If a constant force of 10 N accelerates a car of mass 0.5 kg
from rest to 5 m/s. What is the distance needed to reach that
speed?

Answers

Answer 1

The distance needed to reach a speed of 5 m/s with a constant force of 10 N is 1.25 meters.

To determine the distance needed to reach a speed of 5 m/s with a constant force of 10 N, we can use the equations of motion.

The equation that relates distance (d), initial velocity (v₀), final velocity (v), acceleration (a), and time (t) is:

d = (v² - v₀²) / (2a)

In this case, the car starts from rest (v₀ = 0 m/s), accelerates with a constant force of 10 N, and reaches a final velocity of 5 m/s. We are looking to find the distance (d) traveled.

Using the given values, we can calculate the distance:

d = (5² - 0²) / (2 * (10 / 0.5))

Simplifying the equation, we get:

d = 25 / 20

d = 1.25 meters

Therefore, the distance needed to reach a speed of 5 m/s with a constant force of 10 N is 1.25 meters.

learn more about "force ":- https://brainly.com/question/20432894

#SPJ11


Related Questions

Two vectors are given by →A = i^ + 2j^ and →B = -2i^ + 3j^ . Find (b) the angle between →A and →B.

Answers

Calculating this using a calculator, we find that the angle between [tex]→A and →B[/tex] is approximately 53.13 degrees.

To find the angle between two vectors, we can use the dot product formula and trigonometry.

First, let's calculate the dot product of[tex]→A and →B[/tex]. The dot product is calculated by multiplying the corresponding components of the vectors and summing them up.

[tex]→A · →B = (i^)(-2i^) + (2j^)(3j^)[/tex]
        = -2 + 6
        = 4

Next, we need to find the magnitudes (or lengths) of [tex]→[/tex]A and [tex]→[/tex]B. The magnitude of a vector is calculated using the Pythagorean theorem.

[tex]|→A| = √(i^)^2 + (2j^)^2[/tex]
    = [tex]√(1^2) + (2^2)[/tex]
    = [tex]√5[/tex]

[tex]|→B| = √(-2i^)^2 + (3j^)^2[/tex]
    =[tex]√((-2)^2) + (3^2)[/tex]
    = [tex]√13[/tex]

Now, let's find the angle between [tex]→[/tex]A and [tex]→[/tex]B using the dot product and the magnitudes. The angle [tex]θ[/tex]can be calculated using the formula:

[tex]cosθ = (→A · →B) / (|→A| * |→B|)[/tex]

Plugging in the values we calculated earlier:

[tex]cosθ = 4 / (√5 * √13)[/tex]

Now, we can find the value of [tex]θ[/tex]by taking the inverse cosine (arccos) of[tex]cosθ.[/tex]

[tex]θ = arccos(4 / (√5 * √13))[/tex]

Calculating this using a calculator, we find that the angle between [tex]→[/tex]A and [tex]→[/tex]B is approximately 53.13 degrees.

To know more about magnitude visit:

https://brainly.com/question/28714281

#SPJ11

A uniform straight pipe is fully filled with Benzene. The length and the radius of the pipe are 80.0 cm and 16 mm respectively. A 10 Hz longitudinal wave is transmitted in the Benzene. (a) Calculate the time it takes for the wave to travel the length of the pipe. (b) What is the wavelength of the wave? (c) If the amplitude is 2 mm, what is the intensity of the wave?
(Bulk modulus of Benzene 1.05 ⨉ 109 Pa Density of Benzene = 876 kg/m3 )

Answers

The time it takes for the wave to travel the length of the pipe is 0.000651 seconds, the wavelength of the wave is 122.58 meters, and the intensity of the wave is 5.4 × 10^-9 W/m^2.

(a) To calculate the time it takes for the wave to travel the length of the pipe, we can use the formula:

time = distance / velocity.

The distance is the length of the pipe, which is 80.0 cm or 0.8 m. The velocity of the wave can be calculated using the equation:

[tex]velocity = \sqrt{(Bulk modulus / density).[/tex]

Plugging in the values, we get

[tex]velocity = \sqrt{(1.05 * 10^9 Pa / 876 kg/m^3)} = 1225.8 m/s[/tex]

Now, we can calculate the time:

time = distance / velocity = 0.8 m / 1225.8 m/s = 0.000651 s.

(b) The wavelength of the wave can be calculated using the formula: wavelength = velocity / frequency. The velocity is the same as before, 1225.8 m/s, and the frequency is given as 10 Hz.

Plugging in the values, we get

wavelength = 1225.8 m/s / 10 Hz = 122.58 m.

(c) The intensity of the wave can be calculated using the formula: intensity = (amplitude)^2 / (2 * density * velocity * frequency). The amplitude is given as 2 mm or 0.002 m, and the other values are known.

Plugging in the values, we get

intensity = (0.002 m)^2 / (2 * 876 kg/m^3 * 1225.8 m/s * 10 Hz) = 5.4 × 10^-9 W/m^2.

Therefore, the answers are:

(a) The time it takes for the wave to travel the length of the pipe is 0.000651 seconds.

(b) The wavelength of the wave is 122.58 meters.

(c) The intensity of the wave is 5.4 × 10^-9 W/m^2.

To know more about time refer here:

https://brainly.com/question/10430263

#SPJ11

What is the change in internal energy of a car if you put 12 gal of gasoline into its tank? The energy content of gasoline is -1.7.108 J/gal. All other factors, such as the car's temperature, are constant

Answers

The change in internal energy of a car if you put 12 gallons of gasoline into its tank is - 2.04 × 10¹⁰ J.

Energy content of gasoline is - 1.7 x 10⁸ J/gal

Change in volume of gasoline = 12 gal

Formula to calculate the internal energy (ΔU) of a system is,

ΔU = q + w Where, q is the heat absorbed or released by the system W is the work done on or by the system

As the temperature of the car remains constant, the system is isothermal and there is no heat exchange (q = 0) between the car and the environment. The work done is also zero as there is no change in the volume of the car. Thus, the change in internal energy is given by,

ΔU = 0 + 1.7 x 10⁸ J/gal x 12 galΔU = 2.04 × 10¹⁰ J

Hence, the change in internal energy of the car if 12 gallons of gasoline are put into its tank is - 2.04 × 10¹⁰ J.

Learn more about internal energy of systems: https://brainly.com/question/25737117

#SPJ11

A baseball bat traveling rightward strikes a ball when both are moving at 30.5 m/s (relative to the ground toward each other. The bat and ball are in contact for 1.30 ms, after which the ball travels rightward at a speed of 42.5 m/s relative to the ground. The
mass of the bat and the ball are 850 g and 145 g, respectively. Define rightward as the positive direction.
Calculate the impulse given to the ball by the bat.

Answers

The impulse given to the ball by the bat is approximately 17.755 kg·m/s.

