the sunspot compare to that of the light bulb, if they both have the same temperature? HINT: Consider both objects to be CIRCLES for purposes of their surface areas. Again we use the Luminosity formula.

Answers

A circular sunspot, which has a temperature of 4000 K while the rest of the surface of the Sun has a temperature of 6000 K. (a)The wavelength of maximum emission of the sunspot is approximately 7.245 x 10^-7 meters.(b)The luminosity of the sunspot is approximately 0.346 times the luminosity of a section of the Sun with the same area.(c) The luminosity of the sunspot is equal to the luminosity of the light bulb, assuming they both have the same temperature.

a) To find the wavelength of maximum emission (λmax) of the sunspot, we can use Wien's displacement law, which states that the wavelength of maximum emission is inversely proportional to the temperature. The equation for Wien's law is:

λmax = (b / T)

Where:

λmax = wavelength of maximum emission

b = Wien's displacement constant (approximately 2.898 x 10^-3 m·K)

T = temperature in Kelvin

For the sunspot, T = 4000 K. Plugging this into the equation:

λmax = (2.898 x 10^-3 m·K) / (4000 K)

Calculating:

λmax ≈ 7.245 x 10^-7 m

Therefore, the wavelength of maximum emission of the sunspot is approximately 7.245 x 10^-7 meters.

b) To compare the luminosity of the sunspot to a section of the Sun with the same area, we need to use the luminosity formula:

L = σ × A × T^4

Where:

L = luminosity

σ = Stefan-Boltzmann constant (approximately 5.67 x 10^-8 W/(m^2·K^4))

A = surface area

T = temperature in Kelvin

Let's assume the area of the sunspot is A1 and the area of the section of the Sun is A2 (both have the same area). The luminosity of the sunspot (L1) is given by:

L1 = σ × A1 × T1^4

And the luminosity of the section of the Sun (L2) is given by:

L2 = σ × A2 × T2^4

Since the two areas are the same, A1 = A2. We can compare the luminosity ratio:

L1 / L2 = (σ × A1 × T1^4) / (σ × A2 × T2^4)

Canceling out the common terms:

L1 / L2 = (T1^4) / (T2^4)

Substituting the temperatures:

T1 = 4000 K (sunspot temperature)

T2 = 6000 K (rest of the Sun's surface temperature)

Calculating:

L1 / L2 = (4000 K)^4 / (6000 K)^4

L1 / L2 ≈ 0.346

Therefore, the luminosity of the sunspot is approximately 0.346 times the luminosity of a section of the Sun with the same area.

c) The sunspot appears darker because its temperature is lower than the surrounding area on the Sun's surface. Since it has a lower temperature, it emits less radiation and appears darker against the backdrop of the brighter Sun. If the sunspot were separated from the Sun, it would still appear as a dark circular region against the background of the brighter sky.

d) The surface area of the sunspot, assuming it has the same radius as the Earth, can be calculated using the formula for the surface area of a sphere:

A = 4πr^2

Where:

A = surface area

r = radius

Let's assume the radius of the sunspot is R (equal to the radius of the Earth), so the surface area (A1) is given by:

A1 = 4πR^2

For the light bulb, with a filament radius of 2 cm, the surface area (A2) is given by:

A2 = 4π(2 cm)^2

To compare the luminosity of the sunspot and the light bulb, we can use the same luminosity ratio as before:

L1 / L2 = (T1^4) / (T2^4)

Since both objects have the same temperature, T1 = T2. Therefore:

L1 / L2 = (T1^4) / (T1^4)

L1 / L2 = 1

Therefore, the luminosity of the sunspot is equal to the luminosity of the light bulb, assuming they both have the same temperature.

To learn more about Wien's displacement law visit: https://brainly.com/question/31780394

#SPJ11

With the sinusoidal voltage source shown, what is the rms current of this circuit? (select closest ans With the sinusoidal voltage source shown, what is the rms current of this circuit? (select closest answer 10 A 13 A 14 A 19 A 21 A

Answers

The closest answer to the rms current of the circuit is 14 A.

The rms current of the given circuit can be calculated by using the following formula:`Irms = Vrms / R`where `Vrms` is the rms voltage across the resistor `R`.Here, the rms voltage can be calculated using the given peak voltage. As the waveform is a sinusoid, the rms voltage can be calculated by dividing the peak voltage by √2.So, `Vrms = Vp / √2 = 100 / √2 = 70.7 V`.Now, we can find the rms current by using the formula: `Irms = Vrms / R = 70.7 / 5 = 14.14 A`.Therefore, the closest answer to the rms current of the circuit is 14 A.

Learn more about voltage here,

https://brainly.com/question/27861305

#SPJ11

Select one correct answer from the available options in the below parts. a) You shine monochromatic light of wavelength ⋀ through a narrow slit of width b = ⋀ and onto a screen that is very far away from the slit. What do you observe on the screen? A. Two bright fringes and three dark fringes B. one bright band C. A series of bright and dark fringes with the central bright fringe being wider and brighter than the other bright fringes D. A series of bright and dark fringes that are of equal widths b) What does it mean for two light waves to be in phase ? A. The two waves reach their maximum value at the same time and their minimum value at the same time B. The two waves have the same amplitude C. The two waves propagate in the same direction D. The two waves have the same wavelength and frequency

Answers

a) The correct answer is C. A series of bright and dark fringes with the central bright fringe being wider and brighter than the other bright fringes.

b) The correct answer is A. The two waves reach their maximum value at the same time and their minimum value at the same time.

The brilliant middle fringe is a result of light's beneficial interference. The two light sources (slits) are symmetrically closest to the centre fringe as well. As one walks out from the core, the fringes continue to progressively become darker and the central fringe is the brightest.

To know more about central bright fringe

https://brainly.com/question/30880851

#SPJ11

When both focii of an ellipse are located at exactly the same position, then the eccentricity of must be: a) 0.5 b) 0.75 c) 0
d) 0.25
e) 1.0

Answers

When both foci of an ellipse coincide at the same position, the eccentricity of the ellipse is 0, and it becomes a circle. The answer is (c) 0.

When both foci of an ellipse are located at exactly the same position, the eccentricity of the ellipse must be 0. An ellipse is a set of points whose distance from two fixed points (foci) sum to a fixed value. The distance between the foci is the major axis length, and the distance between the vertices is the minor axis length. The formula for an ellipse is (x−h)2/a2+(y−k)2/b2=1.

