how much does a 1 kg pineapple weigh on earth.

Answers

Answer 1

A 1 kg pineapple weighs approximately 9.8 Newtons on Earth. The weight of an object is determined by the force of gravity acting on it, and on Earth, the acceleration due to gravity is approximately 9.8 m/s^2.

The weight of an object is the force exerted on it due to gravity. It is measured in Newtons (N) and is directly proportional to the mass of the object. On Earth, the acceleration due to gravity is approximately 9.8 m/s^2.

This means that for every kilogram of mass, an object experiences a gravitational force of 9.8 Newtons.

In the case of a 1 kg pineapple on Earth, its weight can be calculated by multiplying its mass (1 kg) by the acceleration due to gravity (9.8 m/s^2):

Weight = Mass × Acceleration due to gravity

Weight = 1 kg × 9.8 m/s^2

Therefore, a 1 kg pineapple weighs approximately 9.8 Newtons on Earth.

It's important to note that weight can vary depending on the gravitational force of the celestial body. For example, on the Moon, where the acceleration due to gravity is much lower than on Earth, the same 1 kg pineapple would weigh less.

Learn more about pineapple from the given link:

https://brainly.com/question/20967143

#SPJ11


Related Questions

Question 2 (2 points) a small child is running towards at you 24.0 m/s screaming at a frequency of 420.0 Hz. It is 17.0 degrees Celsius, what is the speed of sound? What is the frequency that you hear?

Answers

The speed of sound in air at 17.0 degrees Celsius is approximately 343.2 m/s. When the child is running towards you at 24.0 m/s, the frequency of the sound you hear is shifted due to the Doppler effect. The frequency that you hear will be higher than the original frequency of 420.0 Hz.

The speed of sound in air depends on the temperature of the air. At 17.0 degrees Celsius, the speed of sound in air is approximately 343.2 m/s. This is a standard value used to calculate the Doppler effect.

The Doppler effect is the change in frequency or wavelength of a wave due to the motion of the source or the observer. In this case, as the child is running towards you, the sound waves emitted by the child are compressed, resulting in an increase in frequency.

To calculate the frequency you hear, you can use the formula:

f' = f × (v + v₀) / (v + vₛ)

Where:

f' is the frequency you hear

f is the original frequency of 420.0 Hz

v is the speed of sound (343.2 m/s)

v₀ is the speed of the child running towards you (24.0 m/s)

vₛ is the speed of the child's sound relative to the speed of sound (which can be neglected in this scenario)

Plugging in the values, we get:

f' = 420.0 × (343.2 + 24.0) / (343.2 + 0) ≈ 440.7 Hz

Therefore, the frequency you hear is approximately 440.7 Hz, which is higher than the original frequency due to the Doppler effect.

To learn more about speed click here brainly.com/question/17661499

#SPJ11

A ski jumper starts from rest 42.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0 deg above the horizontal and at a height of 18.5 m above the level ground. Neglect air resistance.
(a) What is her speed when she leaves the track?
(b) What is the maximum altitude she attains after leaving the track?
(c) Where does she land relative to the end of the track?

Answers

The speed when the ski jumper leaves the track is approximately 7.00 m/s., the maximum altitude reached after leaving the track is approximately 1.25 m and as the ski jumper takes off at an angle of 45 degrees, the initial vertical velocity is u = 4.95 m/s.

To solve this problem, we can use the principles of conservation of energy and projectile motion.

(a) To find the speed when the ski jumper leaves the track, we can use the principle of conservation of energy. The initial potential energy at the starting position is equal to the sum of the final kinetic energy and final potential energy at the highest point.

Initial potential energy = Final kinetic energy + Final potential energy

mgh = (1/2)mv² + mgh_max

Where:

m is the mass of the ski jumper (which cancels out),

g is the acceleration due to gravity,

h is the initial height,

v is the speed when she leaves the track, and

h_max is the maximum altitude reached.

Plugging in the values:

(9.8 m/s²)(42.0 m) = (1/2)v² + (9.8 m/s²)(18.5 m)

Simplifying the equation:

411.6 m²/s² = (1/2)v² + 181.3 m²/s²

v² = 411.6 m²/s² - 362.6 m²/s²

v² = 49.0 m²/s²

Taking the square root of both sides:

v = √(49.0 m²/s²)

v ≈ 7.00 m/s

Therefore, the speed when the ski jumper leaves the track is approximately 7.00 m/s.

