In the R-C Circuit experiment, at (t = 0) the switch is closed and the capacitor starts discharging. The voltage across the capacitor was recorded as a function of time according to the equation V=vies 9 8 7 6 5 Vc(volt) 4 3 2 1 0 10 20 30 10 50 t(min) From the graph, the time constant T in second) is 480

Answers

Answer 1

In the given RC circuit experiment, the switch is closed at t=0, and the capacitor starts discharging. The voltage across the capacitor has been recorded concerning time. The data for the voltage across the capacitor is given as follows:

V = Vies9 8 7 6 5

Vc (volt)4 3 2 1 0102030405060 t (min)

The time constant of the RC circuit can be calculated by the following formula:

T = R*C Where T is the time constant, R is the resistance of the circuit, and C is the capacitance of the circuit. As we know that the graph of the given data is an exponential decay curve, the formula for the voltage across the capacitor concerning time will be:

Vc = V0 * e^(-t/T)Where V0 is the initial voltage across the capacitor. We can calculate the value of the time constant T by using the given data. From the given graph, the voltage across the capacitor at t=480 seconds is 2 volts.

The formula will be:2 = V0 * e^(-480/T) Solving for T, we get:

T = -480 / ln(2)

≈ 693 seconds.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11


Related Questions

Required information A 35.0-nC charge is placed at the origin and a 57.0 nC charge is placed on the +x-axis, 2.20 cm from the origin. What is the electric potential at a point halfway between these two charges?
V =

Answers

The electric potential at a point halfway between the 35.0 nC charge at the origin and the 57.0 nC charge on the +x-axis is 1.83 kV.

To calculate the electric potential at a point halfway between the two charges, we need to consider the contributions from each charge and sum them together.

Given:

Charge q1 = 35.0 nC at the origin (0, 0).

Charge q2 = 57.0 nC on the +x-axis, 2.20 cm from the origin.

The electric potential due to a point charge at a distance r is given by the formula:

V = k * (q / r),

where V is the electric potential, k is the electrostatic constant (k = 8.99 x 10^9 N m^2/C^2), q is the charge, and r is the distance.

Let's calculate the electric potential due to each charge:

For q1 at the origin (0, 0):

V1 = k * (q1 / r1),

where r1 is the distance from the point halfway between the charges to the origin (0, 0).

For q2 on the +x-axis, 2.20 cm from the origin:

V2 = k * (q2 / r2),

where r2 is the distance from the point halfway between the charges to the charge q2.

Since the point halfway between the charges is equidistant from each charge, r1 = r2.

Now, let's calculate the distances:

r1 = r2 = 2.20 cm / 2 = 1.10 cm = 0.0110 m.

Substituting the values into the formula:

V1 = k * (35.0 x 10^(-9) C) / (0.0110 m),

V2 = k * (57.0 x 10^(-9) C) / (0.0110 m).

Calculating the electric potentials:

V1 ≈ 2863.64 V,

V2 ≈ 4660.18 V.

To find the electric potential at the point halfway between the charges, we need to sum the contributions from each charge:

V = V1 + V2.

Substituting the calculated values:

V ≈ 2863.64 V + 4660.18 V.

Calculating the sum:

V ≈ 7523.82 V.

Therefore, the electric potential at a point halfway between the two charges is approximately 7523.82 volts.

To learn more about electric potential, Click here:

https://brainly.com/question/31173598

#SPJ11

Determine the upward force that the biceps muscle exerts when a 75 Newton load is held in the hand when the arm is at 900 angles as shown. If the combined weight of the forearm and hand is assumed to be 35 Newton’s and acts at the center of gravity.

Answers

The total upward force exerted by the biceps muscle when holding the 75 Newton load in the hand at a 90-degree angle is 110 Newtons

To determine the upward force exerted by the biceps muscle when holding a 75 Newton load in the hand at a 90-degree angle, we need to consider the forces acting on the arm. The total force exerted by the biceps muscle can be calculated by summing the upward force required to counteract the load's weight and the weight of the forearm and hand. Given that the combined weight of the forearm and hand is 35 Newtons and acts at the center of gravity, the force required to counteract this weight is 35 Newtons in the downward direction. To maintain equilibrium, the biceps muscle must exert an equal and opposite force of 35 Newtons in the upward direction. Additionally, since the load in the hand weighs 75 Newtons, the biceps muscle needs to exert an additional 75 Newtons in the upward direction to counteract its weight. Therefore, the total upward force exerted by the biceps muscle when holding the 75 Newton load in the hand at a 90-degree angle is 110 Newtons.

To learn more about upward force :

https://brainly.com/question/17347519

#SPJ11

6. GO A plate carries a charge of 3.0 uC, while a rod carries a charge of +2.0 uC. How many electrons must be transferred from the plate to the rod, so that both objects have the same charge?

Answers

Approximately 6.24 x 10¹² electrons must be transferred from the plate to the rod for both objects to have the same charge.

To determine the number of electrons that must be transferred from the plate to the rod, we need to consider the elementary charge and the difference in charge between the two objects.

The elementary charge is the charge carried by a single electron, which is approximately 1.602 x 10⁻¹⁹ coulombs (C). The charge carried by an electron is approximately -1.602 x 10⁻¹⁹ coulombs (C).

Given that the plate carries a charge of 3.0 μC (microcoulombs) and the rod carries a charge of +2.0 μC, we need to find the difference in charge between them.

Converting the charges to coulombs:

Plate charge = 3.0 μC = 3.0 x 10⁻⁶ C

Rod charge = +2.0 μC = 2.0 x 10⁻⁶ C

The difference in charge is:

Difference in charge = Plate charge - Rod charge

= 3.0 x 10⁻⁶ C - 2.0 x 10⁻⁶ C

= 1.0 x 10⁻⁶ C

Since the plate has an excess of charge, electrons need to be transferred to the rod, which has a positive charge. The charge of an electron is -1.602 x 10^-19 C, so the number of electrons transferred can be calculated as:

Number of electrons transferred = Difference in charge / Charge of an electron

= 1.0 x 10⁻⁶ C / (1.602 x 10⁻¹⁹ C)

≈ 6.24 x 10¹² electrons

Therefore, approximately 6.24 x 10¹² electrons must be transferred from the plate to the rod for both objects to have the same charge.

Learn more about electrons at: https://brainly.com/question/860094

#SPJ11

The velocity field of a flow is given by v= 6xi+ 6yj-7 tk.
a) Determine the velocity at a point x= 10 m; y = 6m; when t = 10 sec. Draw, approximately, a set of streamlines for the flow at instant t = 0.
b) Determine the acceleration field of the flow and the acceleration of the particle at the point and instant specified above. at the point and instant specified above

Answers

" The velocity at the point (x = 10 m, y = 6 m, t = 10 s) is 60i + 36j - 70k m/s.The acceleration of the particle at the point (x = 10 m, y = 6 m, t = 10 s) is -7k m/s²." Acceleration is a fundamental concept in physics that measures the rate of change of velocity of an object over time. It is defined as the derivative of velocity with respect to time.

a) To determine the velocity at the specified point (x = 10 m, y = 6 m, t = 10 s), we substitute these values into the given velocity field equation:

v = 6xi + 6yj - 7tk

v = 6(10)i + 6(6)j - 7(10)k

= 60i + 36j - 70k

Therefore, the velocity at the point (x = 10 m, y = 6 m, t = 10 s) is 60i + 36j - 70k m/s.

b) The acceleration field (a) can be obtained by taking the time derivative of the velocity field:

a = dv/dt = d(6xi + 6yj - 7tk)/dt

= 6(dxi/dt) + 6(dyj/dt) - 7(dtk/dt)

= 6(0i) + 6(0j) - 7k

= -7k

Therefore, the acceleration field is a = -7k m/s².