The distance between the foci is 2c, which is always less than the length of the major axis. The relationship between the semi-major axis a and semi-minor axis b of an ellipse is given by a2−b2=c2. An ellipse's eccentricity is defined as the ratio of the distance between the foci to the length of the major axis, with e=c/a. When the two foci coincide at the same position, the eccentricity of the ellipse is 0, and the ellipse becomes a circle.

The answer is (c) 0.

Learn more about eccentricity of the ellipse

https://brainly.com/question/8047982

#SPJ11

What is the escape speed from an asteroid of diameter 395 km with a density of 2180 kg/m³ ? ►View Available Hint(s) k

Answers

The escape speed from an asteroid with a diameter of 395 km and a density of [tex]2180 kg/m^3[/tex] is approximately 2.43 km/s.

To calculate the escape speed, we need to use the formula [tex]v = \sqrt(2GM/r)[/tex], where v is the escape speed, G is the gravitational constant (approximately [tex]6.67430 * 10^-^1^1 N(m/kg)^2)[/tex], M is the mass of the asteroid, and r is the radius of the asteroid.

First, we calculate the mass of the asteroid using the formula [tex]M = (4/3)\pi r^3\rho[/tex], where ρ is the density of the asteroid. Given that the diameter is 395 km, the radius can be calculated as r = (395 km)/2 = 197.5 km. Converting the radius to meters, we have r = 197,500 m. Now we can calculate the mass using the density value of [tex]2180 kg/m^3[/tex].

Plugging these values into the formula, we find the mass to be approximately [tex]2.754 * 10^2^0[/tex] kg. Finally, we can substitute the values of G, M, and r into the escape speed formula to obtain the result. The escape speed from the asteroid is approximately 2.43 km/s.

Learn more about escape speed here:

https://brainly.com/question/28608063

#SPJ11

A current loop having area A=4.0m^2 is moving in a non-uniform magnetic field as shown. In 5.0s it moves from an area having magnetic field magnitude Bi=0.20T to having a greater magnitude Bf
The average magnitude of the induced emf in the loop during this journey is 2.0 V
Find Bf

Answers

The magnetic field magnitude, Bf, is 2.5 T.

Given,A current loop having area A=4.0m² is moving in a non-uniform magnetic field as shown. In 5.0s it moves from an area having magnetic field magnitude Bi=0.20T to having a greater magnitude Bf. The average magnitude of the induced emf in the loop during this journey is 2.0 V. We have to find Bf.

The formula for the average magnitude of the induced emf in the loop is:

Average magnitude of induced emf = ΔΦ/ΔtHere, the change in magnetic flux is given by,ΔΦ = Bf × A - Bi × A= (Bf - Bi) × A

Also, time duration of the journey, Δt = 5.0 s

Therefore, the above formula can be rewritten as,2 = (Bf - 0.20) × 4.0/5.0

Simplifying the above equation for Bf, we get,Bf = (2 × 5.0/4.0) + 0.20= 2.5 V

The magnetic field magnitude, Bf, is 2.5 T.

The answer is, Bf = 2.5T

Know more about magnetic field here,

https://brainly.com/question/14848188

#SPJ11

Jeff of the Jungle swings on a 7.6-m vine that initially makes an angle of 42 ∘
with the vertical. Part A If Jeft starts at rest and has a mass of 68 kg, what is the tension in the vine at the lowest point of the swing?

Answers

At the lowest point of the swing, the tension in the vine supporting Jeff of the Jungle, who has a mass of 68 kg, is approximately 666.4 Newtons.

To find the tension in the vine at the lowest point of the swing, we need to consider the forces acting on Jeff of the Jungle. At the lowest point, two forces are acting on him: the tension in the vine and his weight.

The weight of Jeff can be calculated using the formula W = mg, where m is the mass of Jeff (68 kg) and g is the acceleration due to gravity (approximately 9.8 m/s²). Therefore, W = 68 kg × 9.8 m/s² = 666.4 Newtons.

Since Jeff is at the lowest point of the swing, the tension in the vine must balance his weight.

Learn more about tension here:

https://brainly.com/question/29763438

#SPJ11

Consider to boil a 1 litre of water (25ºC) to vaporize within 10 min using concentrated sunlight.
Calculate the required minimum size of concentrating mirror.
Here, the specific heat is 4.19 kJ/kg∙K and the latent heat of water is 2264.71 kJ/kg.
Solar energy density is constant to be 1 kWm-2.

Answers

To boil 1 liter of water (25ºC) to vaporize within 10 minutes using concentrated sunlight, the required minimum size of a concentrating mirror is approximately 4.3 square meters.

To calculate the required minimum size of the concentrating mirror, consider the energy required to heat the water and convert it into vapour. The specific heat of water is 4.19 kJ/kg.K, which means it takes 4.19 kJ of energy to raise the temperature of 1 kg of water by 1 degree Celsius.

The latent heat of water is 2264.71 kJ/kg, which represents the energy required to change 1 kg of water from liquid to vapour at its boiling point.

First, determine the mass of 1 litre of water. Since the density of water is 1 kg/litre, the mass will be 1 kg. To raise the temperature of this water from [tex]25^0C[/tex] to its boiling point, which is [tex]100^0C[/tex],

calculate the energy required using the specific heat formula:

Energy = mass × specific heat × temperature difference

[tex]1 kg * 4.19 kJ/kg.K * (100^0C - 25^0C)\\= 1 kg * 4.19 kJ/kg.K * 75^0C\\= 313.875 kJ[/tex]

To convert this water into vapour, calculate the energy required using the latent heat formula:

Energy = mass × latent heat

= 1 kg × 2264.71 kJ/kg

= 2264.71 kJ

The total energy required is the sum of the energy for heating and vaporization:

Total energy = 313.875 kJ + 2264.71 kJ

= 2578.585 kJ

Now, determine the time available to supply this energy. 10 minutes, which is equal to 600 seconds. The solar energy density is given as 1 kWm-2, which means that every square meter receives 1 kW of solar energy. Multiplying this by the available time gives us the total energy available:

Total available energy = solar energy density * time

= [tex]1 kW/m^2 * 600 s[/tex]

= 600 kWs

= 600 kJ

To find the minimum size of the concentrating mirror, we divide the total energy required by the total available energy:

Minimum mirror size = total energy required / total available energy

= 2578.585 kJ / 600 kJ

= [tex]4.3 m^2[/tex]

Therefore, approximately 4.3 square meters for the concentrating mirror is required.

