In a theatre, two attached spotlights make an angle of 100'. One shines on Ben, who is 30.6 feet away. The other shines on Mariko, who is 41.1 feet away. How far apart are Ben and Mariko?

Answers

Answer 1

By using trigonometric principles, we can determine the distance between Ben and Mariko in the theater.

To find the distance between Ben and Mariko, we can use the law of cosines. Let's consider the triangle formed by the spotlights and the line connecting Ben and Mariko. The angle between the spotlights is 100', and the distances from each spotlight to Ben and Mariko are given.

Using the law of cosines, we have the equation:

c^2 = a^2 + b^2 - 2ab*cos(C)

Where c represents the distance between Ben and Mariko, a is the distance from one spotlight to Ben, b is the distance from the other spotlight to Mariko, and C is the angle between a and b.

Plugging in the values, we get:

c^2 = (30.6)^2 + (41.1)^2 - 2 * 30.6 * 41.1 * cos(100')

Evaluating the right side of the equation, we find:

c^2 ≈ 939.75

Taking the square root of both sides, we obtain:

c ≈ √939.75

Calculating this value, we find that the distance between Ben and Mariko is approximately 54.9 feet.

Learn more about square root here:

https://brainly.com/question/29286039

#SPJ11


Related Questions

3m+2(5+m)+15 simplified

Answers

The simplified answer is 5(m+5)5(+5)

Answer:

3m + 10 + 2m + 15 (expansion)

3m + 2m + 10 + 15 (group like terms)

5m + 25

Let T: R^n ? R^m. Suppose A is an m x n matrix with columns V1, ..., Vn. Also, x ∈ R^nand b ∈ R^m. Which of the below is not true? A. The domain of T is R^n. B. The range of T is R^m. C. Let T:x ? Ax. A vector b is in the range of T if and only if Ax=b has a solution. D. To find the image of a vector x under T:x ? Ax , we calculate the product Ax. E. The range of T:x ? Ax is the set {AX: XER"); that is, the range of T is the set of all linear combinations of the columns of A, or equivalently, Span {V1, ...,Vn .

Answers

The statement that is not true is D. To find the image of a vector x under T: x → Ax, we calculate the product Ax.

The given options are related to properties of the linear transformation T: R^n → R^m defined by T(x) = Ax, where A is an m × n matrix with columns V1, ..., Vn.

Option A is true because the domain of T is R^n, which means T can accept any vector x in R^n as input.

Option B is true because the range of T is the set of all possible outputs of T, which is R^m.

Option C is true because a vector b is in the range of T if and only if the equation Ax = b has a solution, which means T can map some vector x to b.

Option D is not true. The image of a vector x under T is the result of applying the transformation T to x, which is Ax. Thus, to find the image of x under T, we calculate the product Ax.

Option E is true. The range of T: x → Ax is the set of all possible outputs, which is the set of all linear combinations of the columns of A or, equivalently, the span of {V1, ..., Vn}.

Therefore, the statement that is not true is D.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

What is the volume of this rectangular prism? h = 11 inches B = 35 square inches​

Answers

The volume of the rectangular prism would be = 385 in³.

How to calculate the volume of a rectangular prism whose base are has been given ?

To calculate the volume of the prism, the formula that should be used would be given below as follows:

Volume of rectangular prism;

Volume of rectangular prism;= length×width×height.

But length×width = base area

Volume = Base area × height.

where;

base area = 35in²

height = 11in

Volume = 35×11= 385 in³

Learn more about volume here:

https://brainly.com/question/27710307

#SPJ1

Express the following sums using sigma notation. a. 5 + 6 + 7 + 8 + 9 b. 6 + 12 + 18+ 24 + 30 + 36 8 C. 1° +2° + +28 +38 +48 1 1 1 1 d. + 4 5 6 7 + + - 5 a. 5+ 6+ 7+8+9= ED k= 1

Answers

a. The sum 5 + 6 + 7 + 8 + 9 can be expressed using sigma notation as:∑(k = 5 to 9) k

b. The sum 6 + 12 + 18 + 24 + 30 + 36 can be expressed using sigma notation as:

∑(k = 1 to 6) (6k)

c. The sum 10 + 20 + 30 + ... + 280 + 380 + 480 can be expressed using sigma notation as:

∑(k = 1 to 8) (10k)

d. The sum 1/4 + 1/5 + 1/6 + 1/7 + ... + 1/9 can be expressed using sigma notation as:

∑(k = 4 to 9) (1/k)

To know more about sigma click the link below:

brainly.com/question/10111399

#SPJ11

Please use an established series
find a power series representation for (x* cos(x)dx (you do not need to find the value of c)

Answers

To find a power series representation for the integral of x * cos(x)dx, we can use an established series such as the Taylor series expansion of cos(x).

The Taylor series expansion for cos(x) is given by: cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ... We can integrate term by term to obtain a power series representation for the integral of x * cos(x)dx. Integrating each term of the Taylor series for cos(x), we have: ∫ (x * cos(x))dx = ∫ (x - (x^3)/2! + (x^5)/4! - (x^7)/6! + ...)dx. Integrating term by term, we get:∫ (x * cos(x))dx = ∫ (x)dx - ∫ ((x^3)/2!)dx + ∫ ((x^5)/4!)dx - ∫ ((x^7)/6!)dx + ...

Simplifying the integrals, we have: ∫ (x * cos(x))dx = (x^2)/2 - (x^4)/4! + (x^6)/6! - (x^8)/8! + ... Therefore, the power series representation for the integral of x * cos(x)dx is: ∫ (x * cos(x))dx = (x^2)/2 - (x^4)/4! + (x^6)/6! - (x^8)/8! + ...