To determine the acceleration of the particle at the specified point (x = 10 m, y = 6 m, t = 10 s), we substitute these values into the acceleration field equation:

a = -7k

a = -7(1)k

= -7k

So, the acceleration of the particle at the point (x = 10 m, y = 6 m, t = 10 s) is -7k m/s².

To know more about acceleration  & velocity visit:

https://brainly.com/question/80295

#SPJ11

In a Photoelectric effect experiment, the incident photons each has an energy of 4.713×10 −19 J. The power of the incident light is 0.9 W. (power = energy/time) The work function of metal surface used is W 0 ​ = 2.71eV. 1 electron volt (eV)=1.6×10 −19 J. If needed, use h=6.626×10 −34 J⋅s for Planck's constant and c=3.00×10 8 m/s for the speed of light in a vacuum. Part A - How many photons in the incident light hit the metal surface in 7.0 s ? Part B - What is the max kinetic energy of the photoelectrons? Part C - Use classical physics fomula for kinetic energy, calculate the maximum speed of the photoelectrons. The mass of an electron is 9.11×10 −31 kg

Answers

The incident photons  energy is 1.337 × 10²². The max kinetic energy of the photoelectrons is 6.938 × 10⁻¹ eV. The maximum speed of the photoelectrons is 5.47 × 10⁵ m/s. The correct answer for a) 1.337 × 10²² photons b) 6.938 × 10⁻¹ eV c) 5.47 × 10⁵ m/s

Part A The power of the incident light, P = 0.9 W Total energy delivered, E = P x tE = 0.9 x 7 = 6.3 JThe energy of each photon, E = 4.713 × 10⁻¹⁹ J Number of photons, n = E/E = 6.3/4.713 × 10⁻¹⁹ = 1.337 × 10²² photons

Part B The energy of a photon = hν, where ν is the frequencyν = c/λ where c = speed of light and λ is the wavelength of light.λ = hc/E = hc/ (4.713 × 10⁻¹⁹) = 1.324 × 10⁻⁷ m Kinetic energy of a photoelectron is given by KE max = hν - W₀ = hc/λ - W₀ = (6.626 × 10⁻³⁴ × 3.0 × 10⁸)/1.324 × 10⁻⁷ - (2.71 × 1.6 × 10⁻¹⁹) = 1.11 × 10⁻¹⁹ J = 6.938 × 10⁻¹ eV

Part C Maximum speed of a photoelectron can be calculated by using classical mechanics equation: KEmax = (1/2)mv²where m is the mass of electron and v is the maximum speed. Rearranging gives: v = √(2KEmax/m) = √(2(6.938 × 10⁻¹ eV)(1.6 × 10⁻¹⁹ J/eV)/(9.11 × 10⁻³¹ kg)) = 5.47 × 10⁵ m/s (to 3 significant figures) Answer:a) 1.337 × 10²² photonsb) 6.938 × 10⁻¹ eVc) 5.47 × 10⁵ m/s

To know more about photons refer here:

https://brainly.com/question/33017722#

#SPJ11

A block is sliding with constant acceleration down. an incline. The block starts from rest at f= 0 and has speed 3.40 m/s after it has traveled a distance 8.40 m from its starting point ↳ What is the speed of the block when it is a distance of 16.8 m from its t=0 starting point? Express your answer with the appropriate units. μA 3 20 ? 168 Value Units Submit Request Answer Part B How long does it take the block to slide 16.8 m from its starting point? Express your answer with the appropriate units.

Answers

Part A: The speed of the block when it is a distance of 16.8 m from its starting point is 6.80 m/s. Part B: The time it takes for the block to slide 16.8 m from its starting point is 2.47 seconds.

To find the speed of the block when it is a distance of 16.8 m from its starting point, we can use the equations of motion. Given that the block starts from rest, has a constant acceleration, and travels a distance of 8.40 m, we can find the acceleration using the equation v^2 = u^2 + 2as. Once we have the acceleration, we can use the same equation to find the speed when the block is at a distance of 16.8 m. For part B, to find the time it takes to slide 16.8 m, we can use the equation s = ut + (1/2)at^2, where s is the distance traveled and u is the initial velocity.

Learn more about acceleration:

https://brainly.com/question/2303856

#SPJ11

Problem 1.10 A small spherical ball of mass m and radius R is dropped from rest into a liquid of high viscosity 7, such as honey, tar, or molasses. The only appreciable forces on it are gravity mg and a linear drag force given by Stokes's law, FStokes -6Rv, where v is the ball's velocity, and the minus sign indicates that the drag force is opposite to the direction of v. (a) Find the velocity of the ball as a function of time. Then show that your answer makes sense for (b) small times; (c) large times.

Answers

A small spherical ball of mass m and radius R is dropped from rest into a liquid of high viscosity 7, such as honey, tar, or molasses.  the velocity is approximately (g/6R), and for large times, the velocity approaches (g/6R) and becomes constant.

(a) To find the velocity of the ball as a function of time, we need to consider the forces acting on the ball. The only two forces are gravity (mg) and the linear drag force (FStokes).

Using Newton's second law, we can write the equation of motion as:

mg - FStokes = ma

Since the drag force is given by FStokes = -6Rv, we can substitute it into the equation:

mg + 6Rv = ma

Simplifying the equation, we have:

ma + 6Rv = mg

Dividing both sides by m, we get:

a + (6R/m) v = g

Since acceleration a is the derivative of velocity v with respect to time t, we can rewrite the equation as a first-order linear ordinary differential equation:

dv/dt + (6R/m) v = g

This is a linear first-order ODE, and we can solve it using the method of integrating factors. The integrating factor is given by e^(kt), where k = 6R/m. Multiplying both sides of the equation by the integrating factor, we have:

e^(6R/m t) dv/dt + (6R/m)e^(6R/m t) v = g e^(6R/m t)

The left side can be simplified using the product rule of differentiation:

(d/dt)(e^(6R/m t) v) = g e^(6R/m t)

Integrating both sides with respect to t, we get:

e^(6R/m t) v = (g/m) ∫e^(6R/m t) dt

Integrating the right side, we have:

e^(6R/m t) v = (g/m) (m/6R) e^(6R/m t) + C

Simplifying, we get:

v = (g/6R) + Ce^(-6R/m t)

where C is the constant of integration.

(b) For small times, t → 0, the exponential term e^(-6R/m t) approaches 1, and we can neglect it. Therefore, the velocity of the ball simplifies to:

v ≈ (g/6R) + C

This means that initially, when the ball is dropped from rest, the velocity is approximately (g/6R), which is constant and independent of time.

(c) For large times, t → ∞, the exponential term e^(-6R/m t) approaches 0, and we can neglect it. Therefore, the velocity of the ball simplifies to:

v ≈ (g/6R)

This means that at large times, when the ball reaches a steady-state motion, the velocity is constant and equal to (g/6R), which is determined solely by the gravitational force and the drag force.

In summary, the velocity of the ball as a function of time is given by:

v = (g/6R) + Ce^(-6R/m t)

For small times, the velocity is approximately (g/6R), and for large times, the velocity approaches (g/6R) and becomes constant.

To know  more about molasses refer here:

https://brainly.com/question/22722195#

#SPJ11

6. A mass density p = p(x, t) obeys the physical law j = vop where > 0 is a constant and j is the mass density flux. Use the continuity law, in the absence of any source or sink terms, to obtain a differential equation for p. The system is initially primed such that p(x,0) = poe-²/ where po, l are (positive) constants. Use the method of characteristics to determine the mass density for times t > 0. Sketch the profile of p against æ for a variety of time steps. [15 marks] Describe the significance of each of the quantities vo. Po and l. Illustrate each with a sketch at an appropriate number of time steps. [5 marks]

Answers

The continuity law and the physical law j = vop, we can derive a differential equation for the mass density p(x, t). The significance of the quantities vo, po, and l are that vo represents the velocity of the characteristic curves, po is the initial mass density at t = 0 and l is a positive constant.