To calculate the impulse given to the ball by the bat, we can use the impulse-momentum principle, which states that the impulse experienced by an object is equal to the change in momentum of the object. The impulse can be calculated using the formula:

Impulse = Change in momentum

The momentum of an object is given by the product of its mass and velocity:

Momentum = mass * velocity

Given:

Initial velocity of the ball (before impact) = -30.5 m/s (negative sign indicates leftward direction)

Final velocity of the ball (after impact) = 42.5 m/s

Mass of the ball (m) = 145 g = 0.145 kg

To find the initial velocity of the bat, we can use the conservation of momentum principle. The total momentum before the impact is zero, as both the bat and the ball have equal but opposite momenta:

Total momentum before impact = Momentum of bat + Momentum of ball

0 = mass of bat * velocity of bat + mass of ball * velocity of ball

0 = (0.85 kg) * velocity of bat + (0.145 kg) * (-30.5 m/s)

velocity of bat = (0.145 kg * 30.5 m/s) / 0.85 kg

velocity of bat ≈ -5.214 m/s (negative sign indicates leftward direction)

Now, we can calculate the change in momentum of the ball:

Change in momentum = Final momentum - Initial momentum

Change in momentum = mass of ball * final velocity - mass of ball * initial velocity

Change in momentum = (0.145 kg) * (42.5 m/s) - (0.145 kg) * (-30.5 m/s)

Change in momentum ≈ 17.755 kg·m/s

To know more about impulse-momentum principle, here

brainly.com/question/904448

#SPJ4

Two spheres with uniform surface charge density, one with a radius of 7.1 cm and the other with a radius of 4.2 cm, are separated by a center-to-center distance of 38 cm. The spheres have a combined charge of + 55jC and repel one another with a
force of 0.71 N. Assume that the chargo of the first sphote is
eator than the charge o the second sobore
What is tho surface chargo density on the sobero bi radicie 7 12

Answers

The surface charge density can be calculated by using the formula:σ=q/A, where σ = surface charge density, q = charge of a spherical object A = surface area of a spherical object. So, the surface charge density of a sphere with radius r and charge q is given by;σ = q/4πr².

The total charge of the spheres, q1 + q2 = 55 μC. The force of repulsion between the two spheres, F = 0.71 N.

To find, The surface charge density on the sphere with radius 7.1 cm,σ1 = q1/4πr1². The force of repulsion between the two spheres is given by; F = (1/4πε₀) * q1 * q2 / d², Where,ε₀ = permittivity of free space = 8.85 x 10^-12 N^-1m^-2C²q1 + q2 = 55 μC => q1 = 55 μC - q2.

We have two equations: F = (1/4πε₀) * q1 * q2 / d²σ1 = q1/4πr1². We can solve these equations simultaneously as follows: F = (1/4πε₀) * q1 * q2 / d²σ1 = (55 μC - q2) / 4πr1². Putting the values in the first equation and solving for q2:0.71 N = (1/4πε₀) * (55 μC - q2) * q2 / (38 cm)²q2² - (55 μC / 0.71 N * 4πε₀ * (38 cm)²) * q2 + [(55 μC)² / 4 * (0.71 N)² * (4πε₀)² * (38 cm)²] = 0q2 = 9.24 μCσ1 = (55 μC - q2) / 4πr1²σ1 = (55 μC - 9.24 μC) / (4π * (7.1 cm)²)σ1 = 23.52 μC/m².

Therefore, the surface charge density on the sphere with radius 7.1 cm is 23.52 μC/m².

Let's learn more about surface charge density :

https://brainly.com/question/14306160

#SPJ11

An air conditioner operating between 92 ∘
F and 77 ∘
F is rated at 4200Btu/h cooling capacity. Its coefficient of performance is 27% of that of a Carnot refrigerator operating between the same two temperatures. What horsepower is required of the air conditioner motor?

Answers

The power of the Carnot refrigerator operating between 92⁰F and 77⁰F is 5.635 hp. The required horsepower of the air conditioner motor is 1.519 hp.

The coefficient of performance of a refrigerator, CP, is given by CP=QL/W, where QL is the heat that is removed from the refrigerated space, and W is the work that the refrigerator needs to perform to achieve that. CP is also equal to (TL/(TH-TL)), where TH is the high-temperature reservoir.

The CP of the Carnot refrigerator operating between 92⁰F and 77⁰F is CP_C = 1/(1-(77/92)) = 6.364.

Since the air conditioner's coefficient of performance is 27% of that of the Carnot refrigerator, the CP of the air conditioner is 0.27 x 6.364 = 1.721. The cooling capacity of the air conditioner is given as 4200 Btu/h.

The required motor horsepower can be obtained using the following formula:

(1.721 x 4200)/2545 = 2.84 hp. Therefore, the required horsepower of the air conditioner motor is 1.519 hp.

Learn more about Carnot refrigerator:

https://brainly.com/question/32868225

#SPJ11

What is the escape velocity from the surface of a typical neutron star? A typical neutron star has a mass of 2.98 × 1030kg, and a radius 1.5 × 104m

Answers

The escape velocity from the surface of a neutron star can be calculated using the formula for escape velocity, which is given by v = √(2GM/r), where v is the escape velocity, G is the gravitational constant, M is the mass of the neutron star, and r is the radius of the neutron star.

Calculation:

Given:

Mass of the neutron star (M) = 2.98 × 10^30 kg,

Radius of the neutron star (r) = 1.5 × 10^4 m,

Gravitational constant (G) = 6.67430 × 10^-11 m³/(kg·s²).

Using the formula v = √(2GM/r), we can calculate the escape velocity.

v = √(2 × (6.67430 × 10^-11 m³/(kg·s²)) × (2.98 × 10^30 kg) / (1.5 × 10^4 m)).

Calculating the expression:

v ≈ 7.55 × 10^7 m/s.

Final Answer:

The escape velocity from the surface of a typical neutron star is approximately 7.55 × 10^7 m/s.

To learn more about gravitational constant click here.

brainly.com/question/17239197

#SPJ11

A rock is raised a height above the surface of the earth, and the separation of the ball and the earth stored 5 J of gravitational potential energy. If an identical rock is raised four times as high, the amount of energy stored in the separation is
A) 20 J
B) 9 J
C) 10 J
D) 40 J

Answers

Answer: the correct answer is A) 20 J.

Explanation:

The gravitational potential energy of an object is given by the formula:

Potential energy (PE) = mass (m) * gravitational acceleration (g) * height (h)

Assuming the mass and gravitational acceleration remain constant, the potential energy is directly proportional to the height.

In this case, when the first rock is raised a height h, it stores 5 J of gravitational potential energy.

If an identical rock is raised four times as high, the new height becomes 4h. We can calculate the potential energy using the formula:

PE = m * g * (4h) = 4 * (m * g * h)

Since the potential energy is directly proportional to the height, increasing the height by a factor of 4 increases the potential energy by the same factor.

Therefore, the amount of energy stored in the separation for the second rock is:

4 * 5 J = 20 J

Estimate the uncertainty in the length of a tuning fork and explain briefly how you arrived at this estimate. Explain briefly how you determined how the beat period depends on the frequency difference. Estimate the uncertainty in the beat period and explain briefly how you arrived at this estimate.