This power series representation provides an expression for the integral of x * cos(x)dx as an infinite series involving powers of x.

To learn more about Taylor series expansion of cos(x) click here:

brainly.com/question/31697668

#SPJ11

Let B be the basis of R2 consisting of the vectors {{2:0} and let C be the basis consisting of {[3] [-2]} Find a matrix P such that ſã]c=P[7]B for all ĉ in R2. P=

Answers

To find the matrix P that transforms a vector from the C basis to the B basis, we need to express the vector [c]C in terms of the B basis.

We have the C basis vector[tex][c]C = [3 -2][/tex] and we want to find the coefficients x and y such that[tex][c]C = x * [2 0] + y * [0 1].[/tex]

Setting up the equations, we have:

[tex]3 = 2x-2 = y[/tex]

Solving these equations, we find x = 3/2 and y = -2.

Therefore, the matrix P is given by:

[tex]P = [3/2 0][-2 1][/tex]

This means that for any vector [c]C in R2, we can find its equivalent representation [c]B in the B basis by multiplying it with the matrix P: [c]B = P * [c]C.

To learn more about matrix    click on the link below:

brainly.com/question/31033791

#SPJ11

S: (3 pts) Given a derivative function f'(a)-3r2, we know f(x) must have been of the form f(x) = 2³+c, where c is a constant, since the derivative of ris 32. That is, if f(x)=r³+c, then f'(x) = 3x²

Answers

 The given information states that the derivative function f'(a) = -3r², and based on this derivative, the original function f(x) must have been of the form f(x) = r³ + c, where c is a constant. This is because the derivative of r³ is 3r². In other words, if f(x) = r³ + c, then f'(x) = 3x².

The derivative function, f'(a) = -3r², suggests that the original function, f(x), must have been obtained by taking the derivative of r³ with respect to x. By applying the power rule of differentiation, we find that the derivative of r³ is 3r².Therefore, the original function f(x) is of the form f(x) = r³ + c, where c is a constant. Adding a constant term c to the function does not change its derivative, as constants have a derivative of zero. So, by adding the constant c to the function, we still have the same derivative as given, which is f'(x) = 3x².
In summary, based on the given derivative function f'(a) = -3r², we can conclude that the original function f(x) must have been of the form f(x) = r³ + c, where c is a constant. This is because the derivative of r³ is 3r². The addition of the constant term does not affect the derivative.


Learn more about derivative here
https://brainly.com/question/25324584

#SPJ11

Determine the Laplace transform of the voltage which varies with time according to the following equation: v(t) = 0.435(1 – e-t/RC) where R is 212 2 and C = 3 µFarads.

Answers

To determine the Laplace transform of the voltage v(t) = 0.435(1 - e^(-t/RC)), where R = 212 ohms and C = 3 µFarads, we can apply the standard Laplace transform formulas.

The Laplace transform of a function f(t) is given by:

F(s) = ∫[0,∞] f(t) * e^(-st) dt

Let's calculate the Laplace transform of v(t) step by step:

1. Apply the linearity property of the Laplace transform:

L[a * f(t)] = a * F(s)

v(t) = 0.435(1 - e^(-t/RC))

v(t) = 0.435 - 0.435e^(-t/RC)

Taking the Laplace transform of each term separately:

L[0.435] = 0.435 * L[1] = 0.435/s

2. Use the exponential function property of the Laplace transform:

L[e^(-at)] = 1 / (s + a)

L[e^(-t/RC)] = 1 / (s + 1/(RC))

             = RC / (sRC + 1)

3. Apply the scaling property of the Laplace transform:

L[f(at)] = 1 / |a| * F(s/a)

L[v(t)] = 0.435/s - 0.435 / (sRC + 1)

Finally, substitute the values R = 212 ohms and C = 3 µFarads:

L[v(t)] = 0.435/s - 0.435 / (s(212 * 3 * 10^(-6)) + 1)

        = 0.435/s - 0.435 / (0.000636s + 1)

Therefore, the Laplace transform of the given voltage function v(t) is:

V(s) = 0.435/s - 0.435 / (0.000636s + 1)

Visit here to learn more about Laplace transform:

brainly.com/question/30759963

#SPJ11

The equation of the path of the particle is
y=
The velocity vector at t=2 is v=(? )I + (?)j
The acceleration vector at t=2 is a=(?)i + (?)j
The position of a particle in the xy-plane at time t is r(t) = (t-2) i + (x2+2) j. Find an equation in x and y whose graph is the path of the particle. Then find the particle's velocity and accelerati

Answers

Equation of the path of the particle: y = (x-2)^2 + 2. Velocity vector at t=2: v = (4i + 4j). Acceleration vector at t=2: a = (2i + 0j)

The position of the particle is given by the vector-valued function r(t) = (t-2) i + (x^2+2) j. To find the equation of the path of the particle, we need to eliminate the parameter t. We can do this by completing the square in the y-coordinate.

The y-coordinate of r(t) is given by y = x^2 + 2. Completing the square, we get y = (x-1)^2 + 1. Therefore, the equation of the path of the particle is y = (x-2)^2 + 2.