The system is initially primed with a given initial condition p(x, 0) = po * e^(-x^2), where po and l are positive constants. The method of characteristics can be applied to determine the mass density for times t > 0 and sketch its profile against x for different time steps. The quantities vo, po, and l have specific meanings and significance in the context of the problem.

The continuity law states that the rate of change of mass density p with respect to time t plus the divergence of the mass density flux j must be zero in the absence of any source or sink terms.

Applying this law to the physical law j = vop, where v and o are constants, we have:

∂p/∂t + ∂(vop)/∂x = 0

Expanding the equation, we get:

∂p/∂t + vo ∂p/∂x + vop ∂o/∂x = 0

Since the system is initially primed with p(x, 0) = po * e^(-x^2), we have an initial condition for the mass density.

To solve this differential equation for times t > 0, we can use the method of characteristics. This method involves defining characteristic curves that satisfy the equation:

dx/dt = vo

By solving this equation, we can determine the characteristics curves and track the behavior of the mass density along these curves.

The significance of the quantities vo, po, and l can be described as follows:

- vo represents the velocity of the characteristic curves. It determines the speed at which the mass density propagates along these curves.

- po is the initial mass density at t = 0. It represents the value of the mass density at the initial condition.

- l is a positive constant that likely represents a characteristic length scale in the system.

By sketching the profile of p against x for different time steps, we can observe how the mass density evolves and propagates in space over time, following the characteristics curves determined by the initial conditions and the physical laws governing the system.

Learn more about Physical law here : brainly.com/question/15591590

#SPJ11

Make a a derivation for the unknown resistor equation (Rx) in
terms of voltages and lengths on the wheatstone bridge

Answers

The unknown resistor (Rx) in a Wheatstone bridge circuit can be determined using the equation:

Rx = (V_out1 * R2) / (V_in - V_out2)

This equation relates Rx to the voltages V_out1 and V_out2, as well as the resistance R2 and the input voltage V_in.

Let's consider a typical Wheatstone bridge circuit consisting of four resistors: R1, R2, R3, and Rx. The bridge is supplied with a known voltage V_in and has two outputs: V_out1 and V_out2.

1. First, let's find the relationship between the voltages V_out1 and V_out2 in terms of the resistors. According to Kirchhoff's voltage law, the voltage drop across any closed loop in a circuit is zero. Applying this law to the two loops in the Wheatstone bridge, we have:

Loop 1: V_in = V_out1 + I1 * R1 + I2 * Rx

Loop 2: V_in = V_out2 + I3 * R3 + I2 * (R2 + Rx)

Where I1, I2, and I3 are the currents flowing through R1, Rx, and R3, respectively.

2. To simplify the equations, we can express I1, I2, and I3 in terms of the voltages and resistances using Ohm's law. Assuming the resistors have negligible internal resistance, we have:

I1 = V_out1 / R1

I2 = (V_out1 - V_out2) / (R2 + Rx)

I3 = V_out2 / R3

Substituting these values back into the loop equations, we get:

V_in = V_out1 + (V_out1 - V_out2) * Rx / (R2 + Rx)

V_in = V_out2 + V_out2 * R2 / (R2 + Rx)

3. Now, we can solve these two equations simultaneously to eliminate V_out1 and V_out2. Multiplying the first equation by (R2 + Rx) and the second equation by Rx, we get:

V_in * (R2 + Rx) = V_out1 * (R2 + Rx) + (V_out1 - V_out2) * Rx

V_in * Rx = V_out2 * Rx + V_out2 * R2

4. By rearranging these equations, we can isolate Rx:

V_in * Rx - V_out2 * Rx = V_out1 * (R2 + Rx) - (V_out1 - V_out2) * Rx

V_in * Rx - V_out2 * Rx = V_out1 * R2 + V_out1 * Rx - V_out1 * Rx + V_out2 * Rx

V_in * Rx - V_out2 * Rx = V_out1 * R2 + V_out2 * Rx

Rx * (V_in - V_out2) = V_out1 * R2

Rx = (V_out1 * R2) / (V_in - V_out2)

Therefore, the equation for the unknown resistor Rx in terms of the voltages and lengths on the Wheatstone bridge is:

Rx = (V_out1 * R2) / (V_in - V_out2)

To know more about the Wheatstone bridge circuit, refer here:

https://brainly.com/question/31777355#

#SPJ11

"Two converging lenses with the same focal length of 10 cm are 40
cm apart. If an object is located 15 cm from one of the lenses,
find the final image distance of the object.
a. 0 cm
b. 5 cm
c. 10 cm
d 15 cm

Answers

The final image distance of the object, if the object is located 15 cm from one of the lenses is 6 cm. So none of the options are correct.

To determine the final image distance of the object in the given setup of two converging lenses, we can use the lens formula:

1/f = 1/di - 1/do

Where: f is the focal length of the lens, di is the image distance, do is the object distance.

Given that both lenses have the same focal length of 10 cm, we can consider them as a single lens with an effective focal length of 10 cm. The lenses are 40 cm apart, and the object distance (do) is 15 cm.

Using the lens formula, we can rearrange it to solve for di:

1/di = 1/f + 1/do

1/di = 1/10 cm + 1/15 cm

= (15 + 10) / (10 * 15) cm⁻¹

= 25 / 150 cm⁻¹

= 1 / 6 cm⁻¹

di = 1 / (1 / 6 cm⁻¹) = 6 cm

Therefore, the final image distance of the object is 6 cm. So, none of the options are correct.

To learn more about focal length: https://brainly.com/question/9757866

#SPJ11

please write a full paraphrasing for the text below. thanks
The magnitude of each of the electric forces with which two point charges at rest interact is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them and has the direction of the line that joins them. . The force is repulsive if the charges are of the same sign, and attractive if they are of the opposite sign. Coulomb's law does comply with the principles of superposition since it determines the electric force of attraction or repulsion experienced by a point charge in the presence of another. The electrical forces between two charges can vary since in some the charges or the distance between them are doubled.

Answers

The text states Coulomb's law which expresses that the magnitude of electric forces between two point charges, which are stationary, is proportional to both charges' magnitudes and inversely proportional to the distance square between them.

If two point charges are in the same direction, they repel, and if they are in opposite directions, they attract.Coulomb's law follows the superposition concept, which calculates the repulsion or attraction electric force between a point charge in the presence of another point charge. Due to the doubled distance or charges, the electrical forces between two charges may differ.

To know more about expresses visit:

https://brainly.com/question/28172855

#SPJ11

A source emits sound waves in all directions.
The intensity of the waves 4.00 m from the sources is 9.00 *10-4 W/m?
Threshold of Hearing is 1.00 * 10-12 W/m?
A.) What is the Intensity in decibels?
B.) What is the intensity at 10.0 m from the source in Watts/m2?
C.) What is the power of the source in Watts?

Answers

A) The intensity in decibels is calculated using the formula: dB = 10 log10(I/I0), where I is the intensity of the sound wave and I0 is the threshold of hearing.

B) To find the intensity at 10.0 m from the source in Watts/m², we can use the inverse square law, which states that the intensity is inversely proportional to the square of the distance from the source.

C) The power of the source can be calculated by multiplying the intensity by the surface area over which the sound waves are spreading.

A) To calculate the intensity in decibels, we can substitute the given values into the formula. Using I = 9.00 * 10⁽⁻⁴⁾ W/m² and I0 = 1.00 * 10⁽⁻¹²⁾ W/m², we can find dB = 10 log10(9.00 * 10⁽⁻⁴⁾ / 1.00 * 10⁽⁻¹²⁾).