(b) To find the maximum altitude reached after leaving the track, we can use the equation for projectile motion. The vertical component of the ski jumper's velocity is zero at the highest point. Using this information, we can calculate the maximum altitude (h_max) using the following equation:

v² = u² - 2gh_max

Where:

v is the vertical component of the velocity at the highest point (zero),

u is the initial vertical component of the velocity (which we need to find),

g is the acceleration due to gravity, and

h_max is the maximum altitude.

Plugging in the values:

0 = u² - 2(9.8 m/s²)(h_max)

Simplifying the equation:

u² = 19.6 m/s² * h_max

Since the ski jumper takes off at an angle of 45 degrees, the initial vertical velocity (u) can be calculated using the equation:

u = v * sin(45°)

u = (7.00 m/s) * sin(45°)

u = 4.95 m/s

Now we can solve for h_max:

(4.95 m/s)² = 19.6 m/s² * h_max

h_max = (4.95 m/s)² / (19.6 m/s²)

h_max ≈ 1.25 m

Therefore, the maximum altitude reached after leaving the track is approximately 1.25 m.

(c) To find where the ski jumper lands relative to the end of the track, we need to determine the horizontal distance traveled. The horizontal component of the velocity remains constant throughout the motion. We can use the equation:

d = v * t

Where:

d is the horizontal distance traveled,

v is the horizontal component of the velocity (which is constant), and

t is the time of flight.

The time of flight can be calculated using the equation:

t = 2 * (vertical component of the initial velocity) / g

Since the ski jumper takes off at an angle of 45 degrees, the initial vertical velocity is u = 4.95 m/s. Plugging in the values:

The speed when the ski jumper leaves the track is approximately 7.00 m/s., the maximum altitude reached after leaving the track is approximately 1.25 m and as the ski jumper takes off at an angle of 45 degrees, the initial vertical velocity is u = 4.95 m/s.

Learn more about principles of conservation of energy and projectile motion from the given link!

https://brainly.com/question/16881881

#SPJ11

What is the maximum kinetic energy (in eV) of the
photoelectrons when light of wavelength 400 nm falls on the surface
of calcium metal with binding energy (work function) 2.71 eV?

Answers

Therefore, the maximum kinetic energy of photoelectrons is 2.27 eV.

The maximum kinetic energy of photoelectrons when the light of wavelength 400 nm falls on the surface of calcium metal with binding energy (work function) 2.71 eV,

The maximum kinetic energy of photoelectrons is given by;

E_k = hν - φ  Where,

h is the Planck constant = 6.626 x 10^-34 Js;

υ is the frequency;

φ is the work function.

The frequency can be calculated from;

c = υλ where,

c is the speed of light = 3.00 x 10^8 m/s,

λ is the wavelength of light, which is 400 nm = 4.00 x 10^-7 m

So, υ = c/λ

= 3.00 x 10^8/4.00 x 10^-7

= 7.50 x 10^14 Hz

Now, E_k = hν - φ

= (6.626 x 10^-34 J s)(7.50 x 10^14 Hz) - 2.71 eV

= 4.98 x 10^-19 J - 2.71 x 1.60 x 10^-19 J/eV

= 2.27 x 10^-19 J

= 2.27 x 10^-19 J/eV

= 2.27 eV

Therefore, the maximum kinetic energy of photoelectrons is 2.27 eV.

The maximum kinetic energy of photoelectrons when light of wavelength 400 nm falls on the surface of calcium metal with binding energy (work function) 2.71 eV can be determined using the formula;

E_k = hν - φ

where h is the Planck constant,

υ is the frequency,

φ is the work function.

The frequency of the light can be determined from the speed of light equation;

c = υλ.

Therefore, the frequency can be calculated as

υ = c/λ

= 3.00 x 10^8/4.00 x 10^-7

= 7.50 x 10^14 Hz.

Now, substituting the values into the equation for the maximum kinetic energy of photoelectrons;

E_k = hν - φ

=  (6.626 x 10^-34 J s) (7.50 x 10^14 Hz) - 2.71 eV

= 4.98 x 10^-19 J - 2.71 x 1.60 x 10^-19 J/eV

= 2.27 x 10^-19 J = 2.27 x 10^-19 J/eV

= 2.27 eV.

Therefore, the maximum kinetic energy of photoelectrons is 2.27 eV.

In conclusion, light of wavelength 400 nm falling on the surface of calcium metal with binding energy (work function) 2.71 eV has a maximum kinetic energy of 2.27 eV.