Learn more about concentrating mirror here:

https://brainly.com/question/31588513

#SPJ11

Tuning fork A has a frequency of 440 Hz. When A and a second tuning fork B are struck simultaneously, 7 beats per second are heard. When a small mass is added to one of the tines of B, the two forks struck simultaneously produce 9 beats per second. The original frequency of tuning fork B was A) 447 Hz B) 456 Hz C) 472 Hz D) 433 Hz E) 424 Hz

Answers

Tuning fork A has a frequency of 440 Hz. When A and a second tuning fork B are struck simultaneously, 7 beats per second are heard. The beat frequency between two tuning forks is equal to the difference in their frequencies.  the original frequency of tuning fork B is 433 Hz (option D).

Let's assume the original frequency of tuning fork B is fB. When the two tuning forks are struck simultaneously, 7 beats per second are heard. This means the beat frequency is 7 Hz. So, the difference between the frequencies of the two forks is 7 Hz:

|fA - fB| = 7 Hz

Now, when a small mass is added to one of the tines of tuning fork B, the beat frequency becomes 9 Hz. This implies that the new frequency difference between the forks is 9 Hz:

|fA - (fB + Δf)| = 9 Hz

Subtracting the two equations, we get:

|fB + Δf - fB| = 9 Hz - 7 Hz

|Δf| = 2 Hz

Since Δf represents the change in frequency caused by adding the mass, we know that Δf = fB - fB_original.

Substituting the values, we have:

|fB - fB_original| = 2 Hz

Now, we need to examine the answer choices to find the original frequency of tuning fork B. Looking at the options, we can see that D) 433 Hz satisfies the equation:

|fB - 433 Hz| = 2 Hz

Therefore, the original frequency of tuning fork B is 433 Hz (option D).

Learn more about tuning fork here:

https://brainly.com/question/30442128

#SPJ11

The component of the external magnetic field along the central axis of a 46 turn circular coil of radius 16.0 cm decreases from 2.40 T to 0.100 T in 1.80 s. If the resistance of the coil is R=6.00Ω, what is the magnitude of the induced current in the coil? magnitude: What is the direction of the current if the axial component of the field points away from the viewer? clockwise counter-clockwise

Answers

the direction of the induced current in the coil is clockwise.  The magnitude of the induced current in the coil, we can use Faraday's law of electromagnetic induction, which states that the induced electromotive force (EMF) in a closed loop is equal to the negative rate of change of magnetic flux through the loop.

The magnitude of the induced current can then be found using Ohm's law (V = I * R), where V is the induced EMF and R is the resistance of the coil. First, let's calculate the change in magnetic flux through the coil. The magnetic flux is given by the product of the magnetic field component along the central axis (B) and the area (A) of the coil. Since the coil is circular, the area can be calculated using the formula A = π * [tex]r^2[/tex], where r is the radius of the coil.

Initial flux, Φ_i =[tex]B_i[/tex]* A = (2.40 T) * (π * ([tex]0.16 m)^2)[/tex]

Final flux, Φ_f = [tex]B_f[/tex] * A = (0.100 T) * (π * ([tex]0.16 m)^2)[/tex]

The change in flux, ΔΦ = Φ_f - Φ_i

Next, we need to calculate the rate of change of flux, which is equal to the change in flux divided by the time interval:

Rate of change of flux, ΔΦ/Δt = (ΔΦ) / (1.80 s)

Now, we can calculate the induced EMF using Faraday's law:

Induced EMF, V = -(ΔΦ/Δt)

Finally, we can use Ohm's law to calculate the magnitude of the induced current:

Magnitude of induced current, I = V / R

Let's plug in the given values and calculate:

Initial flux, Φ_i = (2.40 T) * (π * ([tex]0.16 m)^2[/tex]) = 0.768π [tex]T·m^2[/tex]

Final flux, Φ_f = (0.100 T) * (π * ([tex]0.16 m)^2[/tex]) = 0.0256π T·[tex]m^2[/tex]

Change in flux, ΔΦ = Φ_f - Φ_i = (0.0256π - 0.768π) T·[tex]m^2[/tex]= -0.7424π T·[tex]m^2[/tex]

Rate of change of flux, ΔΦ/Δt = (-0.7424π T·[tex]m^2[/tex]) / (1.80 s) ≈ -1.297π T·[tex]m^2[/tex]

Induced EMF, V = -(ΔΦ/Δt) ≈ 1.297π T·[tex]m^2/s[/tex]

Magnitude of induced current, I = V / R ≈ (1.297π T·[tex]m^2/s[/tex]/ (6.00 Ω) ≈ 0.683π A

Therefore, the magnitude of the induced current in the coil is approximately 0.683π Amperes.

To determine the direction of the current, we can use Lenz's law, which states that the induced current will flow in a direction such that it opposes the change in magnetic flux that caused it. Since the axial component of the field is pointing away from the viewer, which corresponds to a decreasing magnetic field, the induced current will flow in the clockwise direction to oppose this decrease.

So, the direction of the induced current in the coil is clockwise.

Learn more about induction here:

https://brainly.com/question/29981117

#SPJ11

The value of current in a 73- mH inductor as a function of time is: I=7t 2
−5t+13 where I is in amperes and t is in seconds. Find the magnitude of the induced emf at t=6 s. Write your answer as the magnitude of the emf in volts. Question 7 1 pts The circuit shows an R-L circuit in which a battery, switch, inductor and resistor are in series. The values are: resistor =52Ω, inductor is 284mH, battery is 20 V. Calculate the time after connecting the switch after which the current will reach 42% of its maximum value. Write your answer in millseconds.

Answers

Part 1: The magnitude of the induced emf at t = 6 seconds is 5.767 V.

Part 2: The time after connecting the switch after which the current will reach 42% of its maximum value is 8.9 ms.

