The coefficient of kinetic friction between the tires and the road is 4.7.
To calculate the coefficient of kinetic friction, we can use the formula:
coefficient of kinetic friction = change in speed/force of friction.
The change in speed is 46 km/h - 0 km/h = 46 km/h.
The force of friction is the mass of the object times the acceleration due to gravity (9.8 m/s2).
We will assume the mass of the object is 1 kg.
Therefore, the force of friction is 9.8 N.
We can now calculate the coefficient of kinetic friction: coefficient of kinetic friction = 46 km/h/9.8 N = 4.7.
Therefore, the coefficient of kinetic friction between the tires and the road is 4.7.
To know more about coefficient of kinetic friction click here:
https://brainly.com/question/13828735
#SPJ11
if the same horizontal net force were exerted on both vehicles, pushing them from rest over the same distance, what is the ratio of their final kinetic energies?
If the same horizontal net force were exerted on both vehicles, pushing them from rest over the same distance, the ratio of their final kinetic energies will be 1:1.
What Is Kinetic Energy?The kinetic energy of an object depends on its mass and velocity, and if the force and distance traveled are the same, the velocity of the vehicles at the end of the distance will be the same. The kinetic energy of an object can be calculated using the formula: KE = 1/2mv². Where KE is the kinetic energy, m is the mass, and v is the velocity of the object. If the force and distance traveled are the same for both vehicles, their final velocities will also be the same. Therefore, the ratio of their final kinetic energies will be 1:1, regardless of the mass of the vehicles. The mass of an object only affects its kinetic energy when the force applied is not the same. In that case, the object with the larger mass will have a smaller velocity and therefore smaller kinetic energy, even if the distance traveled is the same.
Learn more about kinetic energy at https://brainly.com/question/20658056
#SPJ11
What is the kinetic energy of the ball as it is halfway through the fall from a forty foot building? What is the potential energy?
Answer:
The kinetic energy is more than half of its maximum energy
Anne says that the mechanical advantage of a 2.00 meter ramp that is 0.50 meters high is 0.25. Is she correct? Why or why not? (show work!)
MA=length of ramp/height of ramp
Anne is wrong. The actual mechanical advantage of the ramp is 4.
Mechanical AdvantageTo determine whether Anne is correct in saying that the mechanical advantage of a 2.00 meter ramp that is 0.50 meters high is 0.25, we need first to calculate the mechanical advantage of the ramp.
The mechanical advantage of a ramp is defined as the ratio of the length of the ramp to its height. In this case, the length of the ramp is 2.00 meters and its height is 0.50 meters. So the mechanical advantage of the ramp is:
Mechanical advantage = Length of ramp / Height of ramp
Mechanical advantage = 2.00 meters / 0.50 meters
Mechanical advantage = 4
Therefore, Anne is incorrect in saying that the mechanical advantage of the ramp is 0.25.
More on mechanical advantages can be found here: https://brainly.com/question/16617083
#SPJ1
Two objects, m1 and m2, have an elastic collision. The initial velocity of m1 is +6. 0 m/s and of m2 is +4. 0 m/s. After the collision, the velocity of m1 is +5. 0m/s. What is the velocity of m2?
Momentum and kinetic energy are both preserved in an elastic collision between two objects. These conservation rules allow us to find the ultimate velocity of m2 by solving for it.
The conservation of momentum can be used as a starting point:
M1V1I and M2V2I equal M1V1F and M2V2F.
where v1i and v2i are the two objects' beginning velocities, m1 and m2 are their respective masses, and v1f and v2f are their respective final velocities.
Inputting the values provided yields:
M1V1I and M2V2I equal M1V1F and M2V2F.