To find the velocity vector of the particle, we need to take the derivative of r(t). The derivative of r(t) is v(t) = i + 2x j. Therefore, the velocity vector at t=2 is v = (4i + 4j). To find the acceleration vector of the particle, we need to take the derivative of v(t). The derivative of v(t) is a(t) = 2i. Therefore, the acceleration vector at t=2 is a = (2i + 0j).

to know more about completing the square, click:  brainly.com/question/4822356

#SPJ11

Let $y=(x-2)^3$. When is $y^{\prime}$ zero? Draw a sketch of $y$ over the interval $-4 \leq x \leq 4$, showing where the graph cuts the $x$ - and $y$-axes. Describe the graph at the point where $y^{\prime \prime}=0$.

Answers

At $x=2$, where $y''=0$, the graph of $y=(x-2)^3$ has an inflection point.

To find when $y'$ is zero, we need to find the values of $x$ that make the derivative $y'$ equal to zero.

First, let's find the derivative of $y=(x-2)^3$ with respect to $x$:

$y' = 3(x-2)^2$

Setting $y'$ equal to zero and solving for $x$:

$3(x-2)^2 = 0$

$(x-2)^2 = 0$

Taking the square root of both sides:

$x-2 = 0$

$x = 2$

Therefore, $y'$ is equal to zero when $x=2$.

Now, let's sketch the graph of $y=(x-2)^3$ over the interval $-4 \leq x \leq 4$:

We can start by finding the $x$-intercept and $y$-intercept of the graph:

$x$-intercept: When $y=0$, we have $(x-2)^3=0$, which means $x-2=0$, and thus $x=2$. So the graph cuts the $x$-axis at $(2, 0)$.

$y$-intercept: When $x=0$, we have $y=(-2)^3=-8$. So the graph cuts the $y$-axis at $(0, -8)$.

Based on this information, we can plot these points on the graph.

Now, let's analyze the point where $y''=0$:

To find $y''$, we need to take the derivative of $y' = 3(x-2)^2$:

$y'' = 6(x-2)$

Setting $y''$ equal to zero and solving for $x$:

$6(x-2) = 0$

$x-2 = 0$

$x = 2$

Therefore, at $x=2$, where $y''=0$, the graph of $y=(x-2)^3$ has an inflection point.

learn more about inflection point here:

https://brainly.com/question/30767426

#SPJ11




[3 marks 5. (i) Find the gradient at the point (1, 2) on the curve given by: x² + xy + y² = 12 – 22 – y? (ii) Find the equation of the tangent line to the curve going through the point (1,2) [2

Answers

The required solutions are: i) The gradient at the point (1, 2) on the curve is -4/5. ii) The equation of the tangent line to the curve going through the point (1, 2) is y = (-4/5)x + 14/5.

(i) To find the gradient at the point (1, 2) on the curve given by [tex]x^2 + xy + y^2 = 12 - 22 - y[/tex], we need to find the derivative dy/dx and evaluate it at x = 1, y = 2.

First, let's differentiate the given equation implicitly with respect to x:

[tex]d/dx (x^2 + xy + y^2) = d/dx (12 – 22 – y)[/tex]

2x + (x dy/dx + y) + (2y dy/dx) = 0

Simplifying:

2x + x dy/dx + y + 2y dy/dx = 0

Rearranging:

x dy/dx + 2y dy/dx = -2x - y

Factoring out dy/dx:

dy/dx (x + 2y) = -2x - y

Now, we can find dy/dx by dividing both sides by (x + 2y):

dy/dx = (-2x - y) / (x + 2y)

Substituting x = 1 and y = 2:

dy/dx = (-2(1) - 2) / (1 + 2(2))

      = (-4) / (1 + 4)

      = -4/5

Therefore, the gradient at the point (1, 2) on the curve is -4/5.

(ii) To find the equation of the tangent line to the curve going through the point (1, 2), we have the point (1, 2) and the slope (-4/5) from part (i).

Using the point-slope form of the equation of a line:

y - y₁ = m(x - x₁)

where (x₁, y₁) is the given point and m is the slope, we can substitute the values:

y - 2 = (-4/5)(x - 1)

Simplifying:

y - 2 = (-4/5)x + 4/5

y = (-4/5)x + 14/5

Therefore, the equation of the tangent line to the curve going through the point (1, 2) is y = (-4/5)x + 14/5.

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ4

(1 point) Solve the initial value problem for r as a vector function of t. Differential equation: dr dt (tº + 3t)i + (81)j + (51) Initial condition: 7(0) = 81 +1 Solution: F(t) =

Answers

The solution to the initial value problem is:

r(t) = [(1/3)t^3 + (3/2)t^2 + C1]i + (81t + C2)j + (51t + C3)k

where C1, C2, and C3 are constants determined by the initial condition.

To solve the initial value problem, we need to integrate the given differential equation with respect to t and apply the initial condition.

The differential equation is:

dr/dt = (t^2 + 3t)i + 81j + 51k

To solve this, we integrate each component of the equation separately:

∫dr/dt dt = ∫(t^2 + 3t)i dt + ∫81j dt + ∫51k dt

Integrating the first component:

∫dr/dt dt = ∫(t^2 + 3t)i dt

=> r(t) = ∫(t^2 + 3t)i dt

Using the power rule of integration, we have:

r(t) = [(1/3)t^3 + (3/2)t^2 + C1]i

Here, C1 is the constant of integration.

Integrating the second component:

∫81j dt = 81t + C2

Here, C2 is another constant of integration.

Integrating the third component:

∫51k dt = 51t + C3

Here, C3 is another constant of integration.