Answers

To estimate the uncertainty in the length of a tuning fork, we can consider the factors that contribute to the variation in length. Some potential sources of uncertainty include manufacturing tolerances, measurement errors, and changes in length due to temperature or other environmental factors.

Manufacturing tolerances refer to the allowable variation in dimensions during the production of the tuning fork. Measurement errors can arise from limitations in the measuring instruments used or from human error during the measurement process. Temperature changes can cause the materials of the tuning fork to expand or contract, leading to changes in length. To arrive at an estimate of the uncertainty, one approach would be to consider the known manufacturing tolerances, the precision of the measuring instrument, and any potential environmental factors that could affect the length. By combining these factors, we can estimate a reasonable range of uncertainty for the length of the tuning fork. Regarding the dependence of beat period on the frequency difference, the beat period is the time interval between consecutive beats produced when two sound waves with slightly different frequencies interfere. The beat period is inversely proportional to the frequency difference between the two waves. This relationship can be explained using the concept of constructive and destructive interference. When the two frequencies are close, constructive interference occurs periodically, resulting in beats. As the frequency difference increases, the beat period decreases, reflecting a higher rate of interference. To estimate the uncertainty in the beat period, we can consider factors such as the accuracy of the frequency measurements and any potential fluctuations in the sound waves or the medium through which they propagate. Measurement errors and variations in the experimental setup can also contribute to uncertainty. By evaluating these factors, we can estimate the uncertainty associated with the beat period measurement.

To learn more about errors , click here : https://brainly.com/question/9441330

#SPJ11

The accompanying figure shows a current loop consisting of two concentric circular arcs and two perpendicular radial lines. Determine the magnetic field at point p

Answers

To determine the magnetic field at point P in the given figure, we can use the Biot-Savart Law.

The Biot-Savart Law states that the magnetic field at a point due to a current-carrying element is proportional to the current, the length of the element, and the sine of the angle between the element and the line connecting the element to the point.

In this case, we have two current-carrying arcs and two radial lines. Let's consider each part separately:

1. The circular arcs: Since the circular arcs are concentric, the magnetic fields they produce cancel each other at point P. Therefore, we don't need to consider the circular arcs in our calculation.

2. The radial lines: The radial lines are straight and perpendicular to the line connecting them to point P. The magnetic field produced by a straight current-carrying wire at a point on the wire is given by the equation:

B = (μ₀ * I) / (2π * r)

where μ₀ is the permeability of free space, I is the current, and r is the distance from the wire to the point.

For both radial lines, we can use this equation to calculate the magnetic field at point P. The contribution from each line will have a magnitude of:

B_line = (μ₀ * I) / (2π * r_line)

Since the two lines are parallel and carry the same current, their magnetic fields add up. Therefore, the total magnetic field at point P is:

B_total = 2 * B_line = 2 * (μ₀ * I) / (2π * r_line)

Finally, we can substitute the given values into the equation to calculate the magnetic field at point P.

Note: Without the specific values for the current and distances, we can't provide a numerical answer.

Learn more about Biot-Savart Law.:

brainly.com/question/17057080

#SPJ11

A 4.90-kg mass attached to a horizontal spring oscillates back and forth in simple harmonic motio
following. (Assume a frictionless system.)
(a) the potential energy of the system at its maximum amplitude
(b) the speed of the object as it passes through its equilibrium point

Answers

The potential energy of the system at its maximum amplitude is 4.725 J.

The speed of the object as it passes through its equilibrium point is approximately 1.944 m/s.

(a) To find the potential energy of the system at its maximum amplitude, we can use the formula:

[tex]\[ PE = \frac{1}{2} k A^2 \][/tex]

where PE is the potential energy, k is the spring constant, and A is the amplitude of the oscillation.

Substituting the given values:

[tex]\[ PE = \frac{1}{2} (75.6 \, \text{N/m}) (0.250 \, \text{m})^2 \][/tex]

Calculating:

[tex]\[ PE = 4.725 \, \text{J} \][/tex]

Therefore, the potential energy of the system at its maximum amplitude is 4.725 J.

(b) To find the speed of the object as it passes through its equilibrium point, we can use the equation:

[tex]\[ v = A \sqrt{\frac{k}{m}} \][/tex]

where v is the velocity, A is the amplitude, k is the spring constant, and m is the mass of the object.

Substituting the given values:

[tex]\[ v = (0.250 \, \text{m}) \sqrt{\frac{75.6 \, \text{N/m}}{4.90 \, \text{kg}}} \][/tex]

Calculating:

[tex]\[ v \approx 1.944 \, \text{m/s} \][/tex]

Therefore, the speed of the object as it passes through its equilibrium point is approximately 1.944 m/s.

Know more about equilibrium:

https://brainly.com/question/30807709

#SPJ4

The potential energy of the system at its maximum amplitude is 4.725 J.

The speed of the object as it passes through its equilibrium point is approximately 1.944 m/s.

(a) The potential energy of the system at its maximum amplitude in simple harmonic motion can be determined using the equation for potential energy in a spring:

Potential energy (PE) = (1/2)kx^2

where k is the spring constant and x is the displacement from the equilibrium position. At maximum amplitude, the displacement is equal to the amplitude (A).

Therefore, the potential energy at maximum amplitude is:

PE_max = (1/2)kA^2

(b) The speed of the object as it passes through its equilibrium point in simple harmonic motion can be determined using the equation for velocity in simple harmonic motion:

Velocity (v) = ωA

where ω is the angular frequency and A is the amplitude.

The angular frequency can be calculated using the equation:

ω = √(k/m)

where k is the spring constant and m is the mass.

Therefore, the speed of the object at the equilibrium point is:

v_eq = ωA = √(k/m) * A

Therefore, the speed of the object as it passes through its equilibrium point is approximately 1.944 m/s.

Learn more about equilibrium:

brainly.com/question/30807709

#SPJ11

The figure below shows a uniform electric field (with magnitude 11 N/C ) and two points at the corners of a right triangle. If x=42 cm and y=39 cm, find the difference between the potential at point B(V −
B) and potential at point A(V −
A), i.e. V_B-V_A. (in V)

Answers

(a) The electric potential at point A is 2.54 x 10¹¹ Volts.

(b) The electric potential at point B is 2.36 x 10¹¹ Volts.

What is the electric potential at the given points?

(a) The electric potential at point A is calculated by applying the following formula.

V = kQ/r

where;

k is the Coulomb's constantQ is the magnitude of the charger is the position of the charge

Point A on y - axis, r = 39 cm = 0.39 m

[tex]V_A[/tex] = (9 x 10⁹ x 11 ) / ( 0.39)

[tex]V_A[/tex] = 2.54 x 10¹¹ Volts

(b) The electric potential at point B is calculated by applying the following formula.

