A car traveling from rest to a velocity of 7.0 m/s accelerates uniformly at the rate of 0.80 m/s2. What is its tr. 31
time?
Answer:
54mph
Explanation:
9. A plane starts at rest & accelerates along the ground before takeoff. It
moves 1600m in 18s. Calculate the acceleration rate of the plane. *
Answer:
9.877 m/s^2
Explanation:
The acceleration can be computed from ...
d = (1/2)at^2
(1600 m) = (1/2)a(18 s)^2
a = (1600/162) m/s^2 ≈ 9.877 m/s^2
What were the quartering acts
Answer:
The quartering act of 1765 required the colonies to house British soldiers in barracks provided by the colonies.
Cooling causes a material to
Answer:
whats the question?
Explanation:
Answer:
2 Key Concepts Heating and cooling can cause materials to change characteristics, such as state, color, and texture. Heating causes ice to become liquid water and cooling causes condensation to form on a window, mirror, or on the outside of a glass of water.
Explanation:
what is power?
a- the magnitude of a force needed to move an object
b- how much work can be done in a given time
c- the distance over time that an object moves
d- the energy needed to create work
Answer:
b- how much work can be done in a given time
how much work can be done in a given time
If a person has the values for an object's density and volume, what value can be calculated?
o the object's size
o the object's mass
the shape the object forms in a container
the amount of space the object takes up
Answer:
Answer:
The object's mass.
Explanation:
The formula d=m/v.
d --> density
m--> mass
v --> volume
With density and volume given, you can calculate the mass of the object.
Explanation:
A man climbs on to a wall that is 3.6 m high and gains 2222.64 J of potential
energy. What is his mass?
63 kg
17.5 kg
405 kg
617.4 kg
100 POINTS. PLEASE PROVIDE EXPLANATION
Answer:
60 kg
80 kg
Explanation:
Work is equal to the change in energy.
W = ΔE = E − E₀
Let's start with block B. The work done by the tension force is equal to the change in energy. Initially, the block has potential energy. Finally, the block has kinetic energy.
W = ΔE
FΔy = ½ mv² − mgh
T (-2.0 m) = ½ m (6.00 m/s)² − m (10 m/s²) (2.0 m)
T (-2.0 m) = m (-2 m²/s²)
T = m (1 m/s²)
Now let's look at block A. The work done by tension and against friction is equal to the change in energy. Initially, the block has no energy. Finally, it has both kinetic and potential energy.
W = ΔE
Fd = ½ mv² + mgh − 0
(T − Nμ) (2.0 m) = ½ (4.00 kg) (6.00 m/s)² + (4.00 kg) (10 m/s²) (⅗ × 2.0 m)
(T − Nμ) (2.0 m) = 120 J
T − Nμ = 60 N
Draw a free body diagram of block A and sum the forces in the perpendicular direction to find the normal force N.
N = mg cos θ
N = (4.00 kg) (10 m/s²) (⅘)
N = 32 N
Substitute:
T − 32μ = 60 N
If μ = 0, then T = 60 N and m = 60 kg.
If μ = ⅝, then T = 80 N and m = 80 kg.
Answer:did you find you answer also i answered so you can give him brainiest
Explanation:
A block suspended from a spring is oscillating vertically with a frequency of 4 Hz and an amplitude of 7 cm. A very small rock is placed on top of the oscillating block just as it reaches its lowest point. Assume that the rock has no effect on the oscillation. At what distance above the block’s equilibrium position does the rock lose contact with the block? (hint this occurs when the rock’s acceleration equals the value of gravity) What is the speed of the rock when it leaves the block? What is the greatest distance above the block’s equilibrium position reached by the rock? (Let t = 0 be when the rock is placed on the block)
Answer:
v = - 1,715 m / s , x = 0.0156 m
Explanation:
This is an oscillatory movement exercise, which is described by the expression
x = A cos (wt + Ф)
we can assume that the block is released from its maximum elongation, so the phase constant (Ф) is zero
As we are told that the stone does not affect the movement of the spring mass system, the amplitude and angular velocity do not change, in the upward movement the stone is attached to the mass, but in the downward movement the mass has an acceleration greater than g leave the stone behind, let's look for time, for this we use the definition of speed and acceleration
v = dx / dt
v = - A w sin wt
a = - Aw² cos wt
a = -g
-g = - Aw² cos wt
wt = cos⁻¹ (g / Aw²)
t = 1 / w cos⁻¹ (g / Aw²)
angular velocity and frequency are related
w = 2π f
w = 2π 4
w = 8π rad / s
remember that the angles are in radians
t = 1 / 8π cos⁻¹ (9.8 / (0.07 64π²))
t = 0.039789 1.3473
t = 0.0536 s
let's find the speed for this time
v = - A w sin wt
v = - 0.07 8π sin (8π 0.0536)
v = - 1,715 m / s
the distance is
x = A cos wt
x = 0.07 cos (8π 0.0536)
x = 0.0156 m
What feature does not require a planet to have any particular characteristics?