The formula is (6.0 kg)(+6.0 m/s) + (m2)(+4.0 m/s) = (6.0 kg)(+5.0 m/s) + (m2) (v2f)
(1/2)(m2)(+4.0 m/s) + (1/2)(6.0 kg)(+6.0 m/s)2
The formula is 2 = (1/2)(6.0 kg)(+5.0 m/s) + (1/2)(m2)(v2f)
learn more about elastic collision here:
https://brainly.com/question/2356330
#SPJ4
The human perception of pitch primarily depends on __. Multiple choice question. Loudness
resonance
intensity
frequency
"The human perception of pitch primarily depends on frequency. " The correct answer is option: D.
Pitch refers to the subjective quality of sound that enables us to distinguish between high and low sounds. Frequency is physical property of sound that measures the number of cycles of vibration per second and is measured in hertz. The higher frequency of a sound wave, the higher pitch we perceive. This is because our ears are sensitive to different frequencies and can distinguish between them based on activity of the hair cells in cochlea of the inner ear. While loudness, resonance, and intensity can also affect our perception of sound, they are not primary factors that determine pitch. Hence correct answer is option: D.
To know more about Frequency, here
brainly.com/question/5102661
#SPJ4
---The complete question is , The human perception of pitch primarily depends on __.
A. Loudness
B. resonance
C. intensity
D. frequency --
a brick is falling from the roof of a three-story building. how many force vectors would be shown on a free-body diagram? name them
A brick is falling from the roof of three story building then free-body diagram would show only one force vector, which is the force of gravity acting on the brick.
A free-body diagram is used to graphically represent the forces acting on an object. It shows all of the forces acting on an object and can be used to analyze the motion of an object.
A free-body diagram for a falling brick would include two force vectors: Gravity or Weight.
If we consider only the brick and neglect air resistance, then there are two force vectors that would be shown on a free-body diagram of the brick:Force of gravity: The force of gravity, which pulls the brick downwards with a magnitude of its weight. This force is always present and directed downwards towards the center of the Earth. Normal Force: The normal force, which is the force exerted by the roof or any surface in contact with the brick that prevents it from falling through the surface. As the brick is falling, there is no contact force from the roof, so the normal force is zero.So, in this scenario, the free-body diagram would show only one force vector, which is the force of gravity acting on the brick.
To lean more about the 'force vectors':
https://brainly.com/question/30893090
#SPJ11
most of the mass of the solar system is located in which of the following? responses sun sun jupiter jupiter comets comets earth
Most of the mass of the solar system is located in the Sun. The Sun accounts for over 99% of the total mass of the solar system, with the remaining mass distributed among the planets, asteroids, comets, and other objects.
The solar system is a collection of objects that orbit around the Sun. It consists of the Sun, eight planets and their natural satellites, dwarf planets, asteroids, comets, and other small bodies. The eight planets, listed in order from the Sun, are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
The Sun is at the center of the solar system and contains more than 99% of the mass of the solar system. It is a giant ball of gas, mostly hydrogen, and helium, and is the source of heat and light for the entire solar system.
Learn more about the Sun:
https://brainly.com/question/15837114
#SPJ11
light consisting of 4.8 ev photons is incident on a piece of aluminum, which has a work function of 4.3 ev.What is the maximum kinetic energy of the ejected electrons?
- 9.1 eV
- 4.3 eV
- 4.8 eV
- 0.5 eV
The maximum kinetic energy of the ejected electrons when light consisting of 4.8 eV photons is incident on a piece of aluminum with a work function of 4.3 eV is 0.5 eV. The correct option is D.
Here's a step-by-step explanation:
1. When light consisting of photons with a certain energy (in this case, 4.8 eV) is incident on a metal (aluminum), it interacts with the electrons in the metal.
2. The energy of the photons is used to do work on the electrons to overcome the work function of the metal. The work function is the minimum energy required to free an electron from the surface of the metal.
3. In this case, the work function of aluminum is 4.3 eV. Since the energy of the incident photons is 4.8 eV, which is greater than the work function, the electrons can be ejected from the aluminum.
4. The maximum kinetic energy of the ejected electrons is determined by the difference between the energy of the incident photons and the work function of the metal. This is because any extra energy from the photons (beyond the work function) is converted into kinetic energy for the ejected electrons.