Combining all the components, we get the general solution:

r(t) = [(1/3)t^3 + (3/2)t^2 + C1]i + (81t + C2)j + (51t + C3)k

To apply the initial condition, we substitute t = 0 and set r(0) equal to the given initial condition:

r(0) = [(1/3)(0)^3 + (3/2)(0)^2 + C1]i + (81(0) + C2)j + (51(0) + C3)k

= C1i + C2j + C3k

Since r(0) is given as 7, we have:

C1i + C2j + C3k = 7

Therefore, the solution to the initial value problem is:

r(t) = [(1/3)t^3 + (3/2)t^2 + C1]i + (81t + C2)j + (51t + C3)k

where C1, C2, and C3 are constants determined by the initial condition.

To know more about differential equations, visit the link : https://brainly.com/question/1164377

#SPJ11

Using the method of partial tractions, we wish to compute 2 " 1 dr. -11-28 We begin by factoring the denominator of the rational function to obtain +2 -110 + 28 = (2-a) (x - 1) for a

Answers

To compute the integral of (2x + 1) / ((x - 1)(x - 28)), we can use the method of partial fractions. The first step is to factorize the denominator of the rational function.

Factoring the denominator (x - 1)(x - 28), we have: (x - 1)(x - 28) = (2 - 1)(x - 1)(x - 28) = (2 - a)(x - 1)(x - 28), where a is a constant that we need to determine. By equating the numerators of both sides, we have: 2x + 1 = A(x - 1)(x - 28), where A is a constant that we need to determine as well.

To find the value of A, we can simplify the right side of the equation by expanding the terms: A(x - 1)(x - 28) = A(x^2 - 29x + 28) . Now, equating the coefficients of like terms on both sides of the equation, we have: 2x + 1 = Ax^2 - 29Ax + 28A. Comparing the coefficients of x^2, x, and the constant term, we get: A = 2 (coefficient of x), -29A = 0 (coefficient of x), 28A = 1 (constant term). From the second equation, we have -29A = 0, which implies A = 0 since -29 ≠ 0. However, this contradicts the third equation where 28A = 1, indicating that there is no value of A that satisfies both equations simultaneously.

Therefore, the partial fraction decomposition cannot be performed in this case, and the integral (2x + 1) / ((x - 1)(x - 28)) cannot be evaluated using partial fractions.

To learn more about  rational function click here:

brainly.com/question/29098201

#SPJ11

A circular game spinner with a diameter of 5 inch is divided into 8 sectors of equal area what is the approximate area of each sector of the spinner

Answers

Answer:

2.45 in^2

Step-by-step explanation:

So first, we need to find the area of circle.

A = π(r)^2 is the formula

The radius is 1/2 the diameter, so 5/2 = 2.5 in. Plug that bad boy in:

A = π(2.5)^2

(2.5)^2 = 6.25 in

A = π x 6.25 = 19.63 in^2 (Rounded to the hundredths place)

Now since we have 8 equal pieces, divide the total area by 8.

19.63/8 = 2.45 in^2

= = 2. Evaluate the line integral R = Scy?dx + xdy, where C is the arc of the parabola x = 4 – 42 from (-5, -3) to (0,2).

Answers

The line integral R = Scy?dx + xdy, where C is the arc of the parabola x = 4 – 42 from (-5, -3) to (0,2) is 28.

Let's have detailed explanation:

1. Rewrite the line integral:

                          R = ∫C (4 - y2)dx + xdy

2. Substitute the equations of the line segment C into the line integral:

                          R = ∫(-5,-3)->(0,2) (4 - y2)dx + xdy

3. Solve the line integral:

            R = ∫(-5,-3)->(0,2) 4dx - ∫(-5,-3)->(0,2) y2dx + ∫(-5,-3)->(0,2) xdy

            R = 4(0-(-5)) – ∫(-5,-3)->(0,2) y2dx + ∫(-5,-3)->(0,2) xdy

            R = 20 – ∫(-5,-3)->(0,2) y2dx + ∫(-5,-3)->(0,2) xdy

4. Use the Fundamental Theorem of Calculus to solve the line integrals:

                R = 20 – [y2] (−5,2) + [x] (−5,0)

                R = 20 – (−22 + 32) + (0 – (−5))

                R = 28

To know more about integral refer here:

https://brainly.com/question/32514459#

#SPJ11

...........................................................................

Answers

Answer:

Step-by-step explanation:

This is an answer.








Find the marginal profit function if cost and revenue are given by C(x) = 293 +0.8x and R(x) = 3x -0.05x P'(x)= 0

Answers

The marginal profit function is P'(x) = 2.2 - 0.1x, indicating the rate of change of profit with respect to the quantity produced.

To find the marginal profit function, we need to calculate the derivative of the profit function P(x), which is given by P(x) = R(x) - C(x).

First, we substitute the given cost and revenue functions into the profit function: P(x) = (3x - 0.05x²) - (293 + 0.8x).

Simplifying, we have P(x) = 2.2x - 0.05x² - 293.

Taking the derivative with respect to x, we get P'(x) = 2.2 - 0.1x.

Therefore, the marginal profit function is P'(x) = 2.2 - 0.1x.

Learn more about the marginal profit function at

https://brainly.com/question/28856941

#SPJ4

The question is -

Find the marginal profit function if cost and revenue are given by C(x) = 293 +0.8x and R(x) = 3x - 0.05x²

P'(x) = ?

"
2. Find the volume of the solid obtained by rotating the region bounded by y=6x^2, x=2, x=3 and y=0, about the x-axis. V=? 3. Find the volume of the solid formed by rotating the region enclosed by y=e^1x+3, y=0, x=0, x=0.4y=e^1x+3, y=0, x=0, x=0.4 about the x-axis. 4. Find the average value of the function f(x)=4x5 on the interval 25x54?