B) Applying the inverse square law, we can determine the intensity at 10.0 m from the source by multiplying the initial intensity (9.00 * 10⁽⁻⁴⁾ W/m²) by (4.00 m)² / (10.0 m)².

C) To find the power of the source, we need to consider the spreading of sound waves in all directions. Since the intensity at a distance of 4.00 m is given, we can multiply this intensity by the surface area of a sphere with a radius of 4.00 m.

By following these steps, we can calculate the intensity in decibels, the intensity at 10.0 m from the source, and the power of the source in Watts.

Learn more about intensity

brainly.com/question/13155277

#SPJ11

8) If the refracting index of light in a medium is n = 2.7, what is the speed of light in the medium? Find the wavelength of an EM wave with a frequency of 12 x 10° Hz in the medium with n = 2.7.

Answers

The speed of light in the medium with a refractive index of 2.7 is approximately 1.11 x 10⁸ meters per second. The wavelength of the EM wave is approximately 9.25 meters.

The speed of light in a medium can be calculated using the formula v = c/n, where v is the speed of light in the medium, c is the speed of light in a vacuum, and n is the refractive index of the medium.

In this case, the refractive index of the medium is given as n = 2.7. The speed of light in a vacuum is approximately 3 x 10⁸ meters per second.

Plugging these values into the formula, we get
v = (3 x 10⁸ m/s) / 2.7. Simplifying this expression gives us v ≈ 1.11 x 10^8 meters per second.

Therefore, the speed of light in the medium with a refractive index of 2.7 is approximately 1.11 x 10⁸ meters per second.

To find the wavelength of an electromagnetic wave with a frequency of 12 x 10⁶ Hz in the medium with n = 2.7, we can use the formula λ = v/f, where λ is the wavelength, v is the speed of light in the medium, and f is the frequency of the wave.

Using the previously calculated speed of light in the medium (v = 1.11 x 10⁸ m/s) and the given frequency (f = 12 x 10⁶ Hz), we can calculate the wavelength:

λ = (1.11 x 10⁸ m/s) / (12 x 10⁶ Hz) ≈ 9.25 meters.

Therefore, the wavelength of the EM wave with a frequency of 12 x 10⁶ Hz in the medium with n = 2.7 is approximately 9.25 meters.

To know more about the wavelength visit:

https://brainly.com/question/8226131

#SPJ11

Light of wavelength 648.0 nm is incident on a narrow slit. The diffraction pattern is viewed on a screen 84.5 cm from the slit. The distance on the screen between the fourth order minimum and the central maximum is 1.93 cm . What is the width of the slit in micrometers (μm)?
= μm

Answers

The width of the slit is determined to be in micrometers (μm).The width of the slit can be determined using the formula for the slit diffraction pattern. In this case, we are given the wavelength of light (648.0 nm), the distance from the slit to the screen (84.5 cm), and the distance on the screen between the fourth order minimum and the central maximum (1.93 cm).

The width of the slit can be calculated using the equation d*sin(theta) = m*lambda, where d is the width of the slit, theta is the angle of diffraction, m is the order of the minimum, and lambda is the wavelength of light.

First, we need to find the angle of diffraction for the fourth order minimum. We can use the small angle approximation, which states that sin(theta) ≈ tan(theta) ≈ y/L, where y is the distance on the screen and L is the distance from the slit to the screen.

Using the given values, we can calculate the angle of diffraction for the fourth order minimum. Then, we can rearrange the equation to solve for the slit width d.

After performing the necessary calculations, the widwidth of the slit is determined to be in micrometers (μm).

To learn more about wavelength click here:brainly.com/question/10750459

#SPJ11

Problem mos teple have (2.000 1.00 Listamentum his particle points (A) 20+ 0.20 2008 + 100 (96200 + 2007 D) (0.0208 +0.010729 32. Find the gula momentum of the particle about the origin when its position vector is a (1 508 +1.50pm 2 points) (A) (0.15k)kg-mals (B) (-0.15k)kg-m/s ((1.50k)kg-m/s D) (15.0k)kg-m/s

Answers

The correct answer is (A) (0.15k)kg-m/s.

The angular momentum of a particle about the origin is given by:

L = r × p

Where, r is the position vector of the particle, p is the particle's linear momentum, and × is the cross product.

In this case, the position vector is given as:

r = (1.50i + 1.50j) m

The linear momentum of the particle is given as:

p = mv = (1.50 kg)(5.00 m/s) = 7.50 kg m/s

The cross product of r and p can be calculated as follows:

L = r × p = (1.50i + 1.50j) × (7.50k) = 0.15k kg m/s

Therefore, the angular momentum of the particle about the origin is (0.15k) kg m/s. So the answer is (A).

To learn more about angular momentum click here; brainly.com/question/30338094

#SPJ11

The magnetic field lines shown in the first picture below are from a circular loop of current.
What arrangement of current produces magnetic field lines as shown in the second picture?
Group of answer choices
Insufficient information to allow a single answer
A straight line of current
A square loop of current
There is no possible current arrangement

Answers

Magnetic field lines are imaginary lines used to represent the direction and strength of the magnetic field around a magnet or current-carrying conductor. The arrangement of current that produces magnetic field lines as shown in the second picture is  correct choice 3) A square loop of current.

The first picture depicts the magnetic field lines around a circular loop of current. In this arrangement, the magnetic field lines are concentric circles centered on the loop. Each field line forms a closed loop around the current-carrying wire.

To generate magnetic field lines as shown in the second picture, a different current arrangement is required. The second picture shows magnetic field lines that form a pattern resembling a square. This indicates the presence of a square loop of current.

In a square loop of current, the magnetic field lines follow a distinct pattern. Along the sides of the loop, the magnetic field lines are parallel and evenly spaced. At the corners of the loop, the field lines converge and form a sharper bend. This arrangement of field lines is characteristic of a square loop of current.

Therefore, among the given options, the only arrangement that can produce magnetic field lines as shown in the second picture is a square loop of current.

To learn more about magnetic field click here:

brainly.com/question/7645789

#SPJ11

The magnetic force on a straight wire 0.30 m long is 2.6 x 10^-3 N. The current in the wire is 15.0 A. What is the magnitude of the magnetic field that is perpendicular to the wire?

Answers

Answer:  the magnitude of the magnetic field perpendicular to the wire is approximately 1.93 x 10^-3 T.

Explanation:

The magnetic force on a straight wire carrying current is given by the formula:

F = B * I * L * sin(theta),

where F is the magnetic force, B is the magnetic field, I is the current, L is the length of the wire, and theta is the angle between the magnetic field and the wire (which is 90 degrees in this case since the field is perpendicular to the wire).

Given:

Length of the wire (L) = 0.30 m

Current (I) = 15.0 A

Magnetic force (F) = 2.6 x 10^-3 N

Theta (angle) = 90 degrees

We can rearrange the formula to solve for the magnetic field (B):

B = F / (I * L * sin(theta))

Plugging in the given values:

B = (2.6 x 10^-3 N) / (15.0 A * 0.30 m * sin(90 degrees))

Since sin(90 degrees) equals 1:

B = (2.6 x 10^-3 N) / (15.0 A * 0.30 m * 1)

B = 2.6 x 10^-3 N / (4.5 A * 0.30 m)

B = 2.6 x 10^-3 N / 1.35 A*m

B ≈ 1.93 x 10^-3 T (Tesla)

"A 68.0 kg skater moving initially at 3.57 m/s on rough
horizontal ice comes to rest uniformly in 3.99 s due to friction
from the ice.
What force does friction exert on the skater?