5. To calculate the maximum kinetic energy, subtract the work function (4.3 eV) from the energy of the incident photons (4.8 eV): Maximum kinetic energy = 4.8 eV - 4.3 eV = 0.5 eV
So, the maximum kinetic energy of the ejected electrons is 0.5 eV.
To know more about kinetic energy refer here:
https://brainly.com/question/26472013#
#SPJ11
a square wave voltage varies between 0 v and 12 v. the positive pulses are 25ms wide and there is a 75ms gap between them. what is the dc average of the waveform?
The DC average of the waveform is 3 V.
How to calculate the dc average of the waveform?
The duty cycle of the square wave is the ratio of the pulse width to the total period of one cycle. The total period is the sum of the pulse width and the gap between pulses.
In this case, the pulse width is 25 ms and the gap between pulses is 75 ms, so the total period is:
Total period = pulse width + gap between pulses = 25 ms + 75 ms = 100 ms
The duty cycle can be calculated as:
Duty cycle = (pulse width / total period) x 100%
Duty cycle = (25 ms / 100 ms) x 100% = 25%
The DC average of the waveform is the average voltage over one cycle. Since the waveform is a square wave that alternates between 0 V and 12 V, the DC average can be calculated as:
DC average = (duty cycle) x (maximum voltage)
DC average = 0.25 x 12 V = 3 V
Therefore, the DC average of the waveform is 3 V.
Learn more about total period here : brainly.com/question/12634120
#SPJ1
what are some of the challenges associated with using solar energy as a primary source of electricity,
The primary challenge associated with using solar energy as a primary source of electricity is the cost and availability of the technology.
Cost: One of the significant challenges of solar energy is its cost. Solar power systems are expensive to install and maintain, and the initial costs of buying and installing solar panels and batteries can be high.
Capacity: Solar energy is an intermittent power source, meaning it can only produce electricity when the sun is shining. This means that solar power systems need to have a backup power source, such as batteries or an electrical grid, to provide electricity when there is no sunlight available.
Storage: Storing solar energy is a challenge, as batteries used to store energy can be expensive and have a limited lifespan. This means that solar power systems need to be designed to store energy effectively, or they will not be able to provide power when it is needed most.
Weather conditions: Solar panels rely on sunlight to produce electricity, which means that they can be affected by weather conditions such as cloud cover and rain. In areas with a lot of cloud cover or rain, solar power systems may not be able to produce enough electricity to meet demand.
Installation: Installing solar panels requires a large amount of space, which can be challenging in urban areas. Solar panels also need to be installed in a way that maximizes their exposure to the sun, which can be difficult in areas with a lot of shade.
Maintenance: Solar power systems require regular maintenance to ensure that they are working efficiently. This can involve cleaning the solar panels to remove dirt and debris, replacing worn-out components, and checking the system's performance to ensure that it is generating electricity as efficiently as possible.
In conclusion, Solar panels are expensive to install and maintain, and the amount of sunlight they receive will vary depending on the location and weather. Additionally, storing the solar energy collected during the day for use at night can also be a challenge.
To know more about Solar Energy, refer here:
https://brainly.com/question/9704099#
#SPJ11
The lens and mirror equation is the same for both lenses and mirrors except that it uses a positive focal length for lenses and a negative focal length for mirrors.
O True
O False
Answer:
False, Other guy is wrong
Explanation:
The equation is not the same
calculate the spring constant, k, if the spring is compressed by 1.00 cm and the total stored potential energy is 0.00694 j.your answer should be in n/m or kg/s2.
The spring constant, k, is 0.00694 N/m or 6.94 kg/s2. the spring is compressed by 1.00 cm and the total stored potential energy is 0.00694 j.
To calculate the spring constant, k, if the spring is compressed by 1.00 cm and the total stored potential energy is 0.00694 J, you can use the following equation:
k = 2E/x2
Where E is the stored potential energy, and
x is the displacement of the spring.