Stream Beds
Dunes
Impact Craters
Volcanic Lava Flows
What is the correct answer?
Answer:
Impact Craters.
Explanation:
An impact crater can be defined as a circular depression that is caused by impact on any planet or asteroids or any other celestial body's surface. When smaller body in galaxy impacts these larger bodies, they form a circular depression on it's surface.
This is a major feature found in solid object such as the Moon, Mercury, etc.
Therefore, the feature that a planet does not require is an impact crater. As other features are important to define a planet. Thus correct option is C.
5 13. If a train going 60 m/s hits the brakes, and it takes the train 2 minute 25 seconds to stop, what is the train's acceleration?
Answer:
Acceleration = -12/17 m/s ^2
Explanation:
Name the variables
V = final velocity( velocity after the train stops) u= intial velocity(velocity when the train was moving at constant speed, before brakes are applied)
A = acceleration( in this case, it is deceleration)
T = time ( time taken to fully stop)
Second Step: What equation should we use?
The 3 Big Motion in One Dimension Formulas are:
V = u+at
v^2 = u^2 + 2as
S = ut+ (1/2) at^2
For this question, we will be using the first one.
Third Step: Solve
V = 0 (the final velocity is 0, because the train stopped)
U = 60 (the train was going at 60 mps)
T = 85 seconds( 1 min and 25 sec)
0 = 60+ 85a
What is reduction division mean ?
Answer:
Reduction division: The first cell division in meiosis, the process by which germ cells are formed. In reduction division, the chromosome number is reduced from diploid (46 chromosomes) to haploid (23 chromosomes). Also known as first meiotic division and first meiosis.
Explanation:
Please mark as brainliest
What do virtually all daily task require ?
Answer:muscle strength
Explanation: bc well you would need it
Alcohol wiped across a tabletop rapidly disappears. What happened to the temperature of the tabletop
Answer:
it gets colder
Explanation:
because if you put anything on a table top it will become colder
A car drives horizontally off a cliff that is 30 meters high killing the driver on impact. The grieving widow claims her husband would never have driven faster than the posted speed limit of 35 mph and has hired a lawyer to sue the city for negligence. You are sent to investigate the crash site. You measure that the car landed 75 m from the base of the cliff [1 mph = 0.447 m/s].
A. Draw the detailed sketch for this motion with all of the relevant information, variables, and numbers contained in the sketch.
B. Write the three projectile equations with the known values and unknown variables placed into the equation.
C. Determine the time of fall. Then determine vix of the car as it flies off the cliff.
D. Based on what you were able to determine, assess whether the city is held liable for the accident
Answer:
b) 0 = y₀ + 0 - ½ g t² , v₀ₓ = x / t
c) v₀ₓ = 30.31 m / s
Explanation:
This is a projectile launching exercise, in your statement you have units of several systems, we are going to reduce everything to the SI system
v = 35 mph (0.447 m / s / 1 mph) = 15.645 m / s
y₀ = 75 m
A) In the attachment we can see a diagram of the movement of the vehicle in its fall
B) let's find the time for the fall to the base of the cliff (y = 0)
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
when the vehicle leaves the cliff it goes horizontally, so its vertical speed is zero (v_{oy} = 0)
0 = y₀ + 0 - ½ g t²
t = √2y₀ / g
with this time we can use the equation of motion on the x axis
x = v₀ₓ t
v₀ₓ = x / t
C) we perform the calculations
t = √ (2 30 / 9.8)
t = 2.474 s
v₀ₓ = 75 / 2.474
v₀ₓ = 30.31 m / s
D) as we can see, the vehicle speed when leaving the cliff is almost twice the allowed speed (15.6 m / s)
therefore the city is not responsible for the accident
A car rounds a banked curve as we will discuss in class on Tuesday. The radius of curvature of the road is R and the banking angle is θ. (a) In the absence of friction, what is the safe speed for the car to take this curve? (b) Now assume the coefficient of friction between the car’s tires and the road is µs. Determine the range of speeds the car can have without slipping up or down the road. (c) What is the minimum value of µs that makes the minimum speed zero? (d) If θ = 25.0 ◦ , for what values of µs can the curve be taken at any speed? Note: The upper limit of µs you will find is practically impossible to achieve for the car’s tires and the road.