Answers

The force does friction exert on the skater is 107 N. The magnitude of the frictional force. f = 60.86 N

What is friction?

Friction is the force exerted between two objects when they come in contact with each other, which resists motion. The magnitude of the frictional force is determined by the nature of the surfaces in contact and the normal force acting perpendicular to the surfaces.

values are,m = 68.0 kg

u = 3.57 m/s

s = 3.99 s

Formula used: v = u + at

u = initial velocity

v = final velocity

a = acceleration

t = time taken to come to rest

s = distance moved by the object

a = (-u)/t = (-3.57)/3.99

= -0.895 m/s²

This acceleration is considered negative because it acts opposite to the direction of velocity of the object. Here the velocity is in the positive direction and so acceleration is in the negative direction.

Forces acting on the object:

Weight of the object, W = m*g,

where g is acceleration due to gravity = 9.8 m/s²

Normal force acting on the object, N

Frictional force acting on the object, f

Here, f = m × a, according to second law of motion.

f = m × a

= 68.0 × (-0.895)

= -60.86 N

The negative sign indicates that the frictional force acts opposite to the direction of velocity of the object.

Therefore, we must use the magnitude of the frictional force.f = 60.86 N The force does friction exert on the skater is 107 N.

Learn more about frictional force :

brainly.com/question/24386803

#SPJ11

A delivery truck travels 31 blocks north, 18 blocks east, and 26 blocks south. Assume the blooks are equal length What is the magnitude of its final displacement from the origin? What is the direction of its final displacement from the origin? Express your answer using two significant figures.

Answers

The magnitude of final displacement is from the origin is approximately 36 blocks and the direction of the final displacement from the origin is approximately 59° (measured counterclockwise from the positive x-axis or east direction).

To calculate the magnitude of the final displacement, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

In this case, we can consider the north-south displacement as one side and the east-west displacement as the other side of a right triangle. The final displacement is the hypotenuse of this triangle.

Given:

North displacement = 31 blocks (positive value)

East displacement = 18 blocks (positive value)

South displacement = 26 blocks (negative value)

To calculate the magnitude of the final displacement:

Magnitude = sqrt((North displacement)^2 + (East displacement)^2)

Magnitude = sqrt((31)^2 + (18)^2)

Magnitude = sqrt(961 + 324)

Magnitude = sqrt(1285)

Magnitude ≈ 35.88

Rounded to two significant figures, the magnitude of the final displacement from the origin is approximately 36 blocks.

To determine the direction of the final displacement from the origin, we can use trigonometry. We can calculate the angle with respect to a reference direction, such as north or east.

Angle = atan((North displacement) / (East displacement))

Angle = atan(31 / 18)

Angle ≈ 59.06°

Rounded to two significant figures, the direction of the final displacement from the origin is approximately 59° (measured counterclockwise from the positive x-axis or east direction).

Thus, rounded to two significant figures, the magnitude of final displacement is from the origin is approximately 36 blocks and the direction of the final displacement from the origin is approximately 59° (measured counterclockwise from the positive x-axis or east direction).

Learn more about displacement https://brainly.com/question/321442

#SPJ11

Q3. A hanging platform has four cylindrical supporting cables of diameter 2.5 cm. The supports are made from solid aluminium, which has a Young's Modulus of Y = 69 GPa. The weight of any object placed on the platform is equally distributed to all four cables. a) When a heavy object is placed on the platform, the cables are extended in length by 0.4%. Find the mass of this object. (3) b) Poisson's Ratio for aluminium is v= 0.33. Calculate the new diameter of the cables when supporting this heavy object. (3) (6 marks)

Answers

The new diameter of the cable is 0.892 cm. Option (ii) is the correct answer.

Given: Diameter of supporting cables,

d = 2.5 cm Young's Modulus of aluminium,

Y = 69 GPa Load applied,

F = mg

Extension in the length of the cables,

δl = 0.4% = 0.004

a) Mass of the object placed on the platform can be calculated as:

m = F/g

From the question, we know that the weight of any object placed on the platform is equally distributed to all four cables.

So, weight supported by each cable = F/4

Extension in length of each cable = δl/4

Young's Modulus can be defined as the ratio of stress to strain.

Y = stress/strainstress = Force/areastrain = Extension in length/Original length

Hence, stress = F/4 / (π/4) d2 = F/(π d2)strain = δl/4 / L

Using Hooke's Law, stress/strain

= Yπ d2/F = Y δl/Ld2 = F/(Y δl/π L) = m g / (Y δl/π L)

On substituting the given values, we get:

d2 = (m × 9.8) / ((69 × 10^9) × (0.004/100) / (π × 2.5/100))d2 = 7.962 × 10^-5 m2

New diameter of the cable is:

d = √d2 = √(7.962 × 10^-5) = 0.00892 m = 0.892 cm

Therefore, the new diameter of the cable is 0.892 cm.

Hence, option (ii) is the correct answer.

To know more about diameter visit:

https://brainly.com/question/4771207

#SPJ11

2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20°C or 2 kg of water at 20°C c. 1 kg of water at 20°C or 1 kg of water at 50°C d. 1 kg of steam (H₂0) at 200°C or 1 kg of hydrogen and oxygen atoms at 200°C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning.

Answers

a. 1 kg of steam has the larger entropy. b. 2 kg of water at 20°C has the larger entropy. c. 1 kg of water at 50°C has the larger entropy. d. 1 kg of steam (H2O) at 200°C has the larger entropy.

Thus, the answers to the question are:

a. 1 kg of steam has a larger entropy.

b. 2 kg of water at 20°C has a larger entropy.

c. 1 kg of water at 50°C has a larger entropy.

d. 1 kg of steam (H₂0) at 200°C has a larger entropy.

Student 1 thinks that 1 kg of steam and 1 kg of hydrogen and oxygen atoms that make up the steam should have the same entropy because they have the same temperature and amount of stuff. Student 2, on the other hand, thinks that if there are more particles moving around, there should be more disorder, indicating that its entropy should be higher.I agree with student 2's reasoning. Entropy is directly related to the disorder of a system. Higher disorder indicates a higher entropy value, whereas a lower disorder implies a lower entropy value. When there are more particles present in a system, there is a greater probability of disorder, which results in a higher entropy value.

To know more about entropy:

https://brainly.com/question/20166134

#SPJ11

(a) the energy released per event in joules ] (b) the change in mass (in kg ) during the event ×kg [0/1.92 Points] SERCP11 30.4.OP.021. In a pair-production reaction, a photon produces a muon-antimuon pair. γ→μ −
+μ +
The rest energy of a muon is 105.7MeV. (a) What is the lowest possible frequency (in Hz ) of the photon that can produce the muon-antimuon pair? Hz (b) What is the wavelength (in m ) that corresponds to this lowest possible frequency? 2s What is the relationship between frequency, wavelength, and the speed of light? m

Answers

Lowest possible frequency: 4.84 x 10^20 Hz,  Corresponding wavelength: 6.19 x 10^-13 m (or 2s),  The relationship between frequency, wavelength, and the speed of light is given by c = fλ.

The lowest possible frequency (f) of the photon that can produce the muon-antimuon pair can be found by using the equation E = hf, where E is the energy (rest energy of the muon in this case) and h is the Planck's constant (approximately 6.63 x 10^-34 J·s). Converting the rest energy of the muon from MeV to joules (1 MeV = 1.6 x 10^-13 J), we have E = 105.7 MeV = 105.7 x 1.6 x 10^-13 J. By rearranging the equation, we can solve for the frequency: f = E / h. Plugging in the values, we get f = (105.7 x 1.6 x 10^-13 J) / (6.63 x 10^-34 J·s) ≈ 4.84 x 10^20 Hz. (b) The relationship between frequency (f), wavelength (λ), and the speed of light (c) is given by the equation c = fλ, where c is the speed of light (approximately 3 x 10^8 m/s). Rearranging the equation, we can solve for the wavelength: λ = c / f. Plugging in the values, we get λ = (3 x 10^8 m/s) / (4.84 x 10^20 Hz) ≈ 6.19 x 10^-13 m or 2s (as mentioned in the question).