Know more about kinetic energy :

https://brainly.com/question/28050880

#SPJ11

A ball is thrown straight up with a speed of 30 m/s. What is its speed after 2 s? O A. 4.71 m/s O B. 10.4 m/s C. 9.42m/s O D None of these

Answers

The speed of the ball after 2 seconds is 10.4 m/s. (Answer B)

To determine the speed of the ball after 2 seconds, we need to take into account the acceleration due to gravity acting on it.

The ball is thrown straight up, which means it is moving against the force of gravity. The acceleration due to gravity is approximately 9.8 m/s² and acts downward.

Using the equation for motion under constant acceleration, which relates displacement, initial velocity, acceleration, and time:

v = u + at

where:

v = final velocityu = initial velocitya = accelerationt = time

In this case, the initial velocity (u) is 30 m/s, the acceleration (a) is -9.8 m/s² (negative because it acts in the opposite direction), and the time (t) is 2 seconds.

Plugging in the values:

v = 30 m/s + (-9.8 m/s²) * 2 s

v = 30 m/s - 19.6 m/s

v = 10.4 m/s

Therefore, the speed of the ball after 2 seconds is 10.4 m/s.

The correct answer is B. 10.4 m/s.

To learn more about final velocity, Visit:

https://brainly.com/question/25905661

#SPJ11

: 4. Given that the energy in the world is virtually constant, why do we sometimes have an "energy crisis"? 5a What is the ultimate end result of energy transformations. That is, what is the final form that most energy types eventually transform into? 5b What are the environmental concerns of your answer to 5a?

Answers

Energy refers to the capacity or ability to do work or produce a change. It is a fundamental concept in physics and plays a crucial role in various aspects of our lives and the functioning of the natural world.

4. Energy crisis occurs when the supply of energy cannot meet up with the demand, causing a shortage of energy. Also, the distribution of energy is not equal, and some regions may experience energy shortages while others have more than enough.

5a. The ultimate end result of energy transformations is heat. Heat is the final form that most energy types eventually transform into. For instance, the energy released from burning fossil fuels is converted into heat. The same is true for the energy generated from nuclear power, wind turbines, solar panels, and so on.

5b. Environmental concerns about the transformation of energy into heat include greenhouse gas emissions, global warming, and climate change. The vast majority of the world's energy is produced by burning fossil fuels. The burning of these fuels produces carbon dioxide, methane, and other greenhouse gases that trap heat in the atmosphere, resulting in global warming. Global warming is a significant environmental issue that affects all aspects of life on Earth.

To know more about Energy visit:

https://brainly.com/question/30672691

#SPJ11

If we drive 30 km to the east, then 48 km to the north. How far (in km) will we be from the point of origin? Give your answer in whole numbers.

Answers

By driving 30 km to the east and then 48 km to the north, we can calculate the distance from the point of origin. using the Pythagorean theorem, After performing the calculation,  distance from the point of origin will be approximately 56 km (rounded to the nearest whole number).

Pythagorean theorem which relates the lengths of the sides of a right triangle. The eastward distance represents one side of the triangle, the northward distance represents another side, and the distance from the point of origin is the hypotenuse of the triangle.

Applying the Pythagorean theorem, we square the eastward distance (30 km) and the northward distance (48 km), sum the squares, and take the square root of the result to obtain the distance from the point of origin. After performing the calculation, we find that the distance from the point of origin will be approximately 56 km (rounded to the nearest whole number). This provides the straight-line distance between the starting point and the final position after driving 30 km to the east and 48 km to the north.

Learn more about Pythagorean theorem here:

https://brainly.com/question/29769496

#SPJ11

A 1.35-kg block of wood sits at the edge of a table, 0.782 m above the floor. A 0.0105-kg bullet moving horizontally with a speed of 715 m/s embeds itself within the block. (a) What horizontal distance does the block cover before hitting the ground? (b) what are the horizontal and vertical components of its velocity when it hits the ground? (c) What is the magnitude of the velocity vector and direction at this time? (d) Draw the velocity vectors,  and the resultant velocity vector at this time.
Sketch and Label
Define the coordinate axis.

Answers

To solve this problem, let's define the coordinate axis as follows:

The x-axis will be horizontal, pointing towards the right.

The y-axis will be vertical, pointing upwards.

(a) To find the horizontal distance covered by the block before hitting the ground, we need to calculate the time it takes for the block to fall.