Part 1 :

The current as a function of time is given by, I = 7t²−5t+13

Given, t = 6 secondsTherefore, the current at t = 6 seconds is, I = 7(6)² - 5(6) + 13I = 264 A

Therefore, the magnitude of the induced emf is given by,ε = L(dI/dt)At t = 6 seconds, I = 264

Therefore, dI/dt = 14t - 5Therefore, dI/dt at t = 6 seconds is, dI/dt = 14(6) - 5dI/dt = 79

The inductance L = 73 mH = 0.073 H

Therefore, the magnitude of the induced emf at t = 6 seconds is,ε = L(dI/dt)ε = 0.073(79)ε = 5.767 V

Therefore, the magnitude of the induced emf at t = 6 seconds is 5.767 V.

Part 2:

Given, resistor = 52 Ωinductor, L = 284 mH = 0.284 Hbattery, V = 20 VWhen the switch is closed, the inductor starts to charge, and the current increases with time until it reaches a maximum value.

Let this current be I_max.

After closing the switch, the current at any time t is given by, I = (V/R) (1 - e^(-Rt/L))

Where V is the battery voltage, R is the resistance of the resistor, L is the inductance and e is the base of the natural logarithm.

The maximum current that can flow in the circuit is given by, I_max = V/RTherefore, I/I_max = (1 - e^(-Rt/L))

So, when I/I_max = 0.42 (42% of its maximum value), e^(-Rt/L) = 0.58

Taking natural logarithm on both sides, we get,-Rt/L = ln(0.58)t = (-L/R) ln(0.58)t = (-0.284/52) ln(0.58)t = 0.0089 s = 8.9 ms

Therefore, the time after connecting the switch after which the current will reach 42% of its maximum value is 8.9 ms.

To learn about magnitude here:

https://brainly.com/question/30337362

#SPJ11

two light bulbs are connected separately across two 20 -V batteries as shown in the figure. Bulb A is rated as 20W, 20V and bulb B rates at 60W, 20V
A- which bulb has larger resistance
B which bulb will consume 1000 J of energy in shortest time

Answers

A) bulb A has a larger resistance than bulb B. B) bulb B will consume 1000 J of energy in the shortest time, approximately 16.67 seconds.  

A) To determine which bulb has a larger resistance, we can use Ohm's law, which states that resistance is equal to voltage divided by current (R = V/I).

For bulb A, since it is rated at 20W and 20V, we can calculate the current using the formula for power: P = IV.

20W = 20V * I

I = 1A

For bulb B, since it is rated at 60W and 20V, the current can be calculated as:

60W = 20V * I

I = 3A

Now we can compare the resistances of the bulbs using Ohm's law:

For bulb A, R = 20V / 1A = 20 ohms

For bulb B, R = 20V / 3A ≈ 6.67 ohms

Therefore, bulb A has a larger resistance than bulb B.

B) To determine which bulb will consume 1000 J of energy in the shortest time, we can use the formula for electrical energy:

Energy = Power * Time

For bulb A, since it consumes 20W, we can rearrange the formula to solve for time:

Time = Energy / Power = 1000 J / 20W = 50 seconds

For bulb B, since it consumes 60W, the time can be calculated as:

Time = Energy / Power = 1000 J / 60W ≈ 16.67 seconds

Therefore, bulb B will consume 1000 J of energy in the shortest time, approximately 16.67 seconds.

Learn more about resistance

https://brainly.com/question/30691700

#SPJ11

A skier has mass m = 80kg and moves down a ski slope with inclination 0 = 4° with an initial velocity of vo = 26 m/s. The coeffcient of kinetic friction is μ = 0.1. ▼ Part A How far along the slope will the skier go before they come to a stop? Ax = —| ΑΣΦ ? m

Answers

The skier will go approximately 33.47 meters along the slope before coming to a stop.

To determine how far along the slope the skier will go before coming to a stop, we need to analyze the forces acting on the skier.

The force of gravity acting on the skier can be divided into two components: the force parallel to the slope (mg sin θ) and the force perpendicular to the slope (mg cos θ), where m is the mass of the skier and θ is the inclination of the slope.

The force of kinetic friction acts in the opposite direction of motion and can be calculated as μN, where μ is the coefficient of kinetic friction and N is the normal force. The normal force can be calculated as mg cos θ.

Since the skier comes to a stop, the net force acting on the skier is zero. Therefore, we can set up the following equation:

mg sin θ - μN = 0

Substituting the expressions for N and mg cos θ, we have:

mg sin θ - μ(mg cos θ) = 0

Simplifying the equation:

mg(sin θ - μ cos θ) = 0

Now we can solve for the distance along the slope (x) that the skier will go before coming to a stop.

The equation for the distance is given by:

x = (v₀²) / (2μg)

where v₀ is the initial velocity of the skier and g is the acceleration due to gravity.

Given:

m = 80 kg (mass of the skier)

θ = 4° (inclination of the slope)

v₀ = 26 m/s (initial velocity of the skier)

μ = 0.1 (coefficient of kinetic friction)

g ≈ 9.8 m/s² (acceleration due to gravity)

Substituting the values into the equation:

x = (v₀²) / (2μg)

x = (26²) / (2 * 0.1 * 9.8)

x ≈ 33.47 meters

To know more about kinetic friction

https://brainly.com/question/30886698

#SPJ11

The potential difference between the accelerator plates of a television is 25 kV. If the distance between the plates is 1.5 cm, find the magnitude of the uniform electric field in the region of the plates.

Answers

The magnitude of the uniform electric field in the region of the plates is 1666666.67 V/m.

Given potential difference is 25kV = 25 x 10^3 V and distance between the plates is 1.5 cm = 1.5 x 10^-2 m. The electric field between the plates is uniform. Hence we can apply the following formula: Electric field (E) = Potential difference (V) / distance between the plates (d)Substituting the given values, we get: E = V/d = 25 x 10^3 / 1.5 x 10^-2 = 1666666.67 V/m.

Learn more about the electric field:
https://brainly.com/question/19878202

#SPJ11

The density of iron is 7.9 x 10³ kg/m². Determine the mass m of a cube of iron that is 2.0 cm x 2.0 cm x 2.0 cm in size.

Answers

The mass of a cube of iron that is 2.0 cm × 2.0 cm × 2.0 cm in size is 63 g. Given the density of iron, 7.9 × 10³ kg/m³.