Answers

The average value of the function f(x) = 4x⁵ over the interval [25,54] is 1814437900/29.

The region bounded by y=6x², x=2, x=3, and y=0 is rotated around the x-axis. To determine the volume of the resulting solid, we'll use the washer method.

The shaded region's horizontal cross-section is shown in the figure. As a result, a washer is formed. The radius of the washer is determined by the value of x, and it is given by 6x². The washer's thickness is determined by dy, which ranges from 0 to 6x².

Volume is found by integrating from 0 to 6x² using the washer method for slicing solid formed by rotating the region bounded by y=6x², x=2, x=3

and y=0 about the x-axis.

V = π∫ from a to b [R(x)²-r(x)²]dxwhere R(x)

= Outer Radius and r(x)

= Inner RadiusV = π∫ from 2 to 3 [(6x²)²-(0)²]dx= 108π cubic units.

3. VolumeThe function y = e^1x+3, y = 0, x = 0, and x = 0.4, when rotated around the x-axis, encloses a region whose volume can be calculated using the washer method.

The region's cross-section is a washer whose inner radius is zero (since the region extends to the x-axis) and whose outer radius is e⁽¹ˣ⁺³⁾.

The volume of the solid is calculated using the following integral:

V = π ∫a to b [R(x)²-r(x)²]dx= π ∫0 to 0.4 [(e¹ˣ+3)²-0²]dx= π ∫0 to 0.4 (e⁽²ˣ⁺⁶⁾)dx= 16.516π cubic units.4. Average value of the function

The average value of a function f(x) over an interval [a,b] is given by the formula

The average value of a function f(x) over an interval [a,b] = 1/(b-a) ∫a to b f(x)dx

Given that the interval is [25,54], and the function is f(x) = 4x⁵.

The average value of the function f(x) over the interval [25,54] is given by= 1/(54-25) ∫25 to 54 (4x⁵)dx= 1/29 [(4/6) (54^6-25⁶)]

To know more about function

https://brainly.com/question/11624077

#SPJ11

Find the probability of being dealt 5 cards from a standard 52-card deck, and the cards are a 8, 9, 10, jack, and queen, all of the same suit. The probabilty of being dealt this hand is Type an integer or simplified fraction.) of being dealt this hand is

Answers

The probability of being dealt a specific hand consisting of the 8, 9, 10, jack, and queen, all of the same suit, from a standard 52-card deck can be calculated as follows:

First, we determine the number of ways this hand can be obtained. There are four suits in a deck, so we have four options for the suit. Within each suit, there is only one combination of the 8, 9, 10, jack, and queen. Therefore, there is a total of 4 possible combinations.

Next, we calculate the total number of possible 5-card hands that can be dealt from a 52-card deck. This can be calculated using combinations, denoted as "52 choose 5." The formula for combinations is given by nCr = n! / (r!(n-r)!), where n represents the total number of items and r represents the number of items to be chosen. For this case, we have 52 cards to choose from, and we want to select 5 cards.

Using the formula, we have 52! / (5!(52-5)!), which simplifies to 52! / (5!47!). After evaluating this expression, we find that there are 2,598,960 possible 5-card hands.

Finally, we calculate the probability by dividing the number of ways the specific hand can be obtained by the total number of possible 5-card hands. In this case, the probability is 4 / 2,598,960, which can be further simplified if necessary.

In summary, the probability of being dealt the specific hand of the 8, 9, 10, jack, and queen, all of the same suit, from a standard 52-card deck is 4/2,598,960. This probability is calculated by determining the number of ways the hand can be obtained and dividing it by the total number of possible 5-card hands from the deck.

Learn more about combination here: https://brainly.com/question/28720645

#SPJ11

Can someone pleaseee help me! it’s very important!!

Answers

The radius of the given cylindrical tank is 82.2 centimeter.

a) Here, volume = 3500 L

We know that 1 L = 1000 cm³

Now, 3500 L = 3500000 cm³

Height (cm) = 165 cm

We know that, the volume of the cylinder = πr²h

3500000 = 3.14×r²×165

r² = 3500000/518.1

r² = 6755.45

r = √6755.45

r = 82.2 cm

Therefore, the radius of the given cylindrical tank is 82.2 centimeter.

To learn more about the volume visit:

https://brainly.com/question/13338592.

#SPJ1


Determine the absolute maximum/minimum of y=(3x^2)(2^2) for -0.5

≤ x
≤ 0.5

Answers

The function y = (3x^2)(2^2) represents a quadratic equation, and we need to find the extreme points within the given interval. By evaluating the function at the critical points and endpoints, we can determine the absolute maximum and minimum values.

To find the extreme points of the function y = (3x^2)(2^2), we start by calculating its derivative. Taking the derivative with respect to x, we get dy/dx = 12x(2^2) = 48x. To find critical points, we set the derivative equal to zero: 48x = 0. This gives us x = 0 as the only critical point.

Next, we evaluate the function at the critical point and the endpoints of the given interval. When x = -0.5, y = (3(-0.5)^2)(2^2) = 1.5. When x = 0, y = (3(0)^2)(2^2) = 0. Finally, when x = 0.5, y = (3(0.5)^2)(2^2) = 1.5.

Comparing these values, we can conclude that the function reaches its absolute maximum of 1.5 at both x = -0.5 and x = 0.5, and its absolute minimum of 0 at x = 0 within the given interval.