So, plugging in the given values:
k = (2 × 0.00694) / (1.00 cm)2
= 0.00694 N/m or 6.94 kg/s2
for such more question on spring constant
https://brainly.com/question/23885190
#SPJ11
The acceleration of a car is zero when it is doing which of the following? - traveling over the crest of a hill at constant speed - speeding up as it descends a long straight decline - driving up a long straight incline at constant speed - bottoming out at the lowest point of a valley at constant speed - turning right at a constant speed
The acceleration of a car is zero when it is driving up a long straight incline at constant speed.
In physics, acceleration is defined as the rate of change of velocity per unit time. When an object is moving in a straight line with constant speed, the acceleration is zero. This means that there is no change in the object's velocity or direction. However, acceleration is not only about the change in speed but also about the change in direction. When an object is changing direction, even if its speed is constant, its acceleration is non-zero.
Now let's look at the given options:
Traveling over the crest of a hill at a constant speed - acceleration is non-zero because crests are usually curved which means there is some centripetal acceleration associated with the car.
Speeding up as it descends a long straight decline - acceleration is non-zero.
Driving up a long straight incline at a constant speed - acceleration is zero
Bottoming out at the lowest point of a valley at a constant speed - acceleration is non-zero because valleys are usually curved so there is some centripetal acceleration associated with the car.
Turning right at a constant speed - acceleration is non-zero (because of the change in direction).
Therefore, the acceleration of a car is zero when it is driving up a long straight incline at a constant speed.
Learn more about acceleration:
https://brainly.com/question/460763
#SPJ11
the generation of multiple forecasts of future conditions followed by an analysis of how to respond effectively to each of those conditions is
The process described in the question is known as scenario planning. It is a strategic planning method that involves generating multiple plausible scenarios of future conditions and analyzing the potential impact of each scenario on an organization or a system.
Scenario planning is a useful tool for decision-making, risk management, and identifying opportunities in an uncertain or rapidly changing environment.
By developing a range of scenarios, decision-makers can anticipate potential challenges and opportunities and develop strategies to respond effectively to each situation.
This approach allows organizations to be better prepared and more resilient in the face of future uncertainties. Scenario planning can be applied to various fields, including business, economics, environmental planning, and public policy.
For more details about strategic click here:
https://brainly.com/question/16699515#
#SPJ11
two sound speakers emit pure tones of the same frequency and loudness. when you walk from one speaker to the other on a line joining the two speakers, the sound is heard to alternate from loud too soft. what is happening?
When walking from one speaker to the other on a line joining the two speakers, the sound is heard to alternate from loud to soft because of experiencing the effect of interference.
What is the phenomenon of interference?The phenomenon of interference is caused by the overlapping of two or more waves of the same frequency that combine to form a new wave. When the peaks of two waves coincide, constructive interference occurs, resulting in a stronger wave. When the crest of one wave coincides with the trough of another wave, destructive interference occurs, resulting in a weaker wave.
The sound waves emitted by two speakers with the same frequency, but slightly different phases, interfere with each other. Constructive interference occurs when the waves are in phase, resulting in a louder sound. Destructive interference occurs when the waves are out of phase, resulting in a weaker sound. When the listener moves from one speaker to the other, the phase difference between the sound waves changes, causing the sound to alternate between loud and soft.
For more information about interference refers to the link: https://brainly.com/question/23245030
#SPJ11
a 2.70 kg ball is attached to a ceiling by a 1.35 m long string. the height of the room is 4.45 m. what is the gravitational potential energy of the ball relative to the ceiling?
The gravitational potential energy of the ball relative to the ceiling is 87.9 J.
The gravitational potential energy of an object of mass m at a height h above a reference level (in this case, the ceiling) is given by:
U = mgh
where g is the acceleration due to gravity.