V = kQ/r

where;

k is the Coulomb's constantQ is the magnitude of the charger is the position of the charge

Point B on x - axis, r = 42 cm = 0.42 m

[tex]V_B[/tex] = (9 x 10⁹ x 11 ) / ( 0.42)

[tex]V_B[/tex] = 2.36 x 10¹¹ Volts

Learn more about electric potential here: https://brainly.com/question/14306881

#SPJ4

The missing part of the question is in the image attached

A string is stretched between two fixed supports. It vibrates in the fourth harmonics at a frequency of f = 432 Hz so that the distance between adjacent nodes of the standing wave is d = 25 cm. (a) Calculate the wavelength of the wave on the string. [2 marks] (b) If the tension in the string is T = 540 N, find the mass per unit length p of the string. [4 marks] (c) Sketch the pattern of the standing wave on the string. Use solid curve and dotted curve to indicate the extreme positions of the string. Indicate the location of nodes and antinodes on your sketch. [3 marks) (d) What are the frequencies of the first and second harmonics of the string? Explain your answers briefly. [5 marks]

Answers

For the first harmonic (n = 1), the frequency is simply f.For the second harmonic (n = 2), the frequency is 2f. The first harmonic is the fundamental frequency itself, and the second harmonic has a frequency that is twice the fundamental frequency.

The wavelength (λ) of the wave on the string can be calculated using the formula: λ = 2d. Given that the distance between adjacent nodes (d) is 25 cm, we can  substitute the value into the equation: λ = 2 * 25 cm = 50 cm

Therefore, the wavelength of the wave on the string is 50 cm. (b) The mass per unit length (ρ) of the string can be determined using the formula:v = √(T/ρ)

Where v is the wave velocity, T is the tension in the string, and ρ is the mass per unit length. Given that the tension (T) in the string is 540 N, and we know the frequency (f) and wavelength (λ) from part (a), we can calculate the wave velocity (v) using the equation: v = f * λ

Substituting the values: v = 432 Hz * 50 cm = 21600 cm/s

Now, we can substitute the values of T and v into the formula to find ρ:

21600 cm/s = √(540 N / ρ)

Squaring both sides of the equation and solving for ρ:
ρ = (540 N) / (21600 cm/s)^2

Therefore, the mass per unit length of the string is ρ = 0.0001245 kg/cm.

(c) The sketch of the standing wave on the string would show the following pattern: The solid curve represents the string at its extreme positions during vibration.

The dotted curve represents the string at its rest position.

The nodes, where the amplitude of vibration is zero, are points along the string that remain still.

The antinodes, where the amplitude of vibration is maximum, are points along the string that experience the most displacement.

(d) The frequencies of the harmonics on a string can be calculated using the formula: fn = nf

Where fn is the frequency of the nth harmonic and f is the frequency of the fundamental (first harmonic).

For the first harmonic (n = 1), the frequency is simply f.For the second harmonic (n = 2), the frequency is 2f.

Therefore, the frequencies of the first and second harmonics of the string are the same as the fundamental frequency, which is 432 Hz in this case. The first harmonic is the fundamental frequency itself, and the second harmonic has a frequency that is twice the fundamental frequency.

To learn more about fundamental frequency;

https://brainly.com/question/31314205

#SPJ11

A 50 uF capacitor with an initial energy of 1.4 J is discharged through a 8 MO resistor. What is the initial
charge on the capacitor?

Answers

The initial charge on the capacitor is 2 × 10⁻⁴ Coulombs.

Capacitance of capacitor, C = 50 μF = 50 × 10⁻⁶ F

Initial energy of capacitor, U = 1.4 J

Resistance, R = 8 MΩ = 8 × 10⁶ Ω

As per the formula of the energy stored in a capacitor, the energy of capacitor can be calculated as

U = 1/2 × C × V²......(1)

Where V is the potential difference across the capacitor.

As per the formula of potential difference across a capacitor,

V = Q/C......(2)

Where,Q is the charge on the capacitor

.So, the formula for energy stored in a capacitor can also be written as

U = Q²/2C.......(3)

Using the above equation (3), we can find the charge on the capacitor.

Q = √(2CU)Q = √(2 × 50 × 10⁻⁶ × 1.4)Q = 2 × 10⁻⁴ Coulombs

Therefore, the initial charge on the capacitor is 2 × 10⁻⁴ Coulombs.

Learn more about capacitor https://brainly.com/question/21851402

#SPJ11

The Law of Conservation of Momentum only applies to the moments right before and right after a collision because.
momentum always bleeds off
external forces can change the momentum
objects naturally slow down
momentum constantly changes

Answers

external forces can affect the total momentum of the system, and the law of conservation of momentum is not valid in that case. External forces can be defined as any force from outside the system or force that is not part of the interaction between the objects in the system.So correct answer is B

The Law of Conservation of Momentum only applies to the moments right before and right after a collision because external forces can change the momentum. The law of conservation of momentum applies to the moments right before and right after a collision because external forces can change the momentum. When there is an external force acting on the system, the total momentum of the system changes and the law of conservation of momentum is not valid. During the collision, the total momentum of the objects in the system remains constant. Momentum is conserved before and after the collision.

To know more about momentum visit:

brainly.com/question/31445967

#SPJ11

by each species 1.4 How many moles of gas are contained in a scuba diver's 12.6-L tank filled with 777 mmHg of air at 25 °C? (3) la of pas contains four gases with the following partial pressures: He (113

Answers

The scuba diver's 12.6-L tank filled with air at 777 mmHg and 25 °C contains approximately 0.54 moles of gas.

To calculate the number of moles, we can use the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, let's convert the pressure from mmHg to atm by dividing it by 760 (since 1 atm = 760 mmHg). So, the pressure becomes 777 mmHg / 760 mmHg/atm = 1.023 atm.

Next, let's convert the temperature from Celsius to Kelvin by adding 273.15. Therefore, 25 °C + 273.15 = 298.15 K.

Now, we can rearrange the ideal gas law equation to solve for n: n = PV / RT.

Plugging in the values, we have n = (1.023 atm) * (12.6 L) / [(0.0821 L·atm/(mol·K)) * (298.15 K)] ≈ 0.54 moles.

Therefore, the scuba diver's tank contains approximately 0.54 moles of gas.

To learn more about moles of gas, Click here:

https://brainly.com/question/29428896

#SPJ11

Please help me with question that has 3 parts:part 1: What is the energy (in eV) of a photon of wavelength 7.61 nm? (h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J)
part 2: A photon has an energy of 4.72 eV. To what wavelength (in nm) does this energy correspond? (h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J)
part 3: A light of wavelength 586.0 nm ejects electrons with a maximum kinetic energy of 0.514 eV from a certain metal. What is the work function of this metal (in eV)?(h = 6.626 × 10-34 J ∙ s, c = 3.00 × 108 m/s, 1 eV = 1.60 × 10-19 J)

Answers

Part 1: The energy (in eV) of a photon with a wavelength of 7.61 nm is to be determined.

Part 2: The wavelength (in nm) corresponding to a photon with an energy of 4.72 eV is to be found.

Part 3: The work function (in eV) of a metal, given a light wavelength of 586.0 nm and a maximum kinetic energy of ejected electrons of 0.514 eV, needs to be calculated.

Let's analyze each part in a detailed way:

⇒ Part 1:

The energy (E) of a photon can be calculated using the equation:

E = hc/λ,

where h is Planck's constant (6.626 × 10^(-34) J ∙ s), c is the speed of light (3.00 × 10^8 m/s), and λ is the wavelength of the photon.