To learn more about function: -brainly.com/question/30721594#SPJ11


8,9 please
[8]. Consider the series Sc-n" - ) Is this series conditionally convergent, absolutely 3) convergent, or divergent? Explain your answer State the test and methods you use [9]. Suppose that a ball is d

Answers

The series ∑[tex](-1)^n[/tex](n+4)/(n(n+3)) is divergent because it does not satisfy the conditions for convergence.

To determine whether the series ∑[tex](-1)^n[/tex](n+4)/(n(n+3)) is conditionally convergent, absolutely convergent, or divergent, we need to analyze its convergence behavior.

First, we can examine the absolute convergence by taking the absolute value of each term in the series. This gives us ∑ |[tex](-1)^n[/tex](n+4)/(n(n+3))|. Simplifying further, we have ∑ (n+4)/(n(n+3)).

Next, we can use a convergence test, such as the comparison test or the ratio test, to evaluate the convergence behavior. Applying the ratio test, we find that the limit of the ratio of consecutive terms is 1.

Since the ratio test is inconclusive, we can try the comparison test. By comparing the series with the harmonic series ∑ 1/n, we observe that (n+4)/(n(n+3)) < 1/n for all n > 0.

Since the harmonic series ∑ 1/n is known to be divergent, and the given series is smaller than it, the given series must also be divergent.

Therefore, the series ∑ [tex](-1)^n[/tex](n+4)/(n(n+3)) is divergent.

Learn more about the convergent and divergent series at

https://brainly.com/question/31778047

#SPJ4

The question is -

Consider the series ∑ n = 1 to ∞ (-1)^n n+4/(n(n+3)). Is this series conditionally convergent, absolutely convergent, or divergent? Explain your answer.

.
For the following exercises, sketch the curves below by eliminating the parameter 1. Give the orientation of the curve, 1. x= 12 +21, y=i+1 For the following exercises, eliminate the parameter and s

Answers

For the given exercise, the curve is a line with a positive slope that passes through the point (21, 1).

The given parametric equations represent a line in the Cartesian plane. To eliminate the parameter t, we can solve the first equation for t: t = (x - 21) / 12. Substituting this expression into the second equation, we have y = ((x - 21) / 12) + 1.

Simplifying further, we get y = (x/12) + 1/4. This equation represents a linear function with a slope of 1/12 and a y-intercept of 1/4. Thus, the curve is a line that passes through the point (21, 1) and has a positive slope, meaning it increases as x increases.

Learn more about Cartesian plane here: brainly.com/question/32222840

#SPJ11

. Suppose relations R(A,B) and S(B,C,D) are as follows:
R = A B
1 2
3 4
5 6
S = B C D
4 5 1
6 7 2
8 9 3
Compute the full outer natural join on B, the left outer natural join on B, and the right outer natural join on B. In each case, R is the left operand and S is the right operand. Then, answer the following questions for each of the three results:
How many rows are there in the result?
How many NULL's appear in the result.
Finally, find the correct statement in the list below. a) The left outer natural join has 5 rows.
b) The right outer natural join has 3 NULL's.
c) The full outer natural join has 4 rows.
d) The right outer natural join has 2 NULL's.

Answers

The correct statement is c) The full outer natural join has 4 rows.

What is join?

A join is performed by specifying a join condition that determines how the tables are connected.

To compute the full outer natural join, left outer natural join, and right outer natural join between relations R(A, B) and S(B, C, D), we need to compare the values in the common attribute B and combine the matching rows from both relations.

Here are the computations for each join:

Full Outer Natural Join on B:

The full outer natural join combines all rows from both relations R and S, including matching and non-matching rows on attribute B.

Result:

A | B | C | D

1 | 2 | NULL | NULL

3 | 4 | 5 | 1

5 | 6 | 7 | 2

NULL | 8 | 9 | 3

Number of rows: 4

Number of NULL's: 2

Left Outer Natural Join on B:

The left outer natural join combines all rows from relation R with matching rows from relation S on attribute B.

Result:

A | B | C | D

1 | 2 | NULL | NULL

3 | 4 | 5 | 1

5 | 6 | 7 | 2

Number of rows: 3

Number of NULL's: 1

Right Outer Natural Join on B:

The right outer natural join combines all rows from relation S with matching rows from relation R on attribute B.

Result:

A | B | C | D

1 | 2 | NULL | NULL

3 | 4 | 5 | 1

5 | 6 | 7 | 2

NULL | 8 | 9 | 3

Number of rows: 4

Number of NULL's: 2

Now let's determine the correct statement:

a) The left outer natural join has 5 rows. - False, the left outer natural join has 3 rows.

b) The right outer natural join has 3 NULL's. - False, the right outer natural join has 2 NULL's.

c) The full outer natural join has 4 rows. - True, the full outer natural join has 4 rows.

d) The right outer natural join has 2 NULL's. - False, the right outer natural join has 2 NULL's.

Therefore, the correct statement is c) The full outer natural join has 4 rows.

To learn more about join visit:

https://brainly.com/question/29604793

#SPJ4

. (8 pts.) The estimated monthly profit (in dollars) realized by Myspace.com from selling advertising space is P(x) = -0.04x2 + 240x - 10,000 Where x is the number of ads sold each month. To maximize its profits, how many ads should Myspace.com sell each month?

Answers

To maximize its profits, Myspace.com should sell approximately 300 ads each month.The maximum point of a quadratic function P(x) = -0.04x^2 + 240x - 10,000 occurs at the vertex.

The estimated monthly profit for Myspace.com from selling advertising space is given by the equation P(x) = -0.04x^2 + 240x - 10,000, where x represents the number of ads sold each month.