The volume of the cube can be calculated as follows:

Volume of the cube = (2.0 cm)³ = 8.0 cm³ = 8.0 × 10⁻⁶ m³

The mass of the cube can be calculated using the following equation:

Density = Mass/Volume

Let's substitute the given values:

Density = 7.9 × 10³ kg/m³

Volume = 8.0 × 10⁻⁶ m³

Let's calculate the mass by rearranging the above formula.

Mass = Density x Volume

Mass = 7.9 × 10³ kg/m³ x 8.0 × 10⁻⁶ m³

Therefore, Mass = 0.0632 kg ≈ 63 g

To learn more about density of iron, refer:-

https://brainly.com/question/29596677

#SPJ11

The Sidereal day is
-different than the Solar day due to the fact that the Earth revolves around the Sun.
-different than the Solar day due to the fact that the Earth has a nearly circular orbit.
-different than the Solar day due to the fact that the Earth is tilted on its axis.
-different than the Solar day due to the fact that the stars’ light takes many years–sometimes billions of years–to reach Earth.

Answers

The Sidereal day is different than the Solar day due to the fact that the Earth revolves around the Sun.

The period it takes for a planet to complete one rotation about its axis, as measured against the stars, is known as a sidereal day. In general, the length of a sidereal day varies depending on the planet's rotation speed. A sidereal day on Earth, for example, is around 23 hours, 56 minutes, and 4 seconds long. The sidereal day is different from the solar day due to the fact that the Earth revolves around the Sun. The period it takes for a planet to complete one rotation about its axis, as measured against the Sun, is known as a solar day. The length of a solar day on Earth is around 24 hours long.

Since the Earth's rotation rate varies throughout the year due to its elliptical orbit around the Sun, a solar day is not exactly 24 hours long every day of the year. However, its average length over the course of a year is roughly 24 hours. The difference between a sidereal and solar day is that the Earth rotates on its axis in the same direction as it orbits the Sun, resulting in a small difference in its position each day. As a result, the Earth must rotate slightly more than one full turn for the Sun to return to the same apparent position in the sky.

The sidereal day is the time it takes for the Earth to complete one full rotation about its axis with respect to the stars.

Learn more about elliptical orbit here:

brainly.com/question/13800169

#SPJ11

At what separation distance do two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N?

Answers

The separation distance between two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N is 1.9 × 10⁻⁴ m.

The separation distance between two-point charges that exert a force on each other can be calculated by Coulomb's law states that the force of attraction or repulsion between two point charges is directly proportional to the product of the magnitude of the charges and inversely proportional to the square of the separation distance between them. The Coulomb's law can be expressed by the given formula:

F = k(q₁q₂/r²), Where,

F = force exerted between two-point charges

q₁ and q₂ = magnitude of the two-point charges

k = Coulomb's constant = 9 × 10⁹ N m² C⁻².

r = separation distance between two-point charges

On substituting the given values in Coulomb's law equation:

F = k(q₁q₂/r²)

565 = 9 × 10⁹ × (2 × 10⁻⁶) × (3 × 10⁻⁶)/r²

r² = 9 × 10⁹ × (2 × 10⁻⁶) × (3 × 10⁻⁶)/565

r = 1.9 × 10⁻⁴ m

Thus, the separation distance between two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N is 1.9 × 10⁻⁴ m.

Learn more about force of attraction https://brainly.com/question/16871517

#SPJ11

What is the total translational kinetic energy of the gas in a room filled with nitrogen at a pressure of 1.00 atm and a temperature of 20.7°C? The dimensions of the room are 4.60 m ´ 5.20 m ´ 8.80 m. Boltzmann constant = 1.38 × 10⁻²³ J/K, R = 8.314 J/mol ∙ K, and NA = 6.02 × 10²³ molecules/mol. (1 atm = 1.013 ´ 10⁵ Pa)

Answers

The total translational kinetic energy of the gas in the room filled with nitrogen at the given conditions is indeed 1.71 x 10⁶ J.

The total translational kinetic energy of the gas in a room filled with nitrogen at a pressure of 1.00 atm and a temperature of 20.7°C (T = 293.85 K) can be determined as follows:

1. Calculate the volume of the room. The volume of the room is given as 4.60 m x 5.20 m x 8.80 m = 204.416 m3.

2. Convert the pressure from atm to Pa. 1 atm = 1.013 x 10⁵ Pa. Thus, the pressure is 1.00 atm x 1.013 x 10⁵ Pa/atm = 1.013 x 10⁵ Pa.

3. Determine the number of moles of nitrogen gas in the room.

PV = nRT,

In the given context, the variables used in the gas law equation are defined as follows: P represents the pressure, V stands for the volume, n denotes the number of moles, R is the gas constant, and T represents the temperature measured in Kelvin.

n = PV/RT

n = (1.013 x 105 Pa) x (204.416 m3) / [(8.314 J/mol K) x (293.85 K)]

n = 847.57 mol

4. Determine the mass of nitrogen gas in the room. Nitrogen gas has a molar mass of 28.0134 grams per mole.

m = n x mm = 847.57 mol x 28.0134 g/mol = 23,707.1 g = 23.7 kg

5. Calculate the mean translational kinetic energy of a nitrogen molecule.

The average translational kinetic energy of a gas molecule is given by KE = (3/2)kT, where k is the Boltzmann constant.

KE = (3/2)kT

KE = (3/2)(1.38 x 10⁻²³ J/K)(293.85 K)

KE = 6.21 x 10⁻²¹ J

6. Determine the total translational kinetic energy of the nitrogen gas in the room.The total translational kinetic energy of the nitrogen gas in the room is given by:

KEtotal = (1/2)mv2

KEtotal = (1/2)(23.7 kg)(N/v)2N/v = √((2KEtotal)/m) = √((2 x 6.21 x 10-21 J)/(28.0134 x 10-3 kg/mol x NA)) = 492.74 m/s

KEtotal = (1/2)(23.7 kg)(492.74 m/s)2

KEtotal = 1.71 x 10⁶ J

Therefore, the total translational kinetic energy of the gas in the room filled with nitrogen at a pressure of 1.00 atm and a temperature of 20.7°C is 1.71 x 10⁶ J.

Learn more about kinetic energy at: https://brainly.com/question/8101588

#SPJ11

A circular loop of wire with a radius 7.932 cm is placed in a magnetic field such that it induces an EMF of 3.9 V in the cir- cular wire loop. If the cross-sectional diame- ter of the wire is 0.329 mm, and the wire is made of a material which has a resistivity of 1.5 × 10⁻⁶ Nm, how much power is dissipated in the wire loop? Answer in units of W.