To learn more about frequency:

https://brainly.com/question/29739263

#SPJ11

A block of mass m=0.1 kg attached to a spring with =40 Nm−1 is subject to a damping force with =0.1 kg s−1.
(a) Calculate the magnitude F0 of the constant force required to move the equilibrium of the block from x=0 to x=15 cm.
(b) If this force F0 were the amplitude of a harmonic driving force with non-zero , what would be the steady-state amplitude of oscillations of the block at velocity resonance?

Answers

The magnitude of the constant force required to move the equilibrium of the block from x=0 to x=15 cm is 6 N. The steady-state amplitude of oscillations of the block at velocity resonance is approximately 10.55 cm.

(a) Calculation of the magnitude F0 of the constant force required to move the equilibrium of the block from x=0 to x=15 cm:

m = 0.1 kg k = 40 Nm⁻¹b = 0.1 kg s⁻¹

The displacement from equilibrium position is given by:

x = 15 cm = 0.15 m

The force required to move the block from its equilibrium position is given by

F0 = kx = 40 Nm⁻¹ × 0.15 m= 6 N

Thus, the magnitude of the constant force required to move the equilibrium of the block from x=0 to x=15 cm is 6 N.

(b) Calculation of the steady-state amplitude of oscillations of the block at velocity resonance:

F0 = 6 N

k = 40 Nm⁻¹

m = 0.1 kg

b = 0.1 kg s⁻¹

ω0 = √k/m = √(40 Nm⁻¹ / 0.1 kg)= 20 rad s⁻¹ω = √(k/m - b²/4m²) = √[40 Nm⁻¹ / (0.1 kg) - (0.1 kg s⁻¹)² / 4(0.1 kg)²]≈ 19.96 rad s⁻¹

At velocity resonance, ω = ω0.

Amplitude of oscillations is given by:

A = F0/m(ω0² - ω²)² + (bω)²= 6 N / 0.1 kg (20 rad s⁻¹)² - (19.96 rad s⁻¹)² + (0.1 kg s⁻¹ × 19.96 rad s⁻¹)²≈ 0.1055 m = 10.55 cm

Therefore, the steady-state amplitude of oscillations of the block at velocity resonance is approximately 10.55 cm.

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

The deep end of a pool is 2.67 meters. What is the water pressure at the bottom of the deep end? Density of water: 1000 kg/m3

Answers

The water pressure at the bottom of the deep end of the pool is 26,370 Pascals (Pa).

To calculate the water pressure, we can use the formula:

Pressure = Density × Gravity × Height

Density of water = 1000 kg/m^3

Height = 2.67 meters

Gravity = 9.8 m/s^2 (approximate value)

Plugging in the values:

Pressure = 1000 kg/m^3 × 9.8 m/s^2 × 2.67 meters

Pressure ≈ 26,370 Pa

Therefore, the water pressure at the bottom of the deep end of the pool is approximately 26,370 Pascals.

learn more about "pressure ":- https://brainly.com/question/28012687

#SPJ11

1. NASA's Mission to Mars is finally complete and an 85 kg Canadian astronaut is the first human to walk on Mars. If Mars has a mass of 6.37 x 10²3 kg and a radius of 3.43 x 106 m, complete the following: [3 marks] a) What is the gravitational field strength on its surface? [1] b) If the astronaut returns to her orbiting space station at 450 000m above the surface of Mars, what is the force of attraction between the astronaut and planet? [2]\

Answers

a) Calculation of Gravitational field strength Gravitational field strength is the force exerted per unit mass. It is a vector quantity and it is denoted by g.

It is expressed in units of N/kg.

Using the formula, g = GM/r²Where,G = Universal gravitational constant = 6.67 x 10-11 Nm²/kg²M = Mass of the planet = 6.37 x 1023 kgr = Radius of the planet = 3.43 x 106 m

Substituting the values in the above formula,g = (6.67 x 10-11) x (6.37 x 1023) / (3.43 x 106)² = 3.71 N/kg

Hence, the gravitational field strength on Mars is 3.71 N/kg.b)

Calculation of Force of attraction between astronaut and planetUsing the formula F = (GmM)/r²Where,G = Universal gravitational constant = 6.67 x 10-11 Nm²/kg²m = Mass of the astronaut = 85 kgM = Mass of the planet = 6.37 x 1023 kgr = Distance between the astronaut and the planet = 3.43 x 106 + 450000 = 3.88 x 106 m

Substituting the values in the above formula,F = (6.67 x 10-11 x 85 x 6.37 x 1023)/ (3.88 x 106)² = 780 N (approx)

Therefore, the force of attraction between the astronaut and planet is 780 N (approx).

To know more about mass visit:

https://brainly.com/question/11954533

#SPJ11

Two lenses are placed along the x axis, with a diverging lens of focal length -8.50 cm on the left and a converging lens of focal length 13.0 cm on the right. When an object is placed 12.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = co? cm

Answers

The separation between the two lenses should be 19.21 cm for the final image to be focused at x = ∞.

To determine the separation (s) between the two lenses for the final image to be focused at x = ∞, we need to calculate the image distance formed by each lens and then find the difference between the two image distances.

Let's start by analyzing the diverging lens:

1. Diverging Lens:

   Given: Focal length [tex](f_1)[/tex] = -8.50 cm, Object distance [tex](u_1)[/tex]= -12.0 cm (negative sign indicates object is placed to the left of the lens)

Using the lens formula: [tex]\frac{1}{f_1} =\frac{1}{v_1} -\frac{1}{u_1}[/tex]

Substituting the values, we can solve for the image distance (v1) for the diverging lens.

[tex]\frac{1}{-8.50} =\frac{1}{v_1} -\frac{1}{-12.0}[/tex]

v1 = -30.0 cm.

The negative sign indicates that the image formed by the diverging lens is virtual and located on the same side as the object.

2.Converging Lens:

   Given: Focal length (f2) = 13.0 cm, Object distance (u2) = v1 (image distance from the diverging lens)

Using the lens formula: [tex]\frac{1}{f_2} =\frac{1}{v_2} -\frac{1}{u_2}[/tex]

Substituting the values, we can solve for the image distance (v2) for the converging lens.

[tex]\frac{1}{13.0} =\frac{1}{v_2} -\frac{1}{-30.0}[/tex]

v2 = 10.71 cm.

The positive value indicates that the image formed by the converging lens is real and located on the opposite side of the lens.

Calculating the Separation:

The separation (s) between the two lenses is given by the difference between the image distance of the converging lens (v2) and the focal length of the diverging lens (f1).

[tex]s=v_2-f_1[/tex]

= 10.71 cm - (-8.50 cm)

= 19.21 cm

Therefore, the separation between the two lenses should be 19.21 cm for the final image to be focused at x = ∞.

Learn more about lenses here: brainly.com/question/2289939

#SPJ11

A copper calorimetric cup with a mass of 100g contains 96g of water at 13 C. If 70g of a substance at 84 degC is dropped into the cup, the temperature increases to 20 degC. Find the specific heat capacity of the substance.
Someone pours 150g of heated lead shot into a 250g aluminum calorimeter cup that contains 200g of water at 25 degC . The final temperature is 28 degC. What was the intial temperature of the lead shot?
What mass of water at 50 degC can be converted into steam at 110 degC by 9.6 x10^6 J?