Converting the wavelength to meters:

λ = 7.61 nm = 7.61 × 10^(-9) m.

Substituting the values into the equation:

E = (6.626 × 10^(-34) J ∙ s × 3.00 × 10^8 m/s) / (7.61 × 10^(-9) m).

⇒ Part 2:

To find the wavelength (λ) corresponding to a given energy (E), we rearrange the equation from Part 1:

λ = hc/E.

Substituting the given values:

λ = (6.626 × 10^(-34) J ∙ s × 3.00 × 10^8 m/s) / (4.72 eV × 1.60 × 10^(-19) J/eV).

⇒ Part 3:

The maximum kinetic energy (KEmax) of ejected electrons is related to the energy of the incident photon (E) and the work function (Φ) of the metal by the equation:

KEmax = E - Φ.

Rearranging the equation to solve for the work function:

Φ = E - KEmax.

Substituting the given values:

Φ = 586.0 nm = 586.0 × 10^(-9) m,

KEmax = 0.514 eV × 1.60 × 10^(-19) J/eV.

Using the energy equation from Part 1:

E = hc/λ.

To know more about photoelectric effect, refer here:

https://brainly.com/question/9260704#

#SPJ11

The displacement of a standing wave on string is given by D = 2.4 * sin(0.6x) * cos(42t), where x and D are in centimeter and this in seconds. Part A What is the distance (cm) between nodes? Express your answer using 3 significant figures. d = 5.24 cm Part B Give the amplitude of each of the component waves. A₁ = Number cm A₂ = Number cm

Answers

Part A: The distance (cm) between nodes in the given standing wave is approximately 5.24 cm.

Part B: The amplitude of each of the component waves can be determined from the given displacement equation.

For the sine component wave, the amplitude is determined by the coefficient in front of the sin(0.6x) term. In this case, the coefficient is 2.4, so the amplitude of the sine component wave (A₁) is 2.4 cm.

For the cosine component wave, the amplitude is determined by the coefficient in front of the cos(42t) term. In this case, the coefficient is 1, so the amplitude of the cosine component wave (A₂) is 1 cm.

Part A: The nodes in a standing wave are the points where the displacement of the wave is always zero. These nodes occur at regular intervals along the wave. To find the distance between nodes, we need to determine the distance between two consecutive points where the displacement is zero.

In the given displacement equation, the sine component sin(0.6x) represents the nodes of the wave. The distance between consecutive nodes can be found by setting sin(0.6x) equal to zero and solving for x.

sin(0.6x) = 0

0.6x = nπ

x = (nπ)/(0.6)

where n is an integer representing the number of nodes.

To find the distance between two consecutive nodes, we can subtract the x-coordinate of one node from the x-coordinate of the next node. Since the nodes occur at regular intervals, we can take the difference between two adjacent x-coordinates of the nodes.

The given equation does not provide a specific value for x, so we cannot determine the exact distance between nodes. However, based on the provided information, we can express the distance between nodes as approximately 5.24 cm.

Part B: The amplitude of a wave represents the maximum displacement of the particles from their equilibrium position. In the given displacement equation, we can identify two component waves: sin(0.6x) and cos(42t). The coefficients in front of these terms determine the amplitudes of the component waves.

For the sine component wave, the coefficient is 2.4, indicating that the maximum displacement of the wave is 2.4 cm. Hence, the amplitude of the sine component wave (A₁) is 2.4 cm.

For the cosine component wave, the coefficient is 1, implying that the maximum displacement of this wave is 1 cm. Therefore, the amplitude of the cosine component wave (A₂) is 1 cm.

The distance between nodes in the standing wave is approximately 5.24 cm. The amplitude of the sine component wave is 2.4 cm, and the amplitude of the cosine component wave is 1 cm.

To learn more about distance click here brainly.com/question/31713805

#SPJ11

A 300-gram dart is thrown horizontally at a speed of 10m/s against a
1Kg wooden block hanging from a vertical rope. Determine at what vertical height
raise the block with the dart when the latter is nailed to the wood.

Answers

The vertical height up to which the wooden block would be raised when the 300g dart is thrown horizontally at a speed of 10m/s against a 1Kg wooden block hanging from a vertical rope is 3.67 m.

Given:

Mass of dart, m1 = 300 g = 0.3 kg

Speed of dart, v1 = 10 m/s

Mass of wooden block, m2 = 1 kg

Height to which wooden block is raised, h = ?

Since the dart is nailed to the wooden block, it would stick to it and the combination of dart and wooden block would move up to a certain height before stopping. Let this height be h. According to the law of conservation of momentum, the total momentum of the dart and the wooden block should remain conserved.

This is possible only when the final velocity of the dart-wooden block system becomes zero. Let this final velocity be vf.

Conservation of momentum

m1v1 = (m1 + m2)vf0.3 × 10 = (0.3 + 1)× vfvf

= 0.3 × 10/1.3 = 2.31 m/s

As per the law of conservation of energy, the energy possessed by the dart just before hitting the wooden block would be converted into potential energy after the dart gets nailed to the wooden block. Let the height to which the combination of the dart and the wooden block would rise be h.

Conservation of energy

m1v12/2 = (m1 + m2)gh

0.3 × (10)2/2 = (0.3 + 1) × 9.8 × hh = 3.67 m

We can start with the conservation of momentum since the combination of dart and wooden block move to a certain height. Therefore, according to the law of conservation of momentum, the total momentum of the dart and the wooden block should remain conserved.

The height to which the combination of the dart and the wooden block would rise can be determined using the law of conservation of energy.

Learn more about the conservation of momentum: https://brainly.com/question/32097662

#SPJ11

A 61-kg person climbs stairs, gaining 19.30 meters in height. Find the work done against gravity to accomplish this task. Show all of work your work below and write your answer here: Joules

Answers

The work done against gravity to accomplish climbing the stairs is approximately 11,557.44 Joules (J).

The work done against gravity can be calculated using the formula:

Work = force × distance

In this case, the force is the weight of the person, and the distance is the height gained.

Mass (m) = 61 kg

Height (h) = 19.30 m

Acceleration due to gravity (g) = 9.8 m/s²

The weight (force) of the person can be calculated using the formula:

Weight = mass × acceleration due to gravity

Weight = 61 kg × 9.8 m/s²

Weight = 598.8 N

Now, we can calculate the work done against gravity:

Work = weight × distance

Work = 598.8 N × 19.30 m

Work = 11,557.44 J

Learn more about work done -

brainly.com/question/25573309

#SPJ11

What is the power of the eye in D when viewing an object 69.3 cm away? (Assume the lens-to-retina distance is 2.00 cm.)

Answers

The power of the eye in diopters when viewing an object 69.3 cm away is approximately 0.02 D.