In this problem, the ball is suspended from the ceiling by a string, so its height above the ceiling is the length of the string, minus the radius of the ball. Assuming the ball is a sphere with a radius of 0.135 m (half the length of the string), we can calculate its height above the ceiling as:
h = 4.45 m - 1.35 m + 0.135 m = 3.24 m
(Note that we subtract the length of the string from the height of the room, and add half the length of the string to account for the radius of the ball.)
Plugging in the given values, we get:
U = (2.70 kg)(9.81 m/s^2)(3.24 m)
U = 87.9 J
Therefore, the result is 87.9 J.
Learn more about the potential energy: https://brainly.com/question/24284560
#SPJ11
ganymede is the largest moon in the solar system scientists think that ganymede, like europa, a subsurface ocean of liquid water because
Ganymede is the largest moon in the solar system. Scientists believe that Ganymede, like Europa, has a subsurface ocean of liquid water because of the magnetic field it produces.
Magnetic fields are areas around a magnet or a moving electric charge where magnetic forces are present. The magnetic field's magnitude and direction at each point in space are used to define a magnetic field. Magnetic fields are produced by electric charges in motion.
Magnetic fields are present in the universe in the form of stars, galaxies, and even black holes. Magnetic fields have a significant impact on our planet's electromagnetic environment, from the polar auroras to the solar wind interaction with the Earth's magnetosphere. The Earth has its own magnetic field that plays a vital role in our planet's habitability.
Magnetic fields are useful in a variety of ways, from generating electricity in power plants to levitating trains to keeping our smartphones and other electronic devices charged. Magnetic fields have a plethora of applications in technology and research.
Therefore, scientists infer that Ganymede has a subsurface ocean of liquid water due to the magnetic field it generates, similar to Europa.
To know more about magnetic field click here:
https://brainly.com/question/14848188
#SPJ11
what is the mass, in units of me (the mass of the earth), of a planet with twice the radius of earth for which the escape speed is twice that for earth?
The mass, in units of me (the mass of the earth), of a planet with twice the radius of the earth for which the escape speed is twice that of the earth is 8 me.
The amount of matter in an object is referred to as mass. Mass is expressed in terms of the unit kilogram in the International System of Units (SI).
The escape velocity is defined as the minimum velocity required for an object to leave the gravitational influence of another object. For example, if a ball is thrown from the surface of the earth at a speed of 11.2 km/s (40,320 km/h), it will escape the earth's gravitational pull and continue into space.
The formula for escape velocity is given by:
v=√(2GM/r)
Where, v is the escape velocity, G is the gravitational constant, M is the mass of the planet, and r is the radius of the planet.
The formula for mass:
m = v²r/Gm = (2v)²(2r)/GMm = 8r/G
Therefore, the mass, in units of me (the mass of the earth), of a planet with twice the radius of earth for which the escape speed is twice that of the earth is 8 me.
Learn more about escape velocity at https://brainly.com/question/29911258
#SPJ11
for the parallel electrodes, is the average electric field in the fringe region smaller or larger than in the central region?
The final answer are average electric field in the fringe region is smaller than in the central region in parallel electrodes.
According to Gauss's law, the electric field's magnitude E between two parallel plates carrying uniform charge densities σ1 and σ2 in a vacuum is given by the formula; E = σ1 - σ2 / ε0 where ε0 is the permittivity of free space.
A fringe region is formed near the edges of parallel plates, where the electric field's strength is weak due to the presence of fringe fields.
The electric field between two plates with uniform charge densities is constant over the central region and weaker at the edge region.
So, the average electric field in the fringe region is smaller than in the central region.
To know more about electric field refer here:
https://brainly.com/question/15800304#
#SPJ11
what is the difference in energy in joules between successive values of the oscillation energy? express your answer to two significant figures and include the appropriate units.
The difference in energy between successive oscillation energy values is determined by the system's unique parameters, such as mass, spring constant, and oscillation amplitude.