To determine the number of ads that will yield maximum profit, we need to find the value of x that corresponds to the maximum point on the profit function.

To find this, we can use calculus. The maximum point of a quadratic function occurs at the vertex, which can be found using the formula x = -b / (2a), where a, b, and c are coefficients in the quadratic equation ax^2 + bx + c = 0. In our profit equation, the coefficient of x^2 is -0.04, and the coefficient of x is 240.

Using the formula, we can calculate x = -240 / (2 * -0.04) = 300. Therefore, to maximize its profits, Myspace.com should sell approximately 300 ads each month.

To know more about quadratic function refer here:

https://brainly.com/question/29775037#

#SPJ11

ou are given the following function. f(x) = 1/10 x − 1/4 (a) find the derivative of the function using the definition of derivative.

Answers

Answer:

  f'(x) = 1/10

Step-by-step explanation:

You want the derivative of the function f(x) = 1/10x -1/4.

Derivative

The derivative is the limit ...

  [tex]\displaystyle f'(x)=\lim_{h\to0}{\dfrac{f(x+h)-f(x)}{h}}\\\\\\f'(x)=\lim_{h\to0}{\dfrac{\left(\dfrac{1}{10}(x+h)-\dfrac{1}{4}\right)-\left(\dfrac{1}{10}(x)-\dfrac{1}{4}\right)}{h}}\\\\\\f'(x)=\lim_{h\to0}{\dfrac{\dfrac{1}{10}h}{h}}\\\\\\\boxed{f'(x)=\dfrac{1}{10}}[/tex]

<95141404393>

Let g(X, Y, 2) = xyz - 6. Show that g (3, 2, 1) = 0, and find
N = Vg(X, y, 2) at (3,2, 1). (ii) Find the symmetric equation of the line I through (3, 2, 1) in the direction N; find
also the canonical equation of the plane through (3, 2, 1) that is normal to M.

Answers

N = Vg(X, y, 2) at the normal vector N at (3, 2, 1) is (2, 3, 6) . The symmetric equation of the line I passing through (3, 2, 1) in the direction of N is x - 3/2 = y - 2/3 = z - 1/6. The canonical equation of the plane through (3, 2, 1) is 2x + 3y + 6z = 20.

The function g(X, Y, 2) is equal to xyz - 6. By substituting X = 3, Y = 2, and Z = 1, we find that g(3, 2, 1) = 0. The normal vector N of the function at (3, 2, 1) is (2, 3, 6). The symmetric equation of the line I passing through (3, 2, 1) in the direction of N is x - 3/2 = y - 2/3 = z - 1/6. The canonical equation of the plane through (3, 2, 1) that is normal to M is 2x + 3y + 6z = 20. Given the function g(X, Y, 2) = xyz - 6, we can substitute X = 3, Y = 2, and Z = 1 to find g(3, 2, 1). Plugging in these values gives us 3 * 2 * 1 - 6 = 0. Therefore, g(3, 2, 1) equals 0.

To find the normal vector N at (3, 2, 1), we take the partial derivatives of g with respect to each variable: ∂g/∂X = YZ, ∂g/∂Y = XZ, and ∂g/∂Z = XY. Substituting X = 3, Y = 2, and Z = 1, we obtain ∂g/∂X = 2, ∂g/∂Y = 3, and ∂g/∂Z = 6. Therefore, the normal vector N at (3, 2, 1) is (2, 3, 6). The symmetric equation of a line passing through a point (3, 2, 1) in the direction of the normal vector N can be written as follows: x - 3/2 = y - 2/3 = z - 1/6.

To find the canonical equation of the plane through (3, 2, 1) that is normal to the normal vector N, we use the point-normal form of a plane equation: N · (P - P0) = 0, where N is the normal vector, P is a point on the plane, and P0 is the given point (3, 2, 1). Substituting the values, we have 2(x - 3) + 3(y - 2) + 6(z - 1) = 0, which simplifies to 2x + 3y + 6z = 20. This is the canonical equation of the desired plane.

LEARN MORE ABOUT equation here: brainly.com/question/29538993

#SPJ11

What is the answer to this equation?

Answers

The measure of angle DGE formed by the intersection of chord AG and DG is determined as 26⁰.

What is the value of angle DGE?

The value of angle DGE is calculated by applying intersecting chord theorem, which states that the angle at tangent is half of the arc angle of the two intersecting chords.

From the given diagram we can infer the following;

If point C is the center of the circle, then arc AFB = 180⁰ (sum of angles in a semi circle)

If point E is the midpoint of line DF, then arc BF = arc BD = 64⁰

arc FA = 180 - 64⁰

arc FA = 116⁰

The value of arc AD is calculated as follows;

AD + BD + BF + FA = 360 (sum of angles in a circle)

AD + 64 + 64 + 116⁰ = 360

AD + 244 = 360

AD = 360 - 244

AD = 116⁰

The measure of angle DGE is calculated as follows;

m∠DGE = ¹/₂ (arc AD - arc BD) (exterior angle of intersecting secants)

m∠DGE = ¹/₂ ( 116 - 64 )

m∠DGE = ¹/₂ ( 52 )

m∠DGE = 26⁰

Learn more about chord angles here: brainly.com/question/23732231

#SPJ1

The price p (in dollars) and the demand x for a particular clock radio are related by the equation x = 5000 - 50p. (A) Express the price p in terms of the demand x, and find the domain of this functio

Answers

The price p of a clock radio can be expressed as [tex]p = (5000 - x) / 50[/tex] in terms of the demand x. The domain of this function represents the possible values for the demand x, which is [tex]x \leq 5000[/tex] .