To determine the power of the eye in diopters (D) when viewing an object at a certain distance, we can use the formula:

Power (D) = 1 / focal length (m)

The focal length of the eye can be approximated as the distance between the lens and the retina. Given that the lens-to-retina distance is 2.00 cm, which is equivalent to 0.02 m, we can calculate the focal length as the reciprocal of this value:

Focal length = 1 / 0.02 = 50 m

Now, let's find the power of the eye when viewing an object 69.3 cm away. The object distance (d) is given as 69.3 cm, which is equivalent to 0.693 m. The power of the eye can be calculated using the formula:

Power (D) = 1 / focal length (m)

= 1 / 50

= 0.02 D

To know more about focal length, here

brainly.com/question/2194024

#SPJ4

4. A ball with a mass of 0.5Kg moves to the right at 1m/s, hits
a wall and bounces off
to the left with a speed of 0.8m/s. Determine the impulse that the
wall gave to the
ball.

Answers

When a ball with a mass of 0.5 Kg moves to the right at 1 m/s, hits another ball, there are several things that happen.

First, the ball with mass 0.5 Kg will exert a force on the second ball. The second ball will also exert a force back on the first ball. These two forces will cause a change in the

motion of both balls

.

The force on the second ball will cause it to move, either to the right or left depending on the

direction of the force

. The force on the first ball will cause it to slow down or stop moving. The amount of force that the second ball exerts on the first ball will depend on the mass of the second ball and the speed at which it is moving. If the second ball has a larger mass, it will exert a larger force on the first ball. If it is moving faster, it will also exert a larger force on the first ball.

In addition to the force

exerted

on the balls, there will also be a transfer of energy. Some of the kinetic energy from the first ball will be transferred to the second ball when they collide. This will cause the second ball to move faster or have a higher kinetic energy than it did before the collision. The amount of energy transferred will depend on the mass and velocity of the balls. If the second ball has a larger mass or is moving faster, it will receive more energy from the collision.Overall, when a ball with a mass of 0.5 Kg moves to the right at 1 m/s and hits another ball, there will be forces and energy transfers between the two balls that will cause a change in their motion.

to know more about

motion of both balls

pls visit-

https://brainly.com/question/29333357

#SPJ11

Exercise 3: Radio waves travel at the speed of 3x10 m/s. If your radio tunes to a station that broadcasts with a wavelength of 300m. At what frequency does this radio transmit?

Answers

The frequency at which the radio transmits is approximately 1 MHz.

The speed of light in a vacuum is approximately 3 × 10^8 m/s, and radio waves travel at the speed of light. The relationship between the speed of light (c), frequency (f), and wavelength (λ) is given by the equation c = f * λ.

Rearranging the equation to solve for frequency, we have f = c / λ.

Substituting the given values, with the speed of light (c) as 3 × 10^8 m/s and the wavelength (λ) as 300 m, we can calculate the frequency (f).

f = (3 × 10^8 m/s) / (300 m)

= 1 × 10^6 Hz

= 1 MHz

Therefore, the radio transmits at a frequency of approximately 1 MHz.

To learn more about frequency , click here : https://brainly.com/question/14316711

#SPJ11

Two 0.0000037μF capacitors, two 3600kΩ resistors, and a 18 V source are connected in series. Starting from the uncharged state, how long does it take for the current to drop to 30% of its initial value?

Answers

It takes approximately 8.22 seconds for the current to drop to 30% of its initial value in the given circuit.

To determine the time it takes for the current to drop to 30% of its initial value in the given circuit, which consists of two capacitors (each with a capacitance of 0.0000037 μF), two resistors (each with a resistance of 3600 kΩ), and an 18 V source connected in series, we can follow these steps:

Calculate the equivalent capacitance (C_eq) of the capacitors connected in series:

Since the capacitors are connected in series, their equivalent capacitance can be calculated using the formula:

1/C_eq = 1/C1 + 1/C2

1/C_eq = 1/(0.0000037 μF) + 1/(0.0000037 μF)

C_eq = 0.00000185 μF

Calculate the time constant (τ) of the circuit:

The time constant is determined by the product of the equivalent resistance (R_eq) and the equivalent capacitance (C_eq).

R_eq = R1 + R2 = 3600 kΩ + 3600 kΩ = 7200 kΩ

τ = R_eq * C_eq = (7200 kΩ) * (0.00000185 μF) = 13.32 seconds

Calculate the time it takes for the current to drop to 30% of its initial value:

To find this time, we multiply the time constant (τ) by the natural logarithm of the ratio of the final current (I_final) to the initial current (I_initial).

t = τ * ln(I_final / I_initial)

t = 13.32 seconds * ln(0.30)

t ≈ 8.22 seconds

Therefore, it takes approximately 8.22 seconds for the current to drop to 30% of its initial value in the given circuit.

Learn more about initial value from the given link,

https://brainly.com/question/10155554

#SPJ11

An archer pulls her bowstring back 0.380 m by exerting a force that increases uniformly from zero to 255 N. (a) What is the equivalent spring constant of the bow? N/m (b) How much work does the archer do in pulling the bow? ]

Answers

The answers are;

a) The equivalent spring constant of the bow is 671.05 N/m

b) The archer does 47.959 J of work in pulling the bow.

Given data:

Displacement of the bowstring, x = 0.380 m

The force exerted by the archer, F = 255 N

(a) Equivalent spring constant of the bow

We know that Hook's law is given by,F = kx

              Where,F = Force applied

                         k = Spring constant

                        x = Displacement of the spring

From the above formula, the spring constant is given by;

                k = F/x

Putting the given values in the above formula, we have;

              k = F/x

                = 255 N/0.380 m

                = 671.05 N/m

Therefore, the equivalent spring constant of the bow is 671.05 N/m.

(b) The amount of work done in pulling the bow

We know that the work done is given by,

          W = (1/2)kx²

Where,W = Work done

           k = Spring constant

           x = Displacement of the spring

Putting the given values in the above formula, we have;

          W = (1/2)kx²

               = (1/2) × 671.05 N/m × (0.380 m)²

                = 47.959 J

Therefore, the archer does 47.959 J of work in pulling the bow.

To know more about Hook's law, visit:

https://brainly.com/question/30379950

#SPJ11

A beam of light strikes the surface of glass (n = 1.46) at an
angle of 60o with respect to the normal. Find the angle of
refraction inside the glass. Take the index of refraction of air n1
= 1.

Answers

The angle of refraction inside the glass is approximately 36.96 degrees.

To find the angle of refraction inside the glass, we can use Snell's law, which relates the angles of incidence and refraction to the indices of refraction of the two mediums involved.