The system and oscillation frequency both affect the energy differential between subsequent oscillation energy values. In general, an oscillating system's energy is exactly proportional to the oscillation's amplitude squared. As a result, if the oscillation's amplitude varies slightly, the change in energy will be proportional to the square of that change. two significant figures and include the appropriate units.Typically, oscillation energy is expressed in joules (J). If we take a basic harmonic oscillator as an example, the energy difference between successive oscillation energy values is equal to 1/2 the spring constant (k) times the square of the oscillation's amplitude. The energy difference in this situation is proportional to the amplitude squared, and the energy difference.
learn more about energy here:
https://brainly.com/question/1932868
#SPJ4
what is the major difference between p and s waves? how do we use p waves and s waves to determine what is inside the earth?
The major difference between P- and S-waves is the mode of propagation; P-waves are compressional, meaning they cause the material that they travel through to compress and expand as the wave passes, while S-waves are shear waves, meaning they cause the material that they travel through to move side to side. P-waves are the fastest seismic waves and can travel through both solid and liquid material.
In summary, the major difference between P and S waves is their mode of propagation, and we use their behavior as they travel through different layers of the Earth to determine the composition and structure of the Earth's interior.
To know more about mode of propagation click here:
https://brainly.com/question/12945893
#SPJ11
consider a binary system containing two stars: one with an apparent magnitude of 12.5 and the other with an apparent magnitude of 12.9. what is the combined magnitude of the two stars?
The combined magnitude of the two stars is 12.14.
The combined magnitude of the two stars is 12.14. What is a binary system? A binary system is a star system consisting of two stars that orbit one another around their mutual center of gravity. Astronomers believe that most stars are part of a binary or multiple star system. As a result, the Sun is most likely a binary star, though no companion star has been detected or recognized. How to calculate the combined magnitude of the two stars?. The formula to calculate the combined magnitude of the two stars is: m= -2.5log10(I1 + I2) + C Where, m = MagnitudeI1, I2 = Intensities of the stars C = Constant The combined magnitude of the two stars is given as: m = -2.5log10(2.512(-12.5) + 2.512(-12.9)) + C For C = 0, the answer is calculated as: m = -2.5log10(2.512(-12.5) + 2.512(-12.9))m = -2.5 * (-12.14)m = 30.35Therefore, the combined magnitude of the two stars is 12.14.
Learn more about Combined Magnitude
brainly.com/question/30588646
#SPJ11
two balls are connected to 60-cm-long light strings and the other ends of the strings are fixed together as shown in the figure. one of the balls has a mass of 2.0 kg and is raised up and to the right until it is 12.0 cm higher than the other ball, which has a mass of 3.0 kg. the upper ball is released from rest and sticks to the lower ball when they collide. for the subsequent motion find the:
According to the question the speed of the balls just before they collide is 1.81 m/s.
What is collide?Collide is a term used to describe the process of two objects or particles coming into contact with each other, often resulting in a collision. In physics, the term is used to refer to the force of two objects impacting one another. In everyday language, the term is used to describe two things, such as people or ideas, coming together in a way that produces a powerful impact.
The initial energy of the system can be calculated as:
[tex]E_{initial[/tex] = m₁*g*h + 0
where m_1 is the mass of the upper ball (2.0 kg), g is the acceleration due to gravity (9.8 m/s²), and h is the vertical distance between the two balls (12.0 cm).
The final energy of the system can be calculated as:
[tex]E_{final} = (m_1 + m_2)\times v^2[/tex]
where m_1 and m_2 are the masses of the two balls (2.0 kg and 3.0 kg, respectively), and v is the velocity of the lower ball when the two balls stick together.
From these equations, we can solve for v:
[tex]v = sqrt[(m_1\timesg\timesh)/(m_1 + m_2)] = sqrt[(2.0 kg\times9.8 m/s^2\times12.0 cm)/(2.0 kg + 3.0 kg)] = 1.81 m/s[/tex]
Therefore, the velocity of the lower ball when the two balls stick together is 1.81 m/s.
To learn more about collide
https://brainly.com/question/29312023
#SPJ1
if the magnet is moving away from the loop, will the current in the loop flow in the direction shown in (a) or the direction shown in (b)?