Answer:
A) v = √[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))]
B)√[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))] ≤ v ≤ v = √[(rg(tan θ + µ_s))/(1 - (µ_s•tan θ))]
C) µ_s = tan θ
D) µ_s = 0.4663
Explanation:
A) The forces acting on the car will be;
Force due to friction; F_f
Force due to Gravity; F_g
Normal Force; F_n
Now, let us take the vertical direction to be j^ and the direction approaching the centre to be i^ downwards and parallel to the road surface by k^.
Also, we will assume that initially, F_n is in the negative k^ direction and that it will have a maximum possible value of; F_f = µ_s × F_n
Thus, sum of forces about the vertical j^ direction gives;
ΣF_j^ = F_n•cos θ − mg + F_f•sin θ = 0
Since F_f = µ_s × F_n ;
F_n•cos θ − mg + (µ_s × F_n × sin θ) =0
F_n = mg/[cos θ + (µ_s•sin θ)]
Also, sum of forces about the centre i^ direction gives;
ΣF_i^ = F_n(sin θ + (µ_s•cos θ)) = mv²/r
Plugging in formula for F_n gives;
ΣF_i^ = [mg/[cos θ + (µ_s•sin θ)]] × (sin θ + (µ_s•cos θ)) = mv²/r
Making v the subject gives;
v = √[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))]
B) What we got in a above is the minimum speed the car can have while going round the turn.
The maximum speed will be gotten by making the frictional force(F_f) to point in the positive k^ direction. This means that F_f will be negative.
Now, if we change the sign in front of F_f in the equation in part a that led to the minimum velocity, we will have the maximum as;
v = √[(rg(tan θ + µ_s))/(1 - (µ_s•tan θ))]
Thus the range is;
√[(rg(tan θ - µ_s))/(1 + (µ_s•tan θ))] ≤ v ≤ v = √[(rg(tan θ + µ_s))/(1 - (µ_s•tan θ))]
C) For the minimum speed to be 0, it implies that F_f will be in the negative k^ direction. Thus, Sum of the forces in the k^ direction gives;
ΣF_k^ = mg(sin θ - µ_s•cos θ) = 0
Thus;
mg(sin θ - µ_s•cos θ) = 0
Making µ_s the subject gives;
µ_s = sin θ/cos θ
µ_s = tan θ
D) If θ = 25.0°;
Thus;
µ_s = tan 25
µ_s = 0.4663
If a baseball and a cannonball are dropped from the same height at the
same time, with no air resistance, which ball will hit the ground first?"
2 po
O The cannonball lands first
O The baseball lands first
O Both balls land at the same time
O The ball with the larger volume lands first
1. Three kids in a parking lot launch a rocket that rises
into the air along a 380-m long arc in 40s.
Determine its average speed.
Answer:
Average speed equals distance / time
380 / 40 = 9.5 m/s.
Explanation:
The weld bead in SMAW is formed by the?
The weld bead in SMAW is formed by the electrode wire core mixing with the molten base metal, Therefore the correct option is D.
What is Shielded Metal Arc Welding (SMAW)?It is a type of manual arc welding process which utilizes a consumable electrode covered with flux to protect the weld bead.
For SMAW either direct current or alternating current can be used to form the electric arc. The electrode melts and forms a molten weld pool with the base metal by using the thermal energy produced from the electric arc.
The weld bead in Shielded Metal Arc Welding is formed by the electrode wire core mixing with the molten base metal.
learn more about Shielded Metal Arc Welding (SMAW)
https://brainly.com/question/14994590
#SPJ2
how can you observe the law of conservation of energy in action at the skatepark?
Explanation:
When the skater is dropped onto the ramp from above, the potential energy decreases and the kinetic energy increases.
Every time the skater bounces from the impact, thermal energy is gained, and both potential and kinetic energy are lost.
what is the principal of moment
Answer:
hope it helps...
Explanation:
The Principle of Moments states that when a body is balanced, the total clockwise moment about a point equals the total anticlockwise moment about the same point.
Answer:
The Principle of Moments states that when a body is balanced, the total clockwise moment about a point equals the total anticlockwise moment about the same point.
How can models help us understand energy?
answer fast plz
....................