Answers

Answer: The mass of water required is 4247.79 g (answer).

Therefore, the mass of water at 50°C that can be converted into steam at 110°C by 9.6 × 106 J is 4247.79 g.

Question 1 : A copper calorimetric cup with a mass of 100g contains 96g of water at 13 C. If 70g of a substance at 84 degC is dropped into the cup, the temperature increases to 20 degC. Find the specific heat capacity of the substance.

Solution :The amount of heat lost by hot body = amount of heat gained by cold body

Applying the formula of specific heat capacity

mcΔT = msΔT

Since there is no loss of heat to the surrounding mcΔT = msΔT

m1c1ΔT1 = m2s2ΔT2

where m1, c1 and ΔT1 are the mass, specific heat capacity and the temperature change of the copper cup and water.

m2, s2 and ΔT2 are the mass, specific heat capacity and the temperature change of the substance.

We know that the mass of copper calorimetric cup = 100g

the mass of water = 96g

the temperature of water = 13°C

the mass of the substance = 70g

the temperature of the substance = 84°C

The final temperature after mixing = 20°C

Temperature change of the substance,

ΔT2 = Final temperature - initial temperature

= 20°C - 84°C= - 64°C

Temperature change of the water,

ΔT1 = Final temperature - initial temperature

= 20°C - 13°C= 7°C

Thus, by substituting the values in the formula:

m1c1ΔT1 = m2s2ΔT2(100 g) (0.385 J/g°C) (7°C)

= (70 g) s2 (-64°C)s2

= 0.448 J/g°C

Specific heat capacity of the substance is 0.448 J/g°C (answer)

Hence, the specific heat capacity of the substance is 0.448 J/g°C.

Question 2: Someone pours 150g of heated lead shot into a 250g aluminum calorimeter cup that contains 200g of water at 25°C. The final temperature is 28°C. What was the initial temperature of the lead shot?

Solution:

Heat lost by lead shot = Heat gained by water + Heat gained by Aluminium container Q1 = Q2 + Q3

The formula of heat: Q = m × c × ΔT

Where,Q1 = Heat lost by lead shot

m = mass of the object

c = Specific heat capacity

ΔT = Temperature difference.

Q2 = Heat gained by water

m = mass of the object

c = Specific heat capacity

ΔT = Temperature difference.

Q3 = Heat gained by Aluminium container

m = mass of the object

c = Specific heat capacity

ΔT = Temperature difference.

Substitute the values given in the question,Q1 = (150 g) × c × (Ti - 28) °C

Q2 = (200 g) × 4.18 J/g°C × (28 - 25) °C

= 2502 JQ3 = (250 g) × 0.897 J/g°C × (28 - 25) °C

= 672.75 J Q1 = Q2 + Q3(150 g) × c × (Ti - 28) °C

= 2502 J + 672.75 J(150 g) × c × (Ti - 28) °C

= 3174.75 J(150 g) × c × (Ti - 28) / 150 g

= 3174.75 J / 150 gTi - 28

= 21.16°C (Approx.)Ti

= 49.16°C (answer)

Hence, the initial temperature of the lead shot was 49.16°C.

Question 3 : What mass of water at 50°C can be converted into steam at 110°C by 9.6 x 10^6 J?

Solution:

To find the mass of water, we use the formula, Q = mL

Where,

Q = Amount of heat required to change the phase of water from liquid to gas

L = Latent heat of vaporisation

m = Mass of water required.

To find the value of L, we use the specific heat capacity of water.The amount of heat required to raise 1 g of water by 1°C = 1 cal/g°C

Specific heat capacity of water = 4.18 J/g°C

Amount of heat required to raise 1 g of water by 1°C = 4.18 J/g°C

Specific latent heat of vaporisation of water = 2260 J/g

Amount of heat required to convert 1 g of water into steam = 2260 J/g

To find the mass of water,m = Q / LWhere,

Q = 9.6 × 106 J (Given)

L = 2260 J/g

Substitute the given values in the formula,

m = 9.6 × 106 J / 2260 J/g

m = 4247.79 g (Approx.)

Hence, the mass of water required is 4247.79 g (answer).

Therefore, the mass of water at 50°C that can be converted into steam at 110°C by 9.6 × 106 J is 4247.79 g.

Learn more about specific heat capacity, here

https://brainly.com/question/27991746

#SPJ11

Select the correct answer. Why does a solid change to liquid when heat is added? A. The spacing between particles decreases. B. Particles lose energy. C. The spacing between particles increases. D. The temperature decreases.

Answers

Answer:

The right answer is c because when we heat solid object the molecule will start lose attraction on object

Explanation:

brain list

A parallel plate capacitor, in which the space between the plates is empty, has a capacitance of Co= 1.5μF and it is connected to a battery whose voltage is V = 2.7V and fully charged. Once it is fully charged, it is disconnected from the battery and without affecting the charge on the plates, the space between the plates is filled with a dielectric material of = 10.7. How much change occurs in the energy of the capacitor (final energy minus initial energy)? Express your answer in units of mJ (mili joules) using two decimal places.

Answers

The change in energy of the capacitor is 51.93 μJ (microjoules), which can be expressed as 0.05193 mJ (millijoules) when rounded to two decimal places.

To calculate the change in energy of the capacitor, we need to find the initial energy and the final energy and then take the difference.

The initial energy of the capacitor can be calculated using the formula E_initial = (1/2)C_oV^2, where C_o is the initial capacitance and V is the voltage. In this case, C_o = 1.5 μF and V = 2.7V. Plugging in these values, we get E_initial = (1/2)(1.5 μF)(2.7V)^2.

So, Initial energy, E_initial = (1/2)C_oV^2

Substituting C_o = 1.5 μF and V = 2.7V:

E_initial = (1/2)(1.5 μF)(2.7V)^2

E_initial = 6.1575 μJ (microjoules)

After the space between the plates is filled with a dielectric material, the capacitance changes. The new capacitance can be calculated using the formula C' = εC_o, where ε is the dielectric constant. In this case, ε = 10.7. Therefore, the new capacitance is C' = 10.7(1.5 μF).

So, New capacitance, C' = εC_o

Substituting ε = 10.7 and C_o = 1.5 μF:

C' = 10.7(1.5 μF)

C' = 16.05 μF

The final energy of the capacitor can be calculated using the formula E_final = (1/2)C'V^2, where C' is the new capacitance and V is the voltage. Plugging in the values, we get E_final = (1/2)(10.7)(1.5 μF)(2.7V)^2.

So, Final energy, E_final = (1/2)C'V^2

Substituting C' = 16.05 μF and V = 2.7V:

E_final = (1/2)(16.05 μF)(2.7V)^2

E_final = 58.0833 μJ (microjoules)

To find the change in energy, we subtract the initial energy from the final energy: ΔE = E_final - E_initial.

Therefore, Change in energy (ΔE):

ΔE = E_final - E_initial

ΔE = 58.0833 μJ - 6.1575 μJ

ΔE = 51.9258 μJ (microjoules)

So, the energy change is 51.9258 μJ  or 0.05193 mJ.

Learn more about capacitance here:

brainly.com/question/28991342

#SPJ11

A circuit consists of an 110- resistor in series with a 5.0-μF capacitor, the two being connected between the terminals of an ac generator. The voltage of the generator is fixed. At what frequency is the current in the circuit one-half the value that exists when the frequency is very large? Note: The ac current and voltage are rms values and power is an average value unless indicated otherwise

Answers

The peak value of the current supplied by the generator is approximately 2.07 Amperes.

To determine the peak value of the current supplied by the generator, we can use the relationship between voltage, current, and inductance in an AC circuit.