The direction of the current flow in a loop is determined by the change in the magnetic flux linking the loop. The direction of the current will be determined by Lenz's law.
When a magnet moves away from a loop, the current in the loop flows in the direction shown in (b).The direction of the current flow in a loop is determined by the change in the magnetic flux linking the loop. The direction of the current will be determined by Lenz's law. This law states that the direction of an induced current is such that it opposes the change that caused it. When a magnet is moved away from the loop, the magnetic flux linking the loop decreases. As a result, the loop's current will flow in such a way as to oppose the decrease in the magnetic flux.The direction of the current flow is shown by the right-hand grip rule. Wrap your right hand around the loop, with your fingers pointing in the direction of the magnetic field. Your thumb will point in the direction of the current flow in the loop. The magnetic flux through a loop is given by:$$ \Phi_{B} = BA cos \theta $$Where B is the magnetic field, A is the area of the loop and $\theta$ is the angle between the magnetic field and the normal to the loop. The induced EMF in the loop is given by Faraday’s law:$$\mathcal{E} = \frac{\Delta \Phi_{B}}{\Delta t}$$Where $\mathcal{E}$ is the induced EMF and $\Delta \Phi_{B}$ is the change in magnetic flux linking the loop. The induced current I in the loop is given by the Ohm’s law:$$I = \frac{\mathcal{E}}{R}$$Where R is the resistance of the loop. From the above equations, we can deduce that the direction of the current will depend on the direction of the change in magnetic flux linking the loop. If the magnetic flux increases, the induced current will oppose the increase, and if it decreases, the induced current will oppose the decrease. This is the Lenz’s law.
Learn more about Magnet
brainly.com/question/2841288
#SPJ11
An object in free fall is accelerating downwards, so its velocity is continually increasing. Because of this, its momentum is continually increasing as well, apparently contradicting the principle of conservation of momentum. Which of Newton's laws can we use to show that momentum is actually being conserved for an appropriately defined system?
Momentum may be demonstrated to be conserved for a properly described system using Newton's third law.
Newton's third law may be used to show that momentum is preserved for a system that is adequately defined. The Earth is being drawn towards the item in an equal and opposing force to that of gravity acting on the object while it is in free fall. As a result, the object's momentum is transferred to the Earth, which has a considerably higher mass and is hence more difficult to detect. The system's overall momentum—that of the Earth and the object—remains preserved. An open system like this one allows momentum to be shared with the environment while yet adhering to conservation standards.
learn more about Newton here:
https://brainly.com/question/4128948
#SPJ4
if your mass, the mass of earth, and the mass of everything in the solar system were twice as much as it is now, yet everything stayed the same size, your weight on earth would
If your mass, the mass of earth, and the mass of everything in the solar system were twice as much as it is now, yet everything stayed the same size, your weight on earth would be twice as much as it is now.
The weight of an object is equal to the force of gravity acting on its mass. When the mass of an object increases, the force of gravity on it also increases. So, if your mass, the mass of the earth, and the mass of everything in the solar system were twice as much as it is now, yet everything stayed the same size, the force of gravity would be twice as much as it is now.
As a result, your weight on earth would be twice as much as it is now. Therefore, the correct answer is twice as much as it is now. Weight is the measure of the force of gravity acting on the mass of an object. The unit of weight is Newtons (N), and its value depends on the mass of the object and the gravitational field it is in. Weight is a vector quantity, meaning it has both magnitude and direction.
Learn more about gravitational field at:
https://brainly.com/question/8843426
#SPJ11
Two pieces of clay are thrown towards each other. The blue clay has a mass of 2 kg and is traveling at 1.5 m/s east. The red clay has a mass of 1.5 kg and is
traveling at 2.5 m/s west (negative velocity). They stick together after they collide. What is the final velocity of the combined clay pieces after the collision? East
is considered positive direction.