Answer:
114 m/s
Explanation:
see the image below
Long flights at midlatitudes in the Northern Hemisphere encounter the jet stream, an eastward airflow that can affect a plane's speed relative to Earth's surface. If a pilot maintains a certain speed relative to the air (the plane's airspeed), the speed relative to the surface (the plane's ground speed) is more when the flight is in the direction of the jet stream and less when the flight is opposite the jet stream. Suppose a round-trip flight is scheduled between two cities separated by 4300 km, with the outgoing flight in the direction of the jet stream and the return flight opposite it. The airline computer advises an airspeed of 930 km/h, for which the difference in flight times for the outgoing and return flights is 61 min. What jet-stream speed is the computer using
Answer:
103.52 km/h
Explanation:
We are given;
Distance between two cities; d = 4300 km
airspeed; v_as = 930 km/h
Difference in flight time; Δt = 61 min = 1.0167 h
Now, the equation of motion to find the distance is given as;
d = vt
Where v = v_as + v_js
v_as is the airspeed
v_js is the jet speed
Thus;
d = (v_as + v_js)t
Thus, time(t1) for outgoing flight is;
t1 = d/(v_as + v_js)
Meanwhile, time(t2) for the return flight, the jet stream velocity will be negative and time is;
t2 = d/(v_as - v_js)
Recall that Difference in flight time; Δt = 61 min.
Thus;
Δt = t2 - T1 = [d/(v_as - v_js)] - [d/(v_as + v_js)]
Factorizing out, we have;
Δt = d[1/(v_as - v_js)] - [1/(v_as + v_js)]
Furthermore, it gives;
Δt = d[(v_as + v_js - v_as + v_js)]/((v_as - v_js) × (v_as + v_js))
Δt = d(2v_js)/((v_as)² - (v_js)²)
Cross multiply to get;
(2dv_js)/Δt = ((v_as)² - (v_js)²)
(v_js)² + ((2dv_js)/Δt) - (v_as)² = 0
Plugging in values for d,v_as and Δt gives;
(v_js)² - ((2 × 4300 × v_js)/1.0167) - (930)² = 0
(v_js)² - (8458.7329v_js) - 864900 = 0
Using quadratic formula, we have;
v_js = 103.52 km/h
The airline computer advises an airspeed of 930 km/h, for which the difference in flight times for the outgoing and return flights is 61 min. The jet stream speed obtained using the quadratic formula is 103.52 km/h.
Given:
Distance between two cities; d = 4300 km
airspeed; v(as) = 930 km/h
Difference in flight time; Δt = 61 min = 1.0167 h
Now, the equation of motion to find the distance is given as;
d = vt
Where v = v(as) + v(js)
d = v(as) + v(js)t
At time t₁, t₁ = d/v(as) + v(js)
At time t₂, t₂ = d/v(as) + v(js)
Recall that Difference in flight time; Δt = 61 min.
Δt = d/v(as) + v(js) - d/v(as) + v(js)
Δt = d[(v(as) + v(js) - v(as) + v(js)]/((v(as) - v(js)) × (v(as) + v(js)))
Δt = d(2v(js))/((v(as))² - (v(js))²)
(2dv(js))/Δt = ((v(as))² - (v(js))²)
(v(js))² + ((2dv(js))/Δt) - (v(as))² = 0
(v(js))² - ((2 × 4300 × v(js))/1.0167) - (930)² = 0
(v(js))² - (8458.7329v(js)) - 864900 = 0
Using the quadratic formula, we have;
v(js) = 103.52 km/h
Therefore, The jet stream speed obtained using the quadratic formula is 103.52 km/h.
To know more about the quadratic formula:
https://brainly.com/question/22364785
#SPJ6
blank refers to the method of spreading fertilizer evenly over the entire field by hand it is done at the blank stage
Answer:
Broadcasting is the method, not sure about the stage it is done in
Explanation:
Answer:
Broadcasting is the first (blank) second (blank) is Cultivation.
Explanation:
I took the test & got this answer correct.