Snell's law states:

n1 * sin(theta1) = n2 * sin(theta2)

where:

n1 = index of refraction of the first medium (in this case, air)

theta1 = angle of incidence with respect to the normal in the first medium

n2 = index of refraction of the second medium (in this case, glass)

theta2 = angle of refraction with respect to the normal in the second medium

Given:

n1 = 1 (since the index of refraction of air is approximately 1)

n2 = 1.46 (index of refraction of glass)

theta1 = 60 degrees

We can plug in these values into Snell's law to find theta2:

1 * sin(60) = 1.46 * sin(theta2)

sin(60) = 1.46 * sin(theta2)

Using the value of sin(60) (approximately 0.866), we can rearrange the equation to solve for sin(theta2):

0.866 = 1.46 * sin(theta2)

sin(theta2) = 0.866 / 1.46

sin(theta2) ≈ 0.5938

Now, we can find theta2 by taking the inverse sine (arcsine) of 0.5938:

theta2 ≈ arcsin(0.5938)

theta2 ≈ 36.96 degrees

Therefore, The glass's internal angle of refraction is roughly 36.96 degrees.

learn more about refraction from given link

https://brainly.com/question/27932095

#SPJ11

You would like to use Gauss"s law to find the electric field a perpendicular
distance r from a uniform plane of charge. In order to take advantage of
the symmetry of the situation, the integration should be performed over:

Answers

The electric field a perpendicular distance r from a uniform plane of charge is given by E = σ/2ε₀

To take advantage of the symmetry of the situation and find the electric field a perpendicular distance r from a uniform plane of charge, the integration should be performed over a cylindrical Gaussian surface.

Here, Gauss's law is the best method to calculate the electric field intensity, E.

The Gauss's law states that the electric flux passing through any closed surface is directly proportional to the electric charge enclosed within the surface.

Mathematically, the Gauss's law is given by

Φ = ∫E·dA = (q/ε₀)

where,Φ = electric flux passing through the surface, E = electric field intensity, q = charge enclosed within the surface, ε₀ = electric constant or permittivity of free space

The closed surface that we choose is a cylinder with its axis perpendicular to the plane of the charge.

The area vector and the electric field at each point on the cylindrical surface are perpendicular to each other.

Also, the magnitude of the electric field at each point on the cylindrical surface is the same since the plane of the charge is uniformly charged.

This helps us in simplifying the calculations of electric flux passing through the cylindrical surface.

The electric field, E through the cylindrical surface is given by:

E = σ/2ε₀where,σ = surface charge density of the plane

Thus, the electric field a perpendicular distance r from a uniform plane of charge is given by E = σ/2ε₀.

#SPJ11

Let us know more about Gauss's law : https://brainly.com/question/14767569.

Part A The mercury manometer shown in the figure (Figure 1) is attached to a gas cell. The mercury height h is 120 mm when the cell is placed in an ice- water mixture. The mercury height drops to 30 mm when the device is carried into an industrial freezer. Hint: The right tube of the manometer is much narrower than the left tube. What reasonable assumption can you make about the gas volume? What is the freezer temperature? Express your answer with the appropriate units. uÅ ? Value Units Figure 1 of 1 Submit Request Answer Provide Feedback h Gas cell 27

Answers

The pressure of the gas in the cell decreased.

The mercury manometer shown in Figure 1 is attached to a gas cell. The mercury height h is 120 mm when the cell is placed in an ice-water mixture.

The mercury height drops to 30 mm when the device is carried into an industrial freezer. The right tube of the manometer is much narrower than the left tube.

The assumption that can be made about the gas volume is that it remains constant. The volume of a gas in a closed container is constant unless the pressure, temperature, or number of particles in the gas changes. The device is carried from an ice-water mixture (which is about 0°C) to an industrial freezer.

It is assumed that the freezer is set to a lower temperature than the ice-water mixture. We'll need to determine the freezer temperature. The pressure exerted by the mercury is equal to the pressure exerted by the gas in the cell.

We may use the atmospheric pressure at sea level to calculate the gas pressure: Pa = 101,325 Pa Using the data provided in the problem, we can now determine the freezer temperature:

[tex]Δh = h1 − h2 Δh = 120 mm − 30 mm = 90 mm[/tex]

We'll use the difference in height of the mercury column, which is Δh, to determine the pressure change between the ice-water mixture and the freezer:

[tex]P2 = P1 − ρgh ΔP = P2 − P1 ΔP = −ρgh[/tex]

The pressure difference is expressed as a negative value because the pressure in the freezer is lower than the pressure in the ice-water mixture.

[tex]ΔP = −ρgh = −(13,600 kg/m3)(9.8 m/s2)(0.09 m) = −11,956.8 PaP2 = P1 + ΔP = 101,325 Pa − 11,956.8 Pa = 89,368.2 Pa[/tex]

To know about pressure visit:

https://brainly.com/question/30673967

#SPJ11

For an object undergoing non-uniform circular motion where the object is slowing down, in what direction does the net force point?
A. Radially inward along the positive r axis.
B. In a direction between the positive r axis and positive t axis
C. Along the positive t axis
D. In a direction between the negative r axis and positive t axis
E. Along the negative r axis
F. In a direction between the negative r axis and negative t axis
G. Along the negative t axis
H. In a direction between the positive r axis and negative t axis

Answers

Correct option is D.D. In a direction between the negative r axis and positive t axis. In an object undergoing non-uniform circular motion where the object is slowing down, the net force will point in a direction between the negative r axis and positive t axis.

Circular motion refers to the movement of an object along a circular path or trajectory. This type of movement has two characteristics: the distance between the moving object and the center of rotation is always the same, and the direction of motion is constantly changing. In uniform circular motion, the speed remains constant, and the direction of motion changes.

On the other hand, in non-uniform circular motion, the magnitude of velocity changes, but the direction remains the same. An object undergoing non-uniform circular motion is slowing down, which means the magnitude of the velocity is decreasing.

As per the question, for an object undergoing non-uniform circular motion, the net force will point in a direction between the negative r axis and positive t axis.Option: D. In a direction between the negative r axis and positive t axis.

To know more about Circular motion visit-

brainly.com/question/14625932

#SPJ11

quick answer please
QUESTION 3 In order for a magnetic force to exist between a source charge and a test charge a. both the source charge and the test charge must be moving. b. the source charge must be stationary, but t

Answers

In order for a magnetic force to exist between a source charge and a test charge, both the source charge and the test charge must be moving. This statement is not true (option d).

Instead, the correct option is: d. the source charge must be moving, but the test charge can be either moving or stationary. Magnetic force is one of the four fundamental forces of nature. It is a force that is exerted by a magnetic field on a moving charge, such as an electron or a proton. The force is perpendicular to the direction of motion of the charge and to the direction of the magnetic field. It is also proportional to the charge and to the speed of the charge.

The mathematical expression for the magnetic force is given by:

Fm = qvBsinθ

whereFm is the magnetic force,q is the charge,v is the velocity of the charge,B is the strength of the magnetic field, andθ is the angle between the velocity and the magnetic field.

Therefore, the correct answer is d. the source charge must be moving, but the test charge can be either moving or stationary.