We can use the equation for vertical displacement:

[tex]y = 0.5 * g * t^2[/tex]

where y is the vertical distance, g is the acceleration due to gravity, and t is the time.

Vertical distance (y) = 0.782 m

Acceleration due to gravity (g) = 9.8 m/s^2

Rearranging the equation, we get:

[tex]t = sqrt((2 * y) / g)[/tex]

Substituting the values:

t = sqrt((2 * 0.782 m) / 9.8 m/s^2)

Now we have the time taken by the block to fall. To find the horizontal distance covered, we can use the formula:

x = v * t

where v is the horizontal velocity.

Mass of the block (m) = 1.35 kg

Mass of the bullet (m_bullet) = 0.0105 kg

Initial horizontal velocity (v_bullet) = 715 m/s

The horizontal velocity of the block and bullet combined will be the same as the initial velocity of the bullet.

Substituting the values:

x = (v_bullet) * t

Calculating this expression will give us the horizontal distance covered by the block before hitting the ground.

(b) To find the horizontal and vertical components of the block's velocity when it hits the ground, we can use the following equations:

For the horizontal component:

v_x = v_bullet

For the vertical component:

v_y = g * t

Acceleration due to gravity (g) = 9.8 m/s^2

Time taken (t) = the value calculated in part (a)

Substituting the values, we can calculate the horizontal and vertical components of the velocity.

(c) To find the magnitude of the velocity vector and its direction, we can use the Pythagorean theorem and trigonometry.

The magnitude of the velocity vector (v) can be calculated as:

[tex]v = sqrt(v_x^2 + v_y^2)[/tex]

The direction of the velocity vector (θ) can be calculated as:

[tex]θ = atan(v_y / v_x)[/tex]

Using the values of v_x and v_y calculated in part (b), we can determine the magnitude and direction of the velocity vector when the block hits the ground.

(d) To draw the velocity vectors and the resultant velocity vector, you can create a coordinate axis with the x and y axes as defined earlier. Draw the horizontal velocity vector v_x pointing to the right with a magnitude of v_bullet. Draw the vertical velocity vector v_y pointing upwards with a magnitude of g * t. Then, draw the resultant velocity vector v with the magnitude and direction calculated in part (c) originating from the starting point of the block. Label the vectors and the angles accordingly.

Remember to use appropriate scales and angles based on the calculated values.

Learn more about horizontal distance from the given link

https://brainly.com/question/24784992

#SPJ11

in a scenario a parallel circuit has three resistors, with voltage source =34v and ammeter = 7A. for the resistance, R2 = 3R1 while R3= 3R1 as well. what is the resistance for R1?? in the hundredth place

Answers

In a scenario a parallel circuit has three resistors , the resistance for R1 is 0.60.

Given that the parallel circuit has three resistors, voltage source = 34V and ammeter = 7A. We need to determine the resistance of R1 given that R2 = 3R1 and R3 = 3R1.

Let us use the concept of the parallel circuit where the voltage is constant across each branch of the circuit.

According to Ohm's Law, we have the following formula:

Resistance = Voltage / Current R = V / I

The total current in the parallel circuit is equal to the sum of the currents in each resistor.

Therefore, we have the following formula for the total current:

Total current (I) = I1 + I2 + I3 where I1, I2, and I3 are the currents in R1, R2, and R3 respectively.

According to the question, we have I = 7A (ammeter) and V = 34V (voltage source).

Thus, the current in each resistor is given as follows:I1 = I2 = I3 = I / 3 = 7/3 A

We also have R2 = 3R1 and R3 = 3R1 respectively.

R2 = 3R1 => R1 = R2 / 3 = 3R1 / 3 = R1R3 = 3R1 => R1 = R3 / 3 = 3R1 / 3 = R1

Thus, the resistance of R1 is R1 = R1 = R1 = R1 = R1

Now, let us find the resistance of R1 as follows: 1/R1 = 1/R2 + 1/R3 + 1/R1 = 1/3R1 + 1/3R1 + 1/R1 = 2/3R1 + 1/R1 = 5/3R1

Therefore, we have: 1/R1 = 5/3R1R1 = 3/5= 0.60 (rounded to the hundredth place)

Therefore, the resistance for R1 is 0.60.

To know more about parallel circuit visit:

https://brainly.com/question/14997346

#SPJ11

You place a crate of mass 44.7 kg on a frictionless 2.38-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 0.97 seconds after you released it. What is the angle of the incline?