Answers

Radius of the circular loop, r = 7.932 cm Cross-sectional diameter of the wire, d = 0.329 mm Resistivity of the material, ρ = 1.5 × 10⁻⁶ Nm EMF induced in the circular wire loop, E = 3.9 V

We can find out the current in the circular loop of wire using the formula,

EMF = I × R where I is the current flowing through the wire and R is the resistance of the wire. R = ρl / A Diameter of the wire, d = 0.329 mm Radius of the wire, r' = 0.329 / 2 = 0.1645 mm Area of cross-section of the wire, A = πr'² = π(0.1645 × 10⁻³ m)² = 2.133 × 10⁻⁷ m² Length of the wire, l = 2πr = 2π(7.932 × 10⁻² m) = 0.4986 m

Resistance of the wire, R = (1.5 × 10⁻⁶ Nm × 0.4986 m) / 2.133 × 10⁻⁷ m² = 35.108 ΩI = E / R = 3.9 V / 35.108 Ω = 0.111 A

The magnetic field, B = E / A = 3.9 V / 2.133 × 10⁻⁷ m² = 1.829 × 10⁴ T

Power, P = I²R = (0.111 A)² × 35.108 Ω = 0.0436 W

Therefore, the power dissipated in the wire loop is 0.0436 W.

Learn more here: https://brainly.com/question/13160823

#SPJ11

Find the magnitude of the magnetic field at the center of a 45 turn circular coil with radius 16.1 cm, when a current of 3.47 A flows in it. magnitude:

Answers

The magnitude of the magnetic field at the center of a 45 turn circular coil with radius 16.1 cm  is approximately 4.83 × 10^-5 Tesla.

To find the magnitude of the magnetic field at the center of a circular coil, we can use the formula for the magnetic field inside a coil:

B = (μ₀ * N * I) / (2 * R)

where B is the magnetic field, μ₀ is the permeability of free space (4π × 10^-7 T·m/A), N is the number of turns in the coil, I is the current flowing through the coil, and R is the radius of the coil.

In this case, the coil has 45 turns, a radius of 16.1 cm (or 0.161 m), and a current of 3.47 A.

Plugging in the values into the formula, we have:

B = (4π × 10^-7 T·m/A) * (45) * (3.47 A) / (2 * 0.161 m)

Simplifying the equation, we find:

B ≈ 4.83 × 10^-5 T

Therefore, the magnitude of the magnetic field at the center of the coil is approximately 4.83 × 10^-5 Tesla.

Learn more about magnetic field here:

https://brainly.com/question/30331791

#SPJ11

A photon with a frequency of 10 ∧
15 Hz has a wavelength of and an energy of 100 nm;3×10 ∧
23 J 300 nm;3×10 ∧
23 J 100 nm;6.6×10 ∧
−19 J 300 nm;6.6×10 ∧
−19 J

Answers

The answer is 300 nm;6.6×10 ∧−19J. A photon with a frequency of 10^15 Hz has a wavelength of approximately 300 nm and an energy of approximately 6.6 x 10^-19 J.

The relationship between the frequency (f), wavelength (λ), and energy (E) of a photon is given by the equation:

E = hf

where h is Planck's constant (h ≈ 6.626 x 10^-34 J·s).

To calculate the wavelength of the photon, we can use the formula:

λ = c / f

where c is the speed of light (c ≈ 3 x 10^8 m/s).

Given the frequency of the photon as 10^15 Hz, we can substitute the values into the formula:

λ = (3 x 10^8 m/s) / (10^15 Hz)

  = 3 x 10^-7 m

  = 300 nm

To calculate the energy of the photon, we can use the equation E = hf.

Given the frequency of the photon as 10^15 Hz and the value of Planck's constant, we can substitute the values into the equation:

E = (6.626 x 10^-34 J·s) * (10^15 Hz)

  = 6.626 x 10^-19 J

Therefore, a photon with a frequency of 10^15 Hz has a wavelength of approximately 300 nm and an energy of approximately 6.6 x 10^-19 J.

Learn more about wavelength here:

https://brainly.com/question/19922131

#SPJ11

a 2.0 kg book sits on a table. a) the net vertical force on the book is

Answers

Since the book is at rest on the table, its acceleration is zero, so the net force on the book must be zero. Therefore, the magnitude of the support force must be equal to the magnitude of the book's weight, which is Fw=mg=(2kg)(10m/s2)=20N.

Question \| 1: What is weather? a) The outside conditions right now, b) The outside conditions over a lofe period of time. c) A tool to measure the outside weather conditions.

Answers

The question can be answered as: Weather is the state of the atmosphere at a specific place and time. It refers to the current conditions such as temperature, humidity, wind, precipitation, and air pressure

Weather refers to the condition of the atmosphere at a given place and time, especially as it relates to temperature, precipitation, and other features like cloudiness, humidity, wind, and air pressure. It refers to the current state of the atmosphere rather than the average conditions over an extended period of time.Weather is usually described in terms of variables such as temperature, humidity, atmospheric pressure, wind speed and direction, and precipitation. Measuring instruments, such as thermometers, barometers, hygrometers, and wind vanes, are used to collect data on these variables. They help in predicting, reporting, and analyzing weather patterns.

The question can be answered as: Weather is the state of the atmosphere at a specific place and time. It refers to the current conditions such as temperature, humidity, wind, precipitation, and air pressure. It is not just a tool to measure the outside conditions but it describes the atmosphere's current state and its fluctuations over short periods.

Learn more about Weather  :

https://brainly.com/question/32601421

#SPJ11

A long cylinder having a diameter of 2 cm is maintained at 600 °C and has an emissivity of 0.4. Surrounding the cylinder is another long, thin-walled concentric cylinder having a diameter of 6 cm and an emissivity of 0.2 on both the inside and outside surfaces. The assembly is located in a large room having a temperature of 27 °C. Calculate the net radiant energy lost by the 2-cm-diameter cylinder per meter of length. Also calculate the temperature of the 6-cm- diameter cylinder

Answers

The net radiant energy lost by the 2-cm-diameter cylinder per meter of length is X Joules. The temperature of the 6-cm-diameter cylinder is Y °C.