To know more about magnetic:

https://brainly.com/question/3617233

#SPJ11

Other Questions
Assuming a SUTA tax rate of 4.2% and a SUTA wage threshold of $11,000, the SUTA tax owed for an employee who has year-todate earnings prior to the current period of $9,550, earns $1,550 during the current period, and operates in a state with a credit reduction of 1.2% would be $__________.already tried 60.9 incorrect answer. Case: Ritz-Carlton Hotels There is a great line from a Dilbert cartoon suggesting that you do not need a motivation program to get people to eat a chocolate chip cookieand Dilbert is right. That is, there is no great magic in motivating highly paid people to do what they love, or to get great athletes to play hard in the championship game. The real test of motivation is getting ordinary people to provide extraordinary performance, and in the absence of any great pay or job excitement. Examples of exactly that phenomenon occur daily at Ritz-Carlton hotels. Known worldwide for consistently delivering an excellent hotel experience, Ritz-Carlton managers have the difficult challenge of motivating their staffordinary people paid a relatively modest wageto consistently deliver extraordinary levels of customer service. Among the strategies they employ are the following. Sharing "wow stories." Every day, employees of every department in every Ritz-Carlton hotel around the world gather for a 15-minute staff meeting where they share "wow stories." These are true stories of employee heroics that go above and beyond conventional customer service expectations. In one, a hotel chef in Bali found special eggs and milk for a guest with food allergies in a small grocery store in another country and had them flown to the hotel. In another, a hotels laundry service failed to remove a stain on a guests suit before the guest left. The hotel manager flew to the guests house and personally delivered a reimbursement check for the cost of the suit. Telling stories in these pep talks accomplishes two goals. First, it reinforces the high standards of customer service the hotel strives to provide its guests. But most importantly, it gives employees instant "local fame." Employees want to be recognized in front of their peers, and giving them public recognition is a powerful motivator. Demonstrating passion. Moods are contagious. Managers who walk around with smiles on their faces and who demonstrate passion for their jobs have an uplifting effect on others. Enthusiasm starts at the top. For example, at a recent staff meeting the supervisor was dressed impeccably in a blue suit, white shirt, purple tie, and shined black shoes. His wardrobe communicated respect for his job and his staff. "Good morning, everyone," he said enthusiastically. The housekeepers returned an energetic greeting. This manager was all smiles and showed respect for his team. He said they returned his commitment through their hard work.1.Why do employees at Ritz- Carlton, who are not paid significantly more than people at other retail establishments, work so hard to provide remarkable customer service?2. As a manager, what lessons can you draw from the Ritz-Carlton example regarding how to get people to go the extra mile?3. Are those that go the extra mile generally paid the highest, and do such firms have the highest labor costs? If it is not just about the money, what is also at stakeFORMAT:Use a title page. Font: Use Times New Roman, 12 point. Place your name in the upper left hand corner of the page. Each section of your paper should be headed by the bolded, capitalized item described above. Insert page numbers bottom right. Papers must be original. Plagiarism will result in an F. Paper length should be one to two double-spaced pages not including title page, references, or illustrations and tables. Use APA citations throughout the paper. If you are not familiar with APA citation, check out the tutorial APA Guidelines for Citing Sources at Writing Resources for Student The refraction of light is that physical phenomenon by whichlight, when passing from one medium to another, deviates from itsoriginal direction.Select one:TrueFalse The national people meter sample has 4,000 households, and 250of those homes watched program A on a given Friday Night. In otherwords _______ of all households watched program A. Graph g(x)=x+2 and its parent function. Then describe the transformation. Cost-Volume Analysis - All analysis and calculations and report must be done in a single (ONE) Excel file. - Put your name at the top of the worksheet. - Make Excel do all of the calculations. . (Instructor must be able to see your cell-reference formulas.) - Include graph interpretation below the graph. Make sure it is clear, complete, and easy to find. 2. The operations manager for an auto supply company is evaluating the potential purchase of a new machine for the production of a transmission component. Current manufacturing costs are fixed costs of $11,000 and a variable cost of $0.50 per unit. The new machine would have fixed cost of $4,000 and a variable cost of $0.75 per unit. Each component is sold for $1.50 per unit. a. Develop two separate models in your spreadsheet to calculate Total Profit for each option. The models must be flexible and able to calculate Total profit for any Quantity produced. b. Find the break-even quantity for each option c. Graph the Total profit for each option vs Quantity (both lines on one graph) Show Quantity from 0 to 50,000 d. Write an interpretation of your grap Excessive and prolonged use of stimulants can increase heart rate, but will not have any influence over insulin resistance or bloodpressureA. trueB. False The caffeine will initially be extracted from the solid tea by boiling in ____________ , but then separated by other compounds by extraction with___________ solvent. What type of bonding would you expect in Silicon nitride?explain the answer and what kind of secondary bonding would occurbetween polymer chains? Jack is a manager at StyleCo. Jack's boss started a program that encourages employee empowerment. Jack presented the idea to his staff, but the employees seemed reluctant to take part. Jack tells his boss that subordinates are not interested in empowerment. What assumption is Jack making? A model airplane with mass 0.750 kg is tethered to the ground by a wire so that it flies in a horizontal circle 30.0m in radius. The airplane engine provides a net thrust of 0.800N perpendicular to the tethering wire.(b) Find the angular acceleration of the airplane. Question 43 1 pts In what form does water exist on the Moon? There is water ice in the bright regions of the lunar maria. There are shallow lakes of liquid water in the deepest craters. There are small pools of liquid water just beneath the surface. There is no water in any form on the Moon There is water ice in craters near the poles. Exercise 1 Place a check on the blank next to each sentence that is correct.Nobel week takes place at the same time as the Swedish holiday honoring Saint Lucia; consequently, prizewinners are serenaded by groups of young girls who also take part in a pageant on December 13. The heights of 10 teens, in \( \mathrm{cm} \), are \( 148,140,148,134,138,132,132,130,132,130 \). Determine the median and mode. A. Median \( =133 \) Mode \( =130 \) B. Median \( =132 \) Mode \( =132 From Book - Rosen, Gideon A., et al. The Norton Introduction to Philosophy , in The Will to Believe" James Wiliam sets conditions for belief, based on hypothesis: living or dead, forced or avoidable, momentous or trivial. Explain these conditions and provide examples, then explain how this relates to belief in God. orin, a citizen of ohio, sees an ad for power up! in extreme!!! magazine and buys it in ohio at a local store. within 2 hours of drinking power up! orin suffers internal injuries. alleging th Based on the research design you have proposed in question 1.5, discuss the methodology you would follow with regard to: 2.1 The Sampling Methodology for the proposed study: 2.1.1 State TWO (2) reasons why you would undertake sampling rather than a census for the proposed study. 2.1.2 Specify the target population for your proposed study. 2.1.3 Specify whether you would use a probability or non-probability sampling strategy and why. 2.1.4 Propose a suitable method of sampling for the study and explain why the method you have proposed is appropriate for the study. 2.2 The Method of Data Collection for the proposed study: 2.2.1 What instrument and or method of data collection would you use in the proposed study? Provide a rationale for, and justify the appropriateness of, the proposed data collection method. 2.2.2 Briefly explain how you would pilot the data collection instrument before administering it to respondents in the proposed study. Why are demographers especially interested in the sex and agecomposition of a given population? Which of the following would be considered an inferior good?a.) A used car that can be traded in for a newer and better oneb.) A flight to the beach for a week-long spring break vacationc.) Eating at high-end restaurantsd.) New professional clothes that can be bought with a higher income 6. What are the costs of inflation? Which of these do you thinkare the most important for the US economy? Steam Workshop Downloader