Answers

The angle of the incline is approximately 24.2 degrees.

To calculate the angle of the incline, we can use the equation of motion for an object sliding down an inclined plane. The equation is given by:

d = (1/2) * g * t^2 * sin(2θ)

where d is the length of the incline, g is the acceleration due to gravity (approximately 9.8 m/s^2), t is the time taken to slide down the incline, and θ is the angle of the incline.

In this case, the length of the incline (d) is given as 2.38 meters, the time taken (t) is 0.97 seconds, and we need to solve for θ. Rearranging the equation and substituting the known values, we can solve for θ:

θ = (1/2) * arcsin((2 * d) / (g * t^2))

Plugging in the values, we get:

θ ≈ (1/2) * arcsin((2 * 2.38) / (9.8 * 0.97^2))

θ ≈ 24.2 degrees

To learn more about motion, click here:

brainly.com/question/12640444

#SPJ11

Find the steady-state errors (if exist) of the closed-loop system for inputs of 4u(t), 4tu(t), and 4t 2u(t) to the system with u(t) being the unit step

Answers

To determine the steady-state errors of the closed-loop system for different inputs, we need to calculate the error between the desired response and the actual response at steady-state. The steady-state error is the difference between the desired input and the output of the system when it reaches a constant value.

Let's analyze the steady-state errors for each input:

1. For the input 4u(t) (a constant input of 4):

  Since the input is a constant, the steady-state error will be zero if the system is stable and has no steady-state offset.

2. For the input 4tu(t) (a ramp input):

  The steady-state error for a ramp input can be determined by calculating the slope of the error. In this case, the steady-state error will be zero because the system has integral control, which eliminates the steady-state error for ramp inputs.

3. For the input 4t^2u(t) (a parabolic input):

  The steady-state error for a parabolic input can be determined by calculating the acceleration of the error. In this case, the steady-state error will also be zero due to the integral control in the system.

Therefore, for inputs of 4u(t), 4tu(t), and 4t^2u(t), the steady-state errors of the closed-loop system will be zero, assuming the system is stable and has integral control to eliminate steady-state errors.

To know more about steady-state error visit

brainly.com/question/12969915

#SPJ11

Steel beams are used for load bearing supports in a building. Each beam is 4.0 m long with a cross-sectional area of 8.3 x 103 m2 and supports a load of 4.7 x 10* N. Young's modulus for steel is 210 x 10°N/m2 (a) How much compression (in mm) does each beam undergo along its length? mm (.) Determine the maximum load (in N) one of these beams can support without any structural fallure if the compressive strength of steel is 1.50 x 10' N/m N

Answers

(a) Each beam undergoes a compression of 0.125 mm.

(b) The maximum load that one of these beams can support without any structural failure is 6.75 x 10^5 N.

(a) The compression in a beam is calculated using the following formula:

δ = FL / AE

where δ is the compression, F is the load, L is the length of the beam, A is the cross-sectional area of the beam, and E is the Young's modulus of the material.

In this case, we know that F = 4.7 x 10^5 N, L = 4.0 m, A = 8.3 x 10^-3 m^2, and E = 210 x 10^9 N/m^2. We can use these values to calculate the compression:

δ = (4.7 x 10^5 N)(4.0 m) / (8.3 x 10^-3 m^2)(210 x 10^9 N/m^2) = 0.125 mm

(b) The compressive strength of a material is the maximum stress that the material can withstand before it fails. The stress in a beam is calculated using the following formula:

σ = F/A

where σ is the stress, F is the load, and A is the cross-sectional area of the beam.

In this case, we know that F is the maximum load that the beam can support, and A is the cross-sectional area of the beam. We can set the stress equal to the compressive strength of the material to find the maximum load:

F/A = 1.50 x 10^8 N/m^2

F = (1.50 x 10^8 N/m^2)(8.3 x 10^-3 m^2) = 6.75 x 10^5 N

To learn more about compression click here: brainly.com/question/29493164

#SPJ11

A police car is moving to the right at 27 m/s, while a speeder is coming up from behind at a speed 36 m/s, both speeds being with respect to the ground. The police officer points a radar gun at the oncoming speeder. Assume that the electromagnetic wave emitted by the gun has a frequency of 7.5×109 Hz. Find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.

Answers

In this scenario, a police car is moving to the right at 27 m/s, and a speeder is approaching from behind at 36 m/s.