To calculate the net radiant energy lost by the 2-cm-diameter cylinder per meter of length, we need to consider the Stefan-Boltzmann law and the emissivities of both cylinders. The formula for net radiant heat transfer is given:

Q_net = ε1 * σ * A1 * (T1^4 - T2^4)

Where:

- Q_net is the net radiant energy lost per meter of length.

- ε1 is the emissivity of the 2-cm-diameter cylinder.

- σ is the Stefan-Boltzmann constant (5.67 x 10^-8 W/(m^2·K^4)).

- A1 is the surface area of the 2-cm-diameter cylinder.

- T1 is the temperature of the 2-cm-diameter cylinder.

- T2 is the temperature of the surroundings (27 °C).

To calculate the temperature of the 6-cm-diameter cylinder, we can use the formula for the net radiant energy exchanged between the two cylinders:

Q_net = ε1 * σ * A1 * (T1^4 - T2^4) = ε2 * σ * A2 * (T2^4 - T3^4)

Where:

- ε2 is the emissivity of the 6-cm-diameter cylinder.

- A2 is the surface area of the 6-cm-diameter cylinder.

- T3 is the temperature of the 6-cm-diameter cylinder.

By solving these equations simultaneously, we can find the values of Q_net and T3.

To know more about radiant energy click here:

https://brainly.com/question/31870099

#SPJ11

A long cylinder having a diameter of 2 cm is maintained at 600 °C and has an emissivity of 0.4. Surrounding the cylinder is another long, thin-walled concentric cylinder having a diameter of 6 cm and an emissivity of 0.2 on both the inside and outside surfaces. The assembly is located in a large room having a temperature of 27 °C. Calculate the net radiant energy lost by the 2-cm-diameter cylinder per meter of length. Also, calculate the temperature of the 6-cm-diameter cylinder

A ball of mass 0.125 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.700 m. What impulse was given to the ball by the floor? magnitude kg⋅m/s direction High-speed stroboscopic photographs show that the head of a 280−g golf club is traveling at 55 m/s just before it strikes a 46−g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 41 m/s. Find the speed of the golf ball just after impact. m/5

Answers

A ball of mass 0.125 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.700 m.   the magnitude of the impulse given to the ball by the floor is approximately 0.6975 kg⋅m/s.

To find the impulse given to the ball by the floor, we can use the principle of conservation of momentum. Since the ball is dropped from rest, its initial momentum is zero.

Given:

Mass of the ball, m = 0.125 kg

Initial height, h_i = 1.25 m

Final height, h_f = 0.700 m

First, we can calculate the initial velocity of the ball using the equation for potential energy:

mgh_i = (1/2)mv^2

0.125 kg * 9.8 m/s^2 * 1.25 m = (1/2) * 0.125 kg * v^2

v = √(2 * 9.8 m/s^2 * 1.25 m) ≈ 3.14 m/s

Next, we can calculate the final velocity of the ball using the equation for potential energy:

mgh_f = (1/2)mv^2

0.125 kg * 9.8 m/s^2 * 0.700 m = (1/2) * 0.125 kg * v^2

v = √(2 * 9.8 m/s^2 * 0.700 m) ≈ 2.44 m/s

The change in velocity, Δv, can be calculated by subtracting the initial velocity from the final velocity:

Δv = v_f - v_i

Δv = 2.44 m/s - (-3.14 m/s)

Δv ≈ 5.58 m/s

Finally, we can calculate the impulse using the equation:

Impulse = Δp = m * Δv

Impulse = 0.125 kg * 5.58 m/s ≈ 0.6975 kg⋅m/s

Therefore, the magnitude of the impulse given to the ball by the floor is approximately 0.6975 kg⋅m/s.

As for the direction, the impulse given by the floor acts in the opposite direction to the initial velocity, which is upward. Therefore, the direction of the impulse would be downward.

Learn more about principle of conservation of momentum. here:

https://brainly.com/question/29044668

#SPJ11

A diverging lens has a focal distance of -5cm. a) Using the lens equation, find the image and size of an object that is 2cm tall and it is placed 10cm from the lens. [5 pts] b) For the object in 2a) above, what are the characteristics of the image, real or virtual, larger, smaller or of the same size, straight up or inverted?

Answers

A diverging lens has a focal distance of -5cm. The focal length of the lens = -5 cm .characteristics of the image will be: Virtual image . Therefore, the image is 3cm tall.

The given diverging lens has a focal distance of -5 cm, and an object of 2cm tall is placed 10cm from the lens.

We need to find the image and the size of the object by using the lens equation.

Lens equation is given as: 1/v - 1/u = 1/f Where ,f is the focal length of the lens, v is the image distance, u is the object distance

Here, the focal length of the lens = -5 cm

Object distance = u = -10 cm (Negative sign indicates the object is in front of the lens)Height of the object = h = 2 cm

Let's calculate the image distance(v) by substituting the values in the lens equation.1/v - 1/-10 = 1/-5Simplifying the equation, we get, v = -15 cm

Since the image distance(v) is negative, the image is virtual, and the characteristics of the image will be: Virtual image

Larger than the object (since the object is placed beyond the focal point)Erect image (since the object is placed between the lens and the focal point)

Therefore, the image is 3cm tall.

Learn more about Virtual image here:

https://brainly.com/question/12538517

#SPJ11

Other Questions
Indicator microbes in environmental engineering have all of these characteristics except They are common in human fecal wastes They are not viruses They are common in drinking water They are easily measured using well tested laboratory methods In the film I Heart Hip-Hop in Morocco, DJ Key discusses the difficulties of being Muslim and being involved in hip-hop as some elements of hip-hop culture are forbidden in the Islamic faith. Using the knowledge gathered from viewing the film, Swedenburg's chapter "Islamic Hip-Hop versus Islamophobia," and previous works from this semester, discuss what it is about hip-hop that makes it such an appealing vessel for challenging Islamophobia that individuals of Islamic faith continue to engage in the culture despite the difficulties of navigating both their religion and hip-hop affiliation. fter an installation of three phase induction motors, an engineer was required to carry out a testing and commissioning for the motors. He found that the 3-phase induction motor drew a high current at starting. (a) Briefly discuss with justification that the motors draw a high current at starting and (b) Suggest THREE possible effects due to the high starting current. As an engineer for a private contracting company, you are required to test some dry-type transformers to ensure they are functional. The nameplates indicate that all the transformers are 1.2 kVA, 120/480 V single phase dry type. (a) With the aid of a suitable diagram, outline the tests you would conduct to determine the equivalent circuit parameters of the single-phase transformers. (6 marks) (b) The No-Load and Short Circuit tests were conducted on a transformer and the following results were obtained. No Load Test: Input Voltage = 120 V, Input Power = 60 W, Input Current = 0.8 A Short Circuit Test (high voltage side short circuited): Input Voltage = 10 V, Input Power = 30 W, Input Current = 6.0 A Calculate R, X, R and X (6 marks) eq eq (c) You are expected to predict the transformers' performance under loading conditions for a particular installation. According to the load detail, each transformer will be loaded by 80% of its rated value at 0.8 power factor lag. If the input voltage on the high voltage side is maintained at 480 V, calculate: i) The output voltage on the secondary side (4 marks) ii) The regulation at this load (2 marks) (4 marks) iii) The efficiency at this load (d) The company electrician wants to utilize three of these single-phase dry type transformers for a three-phase commercial installation. Sketch how these transformers would be connected to achieve a delta-wye three phase transformer. A cord is used to vertically lower an initially stationary block of mass M-12 kg at a constant downward acceleration of g/5. When the block has fallen a distance d = 3.9 m, find (a) the work done by the cord's force on the block. (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block. (Note: Take the downward direction positive) (a) Number ______________ Units ________________(b) Number ______________ Units ________________(c) Number ______________ Units ________________(d) Number ______________ Units ________________ A tension member is comprised of a W18 x 40 section of A36 steel, as shown. The top and bottom flanges have bolt holes as shown for 3/4" bolts. Determine the tensile strength of the member considering yielding of the gross cross sectional area AND rupture at the bolt holes. Use bolts hole clearance of 1/16". (20 pts) in. 2 in. 4 in. 4 in. O O O bf A metal exhibits allotropic transformation from fee to hcp. The lattice constant in the fee phase is 3.5 Angstroms. The hep phase has ideal packing and the same atomic radius as the fee phase. Draw the unit cells of fee and hep, and label clearly the lattice constant(s) in both structures. Show that for an hep structure with ideal packing, the ratio of the lattice constants c/a is 8/3. Calculate the lattice constants a and c of the hep phase of the metal. Show that the atomic packing factor of both the fee and hep phases is /(32). Using this voltmeter to read the voltage of a waveform with a form factor of 1.39 and crest factor of 1.78 will result with an error of: a.-3.2 % b.-3.6% c.-3.4% d.-3.8% Using this voltmeter to read the voltage of a waveform with a form factor of 1.39 and crest factor of 1.78 will result with an error of: a.-3.2% b.-3.6% c.-3.4% d.-3.8% Suppose the following statement is true Statement: > 6 z < 12. In each of the following check every answer that is correct. (There may be more than one.) What can be deduced from the statement and this additional fact: > > 7 ? A. z 12 B. Nothing C. > 6 D. z < 11 E. 6 F. None of the above What can be deduced from the statement and this additional fact: z = 11 ? A. Nothing B. x > 6 C. 6 D. z 12 E. z < 12 F. None of the above Find the first two random numbers (to the fifth digit after the decimal point) using Linear Congruential Generator with a = 4, m = 11, and b= 0 and 23 as the seed. 1.How and why does Gieseking make use of the concept of "constellations" to make sense of the production of queer urban space as a "queer feminist practice of resilience and resistance? Be specific to the various types of spaces (physical and not) she and her interlocuters describe.2. According to Gieseking and her interlocuters (people sharing their respective "mental maps), what does it mean to queer a space and why is this a political act?3. According to Gieseking and her interlocuters what is queer time and how does it shape/inform specifically lesbian or queer women and trans and gender non-conforming peoples' (TGNC) spaces?4. What is Gieseking's definition of a "star" and why is it significant to her argument?5. According to Gieseking, how does the racism that women of color and TGNC people face shape their "mental maps" of queer mobility and spaces compared to others?6.What is the significance of the two terms,"cruising" and" U-Haul"?7. If you drew your own "mental map," of a particular community or politics that is important to you, what spaces/places would it include? Question 2 (5 x 2 = 10 marks) What is the difference between Linear and Quadratic probing in resolving hash collision? a. Explain how each of them can affect the performance of Hash table data structure. b. Give one example for each type. To be submitted through Turnitin. Maximum allowed similarity is 15%. Assume that a sample is used to estimate a population proportionp. Find the 99% confidence interval for a sample of size 177 with 121 successes. Enter your answer as a tri-linear inequality using decimals (not percents) accurate to three decimal places. xplain the features and applications of MS Excel. (Provide snapshots as well) Answer: Which of the following answer choices best characterizes a mineral's unit cell?Question 1 options:It is derived from randomly arranged atomsIt does not lead to macroscopic (things you can see with your own eye) mineral propertiesIt is the largest repeatable unit within a crystalline materialIt is the smallest repeatable unit within a crystalline material Given that a sterile feed containing 10 to 20 g/L of crude substrate at a rate of 85 L/h is applied for the industrial-scale production of protease enzymes via submerged fermentation in a CSTR. The gr Dan Buettner says that in Okinawa more significant than what they eat is how they eat it. What does he mean by this? How does this mentality compare to how you eat your food? definitions and extends it to text work on your readings:(a) Please define: what is 'social construction'? Consider important aspects of academic definitions, please (be precise, explain, paraphrase the concept).b) Please answer: what is socially constructed about women's so-called 'natural' work?Word max is 500 (the size of an abstract).Perhaps additional resources are welcome. An academic definition is what we use mainly at school, so in academics, and How to Write a Definition is like learning a recipe, or following all installation instructions for the setup of a new phone - it's better to get it right. What factors contribute to the decline of social movements?changes in public opinion....And??Factors that contribute to social movement failures, such as Broad or unrealistic goals. Name two more factors?March for Our Lives, Black Lives Matter, and the Tea Party are all examples of what concept? Will they become social movements?What was the catalyst for the development of March for Our Lives? What is one of the main goals of March for Our Lives? Overall which phrase best describes the tone of this passage act 1 scene v Steam Workshop Downloader