Explanation:
To solve this problem, we can use the law of conservation of momentum, which states that the total momentum of a system is conserved in the absence of external forces.
Before the collision, the momentum of the blue clay is:
momentum of blue clay = mass of blue clay * velocity of blue clay
= 2 kg * 1.5 m/s = 3 kg*m/s to the east (positive)
Before the collision, the momentum of the red clay is:
momentum of red clay = mass of red clay * velocity of red clay
= 1.5 kg * (-2.5 m/s) = -3.75 kg*m/s to the west (negative)
The total momentum before the collision is:
total momentum before collision = momentum of blue clay + momentum of red clay
= 3 kgm/s - 3.75 kgm/s = -0.75 kg*m/s to the west (negative)
After the collision, the two clays stick together and move as one combined object. Let's assume that the final velocity of the combined clay pieces after the collision is v.
By the law of conservation of momentum, the total momentum after the collision is equal to the total momentum before the collision:
total momentum after collision = total momentum before collision
= -0.75 kg*m/s
The combined mass of the two clays after the collision is:
combined mass = mass of blue clay + mass of red clay
= 2 kg + 1.5 kg = 3.5 kg
Therefore, the final velocity of the combined clay pieces after the collision is:
v = total momentum after collision / combined mass
= (-0.75 kg*m/s) / 3.5 kg
= -0.214 m/s to the west (negative)
Since the negative velocity indicates a direction to the west, the final velocity of the combined clay pieces after the collision is 0.214 m/s to the west.
Please help me on this physics question <3
Answer:
The answer for Work done is 60J or 60Nm
Explanation:
Work done=Force×distance
W=15×4
W=60J or 60Nm
A mass of 0.450 kg rotates at costant speed with a period of 1.45s at a radius R of 0.140 m in the apparatus used in this laboratory. What is the rotation period for a mass of 0.550 kg at the same radius? Show your work. (Extra information that might or might not be important: For the apparatus used in this laboratory, the centripetal force is the same for a fixed radius R of rotation. This wasn't stated in this question but it was in the question before it.)
Rotation period for a mass of 0.550 kg at the same radius is 1.45 s.
The rotation period of a mass in circular motion is given by:
T = 2πR/v
where T is the period, R is the radius of the circular path, and v is the velocity of the mass.
For the first mass with a mass of 0.45 kg, radius R of 0.140 m, and period T of 1.45 s, we can calculate the velocity as follows:
v = 2πR/T = 2π(0.140 m)/(1.45 s) = 0.6066 m/s
Now, we can use the velocity and radius values to find the period for the second mass with a mass of 0.550 kg:
T = 2πR/v = 2π(0.140 m)/(0.6066 m/s) = 1.45 s
Therefore, the rotation period for a mass of 0.550 kg at the same radius is 1.45 s.
learn more about 'rotation':https://brainly.com/question/16931421
#SPJ11
which of the following will increase the capacitance of a parallel-plate capacitor? (there could bemore than one correct choice.) a) an increase in the charge on the platesb) an increase in the potential difference
D) introduce a dielectric material between the plates, and E) decrease the separation between the plates will increase the capacitance of a parallel-plate capacitor.
The capacitance of a parallel-plate capacitor is given by the formula:
C = εA/d
where C is the capacitance, ε is the permittivity of free space, A is the area of the plates, and d is the distance between the plates.
From this formula, we can see that the capacitance is directly proportional to the area of the plates and the permittivity of free space, and inversely proportional to the distance between the plates. Therefore, the following changes will increase the capacitance of a parallel-plate capacitor:
D) Introduce a dielectric material between the plates: A dielectric material has a higher permittivity than air, which increases the capacitance of the capacitor.
E) Decrease the separation between the plates: A decrease in the distance between the plates increases the capacitance of the capacitor.
Therefore, the correct choices are D) introduce a dielectric material between the plates, and E) decrease the separation between the plates.
Learn more about Capacitor: https://brainly.com/question/17176550
#SPJ11