The peak current (I_peak) can be calculated using the formula:

I_peak = V_rms / (ω * L),

where:

V_rms is the root mean square (RMS) value of the voltage (in this case, 9.0 V),

ω is the angular frequency of the AC signal (in radians per second), and

L is the inductance of the inductor (in henries).

To convert the given frequency (690 Hz) to angular frequency (ω), we can use the formula:

ω = 2πf,

where:

f is the frequency.

Substituting the values into the formula, we have:

ω = 2π * 690 Hz ≈ 4,335.48 rad/s.

Now, let's calculate the peak current:

I_peak = (9.0 V) / (4,335.48 rad/s * 10 × 10^(-3) H).

Simplifying the expression:

I_peak ≈ 2.07 A.

Therefore, the peak value of the current supplied by the generator is approximately 2.07 Amperes.

To learn more about current, refer below:

brainly.com/question/13076734

#SPJ4

Other Questions
All of the following in the Yale baby lab studies revealed evolutionary "hard wiring" ofhumans EXCEPT?we are born with a type of prejudice and discriminationwe are born with a in-group / out-group bias and are willing to punish others who are not like us.when resources the in-group/ out-group bias can be triggeredwe are born with a basic morality where we prefer others who are helpful and punish those who are "mean"It is inconclusive when studying babies because they can't verbalize their answers. Find the center and radius of the circle that passes through the points (1,5),(5,3) and (6,4). 1) A new comers club of 30 peaple wants to choose an executive board consisting of Prescdent, secretary, treasurer, and Jwo other officers, in how many ways can this be accomplished? 2) Find the member of ways in which six children can ride a toboggan if one of the three girls must steer (and therefore sit at the back) Find the center of mass of a thin wire lying along the curve r(t) = ti + tj + (2/3)t^3/2 k 0 t 2 if the density is a = 12+t(X,Y,Z) = The doctor orders gentamicin 2.5 mg/kg/day IV in 2 divided doses. The stock supply is gentamicin 50 mg in 10 mL. The patient weighs 110 kg. The drop factor is 20 gtt/mL. How many milligrams will the patient receive in 24 hours? O 137.5 mg/day O 27.5 mg/day O 275 mg/day 68.8 mg/day 13.5 mg/day 3 What is the sound level of a sound wave with an intensity of 1.58 x 10-8 w/m2? O 158 dB O 15.8 dB O 42 dB O 4.2 dB Use the parallelogram rule (learned in the tutorials) to solve the following problem:(utt - Uxx = 0, 0 0u(x, 0) = sin (x), x0u(x, 0) = sin(x), x0u(0,t) = t, t0It is recommended that you first explicitly write the parallelogram rule, and only then use it. 1)Which of the following are ways to promote a supportive team culture opposed to sexual violence? Selactiall that apprya.Refuse to tolerate sexualized bullying behavior in the locker room. b.Confront student-athletes who use violent sexual language. c.Promote active pro-social bystander behavior from both coaches and student-athletes. d.None of the above 4) Which of the following are ways to promote a supportive team culture opposed to sexual violence? Select all that apply a. Refuse to tolerate sexualized bullying behavior in the locker room. b. Confront student-athletes who use violent sexual language.c. Promote active pro-social bystander behavior from both coaches and student-athletesd. None of the above Find The Total Differentials Of The Following Utility Functions. A. U(X,Y)=Xy B. U(X,Y)=X2+Y3+Xy N24. The Tet Offensive, in which North Vietnamese Army regulars launched nationwide attacks in South Vietnam, led the U.S. Congress to grant President Lyndon B. Johnson the war powers that expanded American involvement.TrueFalse Marcus acquired a rental property in Runaway Bay under a contract of purchase on 19 November 1993 for $420,000. Marcus borrowed $350,000 from ANZ to fund the acquisition of the property.He had sufficient savings to pay for the balance of the purchase price as well as various other settlement costs.Marcus incurred the following costs on 5 January 1994 (being the date of settlement):$ stamp duty on acquisition of property 11,750legal fees on acquisition of property 1,400ANZ loan application fees (loan period is 20 years) 1,200mortgage registration fees 800Tenants were already occupying the rental property when Marcus purchased the property. In this respect, the property has been income-producing during the entire period of ownership.Marcus provides you with a list of renovations to the property since he purchased the property:Two weeks after settlement, the tenants complain of soft and creaking flooring in the third bedroom. After removing the carpets, Marcus becomes aware that the bedroom has badly damaged floorboards. He was not aware of this at the time of purchase. On 19 January 1994, Marcus spent $5,680 replacing the damaged floorboards.On 5 August 1995, Marcus engages a carpenter to install built-in closets in all three bedrooms at a cost $8,460.On 4 March 1997, Marcus completely renovates the kitchen at a cost of $14,310.Marcus advises you that he has claimed the 2.5% capital works allowances under Division 43 totalling $25,900 under Division 43 on all eligible construction expenditure and capital improvements to the property from the date the property was first rented out to tenants to the date of sale.Marcus has also incurred the following expenses in relation to the Runaway Bay rental property:$ interest expense on loan 45,630 repairs to broken roof tiles 720 repainting of house due to extensive sun damage 14,560 landlord insurance 6,780 council rates and water charges 9,190 On 3 June 2022, Marcus sells his Runaway Bay rental property under a contract of sale for $700,000. Sales commission came to $21,400. The Economy Tomorrow Social Security tax revenue comes from taxes on current workers wages up to a cap. Social Security benefits go out to current retirees and are based on age and past earnings. In The Economy Tomorrow, it is discussed how in the near future tax revenue will be less than the benefits paid out. Identify three ways to keep this program in balance.Instructions: Select three. In order to receive full credit, you must make a selection for each option. For correct answer(s), click the box once to place a check mark. For incorrect answer(s), click the option twice to empty the box.___Increase the Social Security benefitsunchecked___Decrease the Social Security taxunchecked___Increase the Social Security taxunchecked___Decrease the Social Security benefitsunchecked___Increase the number of people receiving Social Security benefitsunchecked___Decrease the number of people receiving Social Security benefitsunchecked During male puberty, the prostate gland normally increases in size. Which of the following hormones is the most likely cause of the prostate enlargement at this stage of development A) Androstenedione B) Dehydroepiandrosterone C) DihydrotestosteroneD) Follicle-stimulating hormone E) Growth hormone F) Insulin-like growth factor-il G) Testosterone (a) Find the distance of the image from a thin diverging lens of focal length 30 cm if the object is placed 20 cm to the right of the lens. Include the correct sign. cm (b) Where is the image formed? Redemptive life stories are common across the world; that is, they are equally present across many different cultures. True False You find a bond with 25 years until maturity that has a coupon rate of 5. 3 percent and a yield to maturity of 6. 0 percent. What is the Macaulay duration? Wan has 22 bulbs of the same shape and size in a box. The colors of and amounts of the bulbs are shown below:6 blue bulbs9 red bulbs7 orange bulbsWithout looking in the box, Wan takes out a bulb at random. He then replaces the bulb and takes out another bulb from the box. What is the probability that Wan takes out an orange bulb in both draws? (5 points)a 7 over 22 multiplied by 7 over 22 equal 49 over 484b 7 over 22 multiplied by 6 over 21 equal 42 over 462c 7 over 22 plus 6 over 21 equal 279 over 462d 7 over 22 plus 7 over 22 equal 308 over 484 Help please with absolute value equation Adam had a secure upbringing living with his single mother. Adam would probably characterizes his love relationship at the age of 28 in terms of __________.shared interests, emotional distance, and statusdependency, security, and sacrificedesperation, anxiety, and feartrust, happiness, and friendship In circle I, IJ = 9 and m/JIK = 140. Find the length of JK. Express your answer as a fraction times pie. Steam Workshop Downloader