To express the price p in terms of the demand x, we rearrange the given equation [tex]x = 5000 - 50p[/tex] . First, we isolate the term [tex]-50p[/tex] by subtracting 5000 from both sides, resulting in [tex]-50p = -x + 5000[/tex]. Next, we divide both sides of the equation by -50 to solve for p, which gives [tex]p = (5000 - x) / 50[/tex].

This expression allows us to find the price p for a given demand x. It indicates that the price is determined by subtracting the demand from 5000 and then dividing the result by 50.

As for the domain of this function, it represents the possible values for the demand x. Since the demand cannot exceed the total available quantity of clock radios (5000 units), the domain of the function is [tex]x \leq 5000[/tex] . Thus, the function is defined for demand values up to and including 5000.

Learn more about domain here:

https://brainly.com/question/32300586

#SPJ11

A cylinder has a base diameter of 18m and a height of 13m. What is its volume in
cubic m, to the nearest tenths place?

Answers

Answer:

  3308.1 m³

Step-by-step explanation:

You want the volume of a cylinder with diameter 18 m and height 13 m.

Volume

The volume can be found using the formula ...

  V = (π/4)d²h

Using the given dimensions, this is ...

  V = (π/4)(18 m)²(13 m) ≈ 3308.1 m³

The volume of the cylinder is about 3308.1 cubic meters.

__

Additional comment

If you use 3.14 for π, the volume computes to 3306.4 m³. The 5 significant figures in the answer tell you that a 3 significant figure value for π is not appropriate.

<95141404393>

Other Questions
FILL THE BLANK. _____ strengthens the protection of copyrighted materials in digital format. Match the optical instrument with the correct description.Light passes through the lens and forms a smaller image on the sensor or film that records the image.[Light passes from an object to the objective lens. This image is an enlarged view of the object. The enlarged image is further magnified by at least one other lens near the viewer's eye.Light passes through multiple convex lenses to enlarge the image of objects, such as distant stars, that are only small looking because they are so far away.Light passes through a convex lens creating an enlarged image. This image which starts out upside down, passes through two prisms to be rotated right-side-up, before passing through the eyepiece lens for further magnification. As of December 2016, the population distribution of physician's assistance salaries in Tampa was right skewed with a mean of $95316. Which of the following statements are true? a. The sampling distribution of the sample mean (n = 200) would be bell shaped. b. The data distribution (n = 20) would be bell shaped. c. The sampling distribution of the sample mean (n = 20) would be bell shaped. d. The data distribution (n = 200) would be bell shaped. when the tongue shifts very rapidly from a position for a front vowel to a position for a back vowel the sound that emerges is a In The Introduction Video And In The Kelp Example, It Is Clear That Sea Otters Are :a) primary producersb) invasive speciesc) apex predatorsd) keystone species Maximize Profit Please review the attached note before solving the problem. A store sells 2000 action figures a month at a price of $15 each. After conducting market research, the company believes that sales will increase by 200 for each $0.20 decrease in price. a) Determine the demand function d(x). (To avoid confusion let's call our demand function d(x) instead of p(x)). b) If the cost function of producing x action figures is 2 C(x) 0.004x 10. 125 x + 5000 Determine the profit function P(x). c) How many action figures should the company set as a sales target each month in order to maximize profit? d) At what sale price could the company expect to sell the action figures for maximum profit (from c)? you are approaching an intersection at the posted speed limit when the signal light turns yellow. you should: Write a in the form a=a+T+aN at the given value of t without finding T and N. r(t) = (-2t+2)+(-3)j + (-)k 1-3 3 (TN (Type exact answers, using radicals as needed.) Draw an outline of the solid and find its volume using the slicing method. The base is the region enclosed by the curves y = x2 and y = 9. The slices (ie "cross-sectional areas") perpendicular to th the mean and sd of a set of 47 body temperature measurements were as follows: y=36.497c, s=0.172c A phenomenon that occurs when the functions of many physical devices are included in one other physical deviceie - a smart phone has many different functions called_______ Which of the following traits is not attributable to callable bonds? Multiple Choice The bondholder has an advantage over the bond issuer in deciding if the bond will be called The cell price in generally somewhat higher than the face value of the bonds Callable Bonds typically will be less risky then junk bonds The bond issuer will pay the bondholder a specified call price if the bonds are called prior to maturity date 6. Use Theorem 5.10 < (Section 5.3 in Vol. 2 of OpenStax Calculus) for this problem. 1 How many terms of the series would you need to add to n=2 n=2 n(In n)3 find the value of the series with an error a dollar today is worth more than a dollar to be received in the future becausemultiple choicea stated rate of return is guaranteed on all investment dollar can be invested today and earn interest.inflation will increase the purchasing power of a future of these options are true. Compare the effects humans have on the South American continent to those that affect the African continent provide two examples of how these effects are the same or different A radioisotope of fluorine, 20F, lies above the band of stability (neutron rich). It most likely decays by A. positron emission or electron capture. B. beta emission. C. alpha emission.D. fission. E. neutron emission. _____ is the result of low-cost producers focusing all their efforts on producing a single good or service. 3. write an essay on What you think is the author's stand on the idea of revenge according to the play? (a) Apply the trapezoid rule to approximate the definite integral S In x dx using 5 points (4 intervals). Give your answer correct to 5 d.p. (3 marks) Note: You have to make a table first. (b) Repeat Risk for the majority of teratogenic effects is greatest during: A. the germinal period. B. the embryonic period. C. the fetal period. Steam Workshop Downloader