You ill simply enter your numeric answer directy ieto the space provided to the right of the equal sign. Answor the following question by typing the numenic answer into the answer boa If you have a gross of items, you have 144 items. if you buy a gross of eggs, how many dozen eggs do you have? Express your answer in dozens. Do not enter the units; they are provided to the right of the answer box Hints number of eggs dozen Submit My Answers Give Up
Part B accistentaily entar commas, you aldl get a When entering large numbers in the answer box, do not use commas. For example, enter 3274400 for the number 1,26.400.Do not enter 1,276,403. you message that your answer is incorrect. Answer the following question by typing the numeric answer into the answer box. What is the sum of 9260 and 32407 Express your answer numerically to at least three significant figures
Answer:
a
12
b
41667
Explanation:
From the question we are told that
Generally 1 dozen of egg is equivalent to 12 pieces of eye
So given that a gross of item is equivalent to 144 items
x dozens of eggs is equivalent to a gross of item
So
[tex]x = \frac{144 * 1}{12}[/tex]
=> [tex]x = 12 \ dozens \ of \ eggs[/tex]
Generally the sum of 9260 and 32407 is
9 2 6 0
+ 3 2 4 0 7
4 1 6 6 7
Electric charges are either positive or ____
Answer:
Negative
Explanation:
duh
Answer:
:)
Explanation:
negative.
go add the snap carmel.bratz
A 63.9 kg water skier is pulled by a
125 N force at a 31.5° angle, while
the water creates a 84.8 N force
pulling directly backward. What is the
y-component of the acceleration?
Answer:
[tex]a_{x} = 0.342 \frac{m}{ {s}^{2} } \: "x \: component \: of \: acceleration"
\: \\ a_{y} = 1.02 \: \frac{m}{ {s}^{2} } \: "y \: component \: of \: acceleration" [/tex]
Explanation:
Given a mass of 63.9kg with a total applied force of 125 N at a 31.5° inclination relative to the horizontal and vertical, and a horizontal resistance force of 84.8 N. The components of acceleration can be calculated as follows:
Force = mass × acceleration
Vertical component of a vector = vector × Sin(angle)
Horizontal component of a vector = vector × Cos(angle)
extra:
V = √x^2+y^2
θ (angle, "theta") = arctan or inverse tan(y/x) (For this instance. Theta is usually an angle measure though)
x = V cos θ
y = V sin θ
____________________
To find the vertical component of acceleration we must first take the vector quantity of our force which is 125 N (Newtons) and it's angle of 31.5°.
Vertical force = 125 × sin(31.5 degrees) = 125 × 0.5225 = 65.312 N [aka the normal force]
This works because force is a vector, it has both direction(by the angle of force), and magnitude(it's quantity).
Then take the force equation, and rearrange it to solve for the upward acceleration: F = m × a → a = F/m.
a = 65.312/63.9 ≈ 1.02 m/s^2.
Then for the horizontal acceleration, take the cosine for the horizontal part
What is the difference between a rule and a law?
Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a large toy rocket to the back of a sled, and take the modified sled to a large, flat, snowy field. You ignite the rocket, and observe that the sled accelerates from rest in the forward direction at a rate of 13.5 m/s2 for a time period of 3.30 s. After this time period, the rocket engine abruptly shuts off, and the sled subsequently undergoes a constant backward acceleration due to friction of 6.15 m/s2.After the rocket turns off, how much time does it take for the sled to come to a stop?By the time the sled finally comes to a rest, how far has it traveled from its starting point?
Answer:
-time it takes for the sled to come to a stop after launch of rocket = 7.244 s
-distance sled has travelled from its starting point by the time it finally comes to rest is = 234.8655 m
Explanation:
From the question, looking at the motion while accelerating, we have;
Initial velocity; u = 0 m/s
Acceleration; a = 13.5 m/s²
Time; t = 3.3 s
Let's use first equation of motion to find final velocity (v).
v = u + at
v = 0 + (13.5 × 3.3)
v = 44.55 m/s
In this forward direction, let's calculate the displacement(d1) using newton's 3rd equation of motion.
d1 = ut + ½at²
d1 = 0(3.3) + ½(13.5 × 3.3²)
d1 = 73.5075 m
Now, let's consider the motion while slowing down and our final velocity will be 0 m/s while initial velocity will now be 44.55 m/s while acceleration is 6.15 m/s².
Thus, from v = u + at, we can find the time it take for the sled to come to a stop.
Now, since it's coming to rest acceleration will be negative. Thus;
0 = 44.55 + (-6.15t)
0 = 44.55 - 6.15t
t = 44.55/6.15
t = 7.244 s
Now we want to find out how far the sled has travelled from its starting point by the time it finally comes to rest.
Thus, we'll use the equation;
v² = u² + 2as
Where s will be the second displacement which we will call d2.
Thus;
0² = 44.55² + (-2 × 6.15 × s)
0 = 1984.7025 - 12.3s
12.3s = 1984.7025
s = 1984.7025/12.3
s = 161.358
Thus, d2 = s = 161.358 m
Thus, distance sled has travelled from its starting point by the time it finally comes to rest is ;
= d1 + d2 = 73.5075 + 161.358 = 234.8655 m