The police officer points a radar gun at the speeder, emitting an electromagnetic wave with a frequency of 7.5×10^9 Hz. The task is to find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.

The frequency of the wave that returns to the police car after reflecting from the speeder's car is affected by the relative motion of the two vehicles. This phenomenon is known as the Doppler effect.

In this case, since the police car and the speeder are moving relative to each other, the frequency observed by the police car will be shifted. The Doppler effect formula for frequency is given by f' = (v + vr) / (v + vs) * f, where f' is the observed frequency, v is the speed of the wave in the medium (assumed to be the same for both the emitted and reflected waves), vr is the velocity of the radar gun wave relative to the speeder's car, vs is the velocity of the radar gun wave relative to the police car, and f is the emitted frequency.

In this scenario, the difference in frequency can be calculated as the observed frequency minus the emitted frequency: Δf = f' - f. By substituting the given values and evaluating the expression, the difference in frequency can be determined.

Learn more about electromagnetic here: brainly.com/question/31038220

#SPJ11

a) What is the longest wavelength at which resonance can occur in a pipe with both open ends of length L? To make a drawing. b) What is the longest wavelength at which resonance can occur in a pipe closed at one end and open at the other?

Answers

Answer:

a) The longest wavelength at which resonance can occur in a pipe with both open ends of length L is 2L.

b) The longest wavelength at which resonance can occur in a pipe closed at one end and open at the other is 4L.

Explanation:

a) The longest wavelength at which resonance can occur in a pipe with both open ends of length L is 2L. This is because the standing wave pattern in a pipe with both open ends has antinodes (points of maximum displacement) at both ends of the pipe. The wavelength of a standing wave is twice the distance between two consecutive antinodes.

b) The longest wavelength at which resonance can occur in a pipe closed at one end and open at the other is 4L. This is because the standing wave pattern in a pipe closed at one end and open at the other has an antinode at the open end and a node (point of zero displacement) at the closed end. The wavelength of a standing wave is four times the distance between the open end and the closed end of the pipe.

Here are some additional details about the standing wave patterns in pipes with open and closed ends:

In a pipe with both open ends, the air column can vibrate in a variety of modes, or patterns. The fundamental mode is the simplest mode, and it has a wavelength that is twice the length of the pipe. The next higher mode has a wavelength that is half the length of the pipe, and so on.

In a pipe closed at one end, the air column can only vibrate in modes that have an odd number of nodes. The fundamental mode has a wavelength that is four times the length of the pipe. The next higher mode has a wavelength that is twice the length of the pipe, and so on.

Learn more about Wavelength.

https://brainly.com/question/33261302

#SPJ11

A helicopter drop say supply package to to flood victims on a raft in a swollen lake. When the package is released it is 88 m directly above the raft and flying due east at 78.3 mph, a) how long is the package in the air, b) how far from the raft did the oackege land c)what is the final velocity of the package

Answers

We can use the equations of motion to solve this problem.

a) 4.1 seconds

- We need to find the time it takes for the package to land on the raft. The initial vertical velocity is zero, and the acceleration due to gravity is -9.81 m/s^2 (negative because it opposes the upward motion).

We can use the equation:

h = vt + (1/2)at^2

where h is the initial height (88 m), v is the initial vertical velocity (zero), a is the acceleration due to gravity (-9.81 m/s^2), and t is the time.

Plugging in the values, we get:

88 = 0 x t + (1/2)(-9.81)(t^2)

Simplifying and solving for t, we get:

t = sqrt((2 x 88)/9.81)

t ≈ 4.1 seconds

Therefore, the package is in the air for 4.1 seconds.

b) 1.25 km

- We need to find the horizontal distance travelled by the package in 4.1 seconds. The initial horizontal velocity is 78.3 mph (we convert to m/s), and the acceleration is zero (since there is no horizontal force acting on the package).

We can use the equation:

d = vt

where d is the distance, v is the initial horizontal velocity, and t is the time.

Plugging in the values, we get:

d = 78.3 mph x (1.609 km/m)(1/3600 h/s) x 4.1 s

d ≈ 1.25 km

Therefore, the package lands about 1.25 km east of the raft.

c) 97.5 m/s

- We can use the components of velocity to find the final velocity of the package. The vertical velocity is -gt, where g is the acceleration due to gravity and t is the time of flight (4.1 seconds). The horizontal velocity is 78.3 mph (which we convert to m/s).

The final velocity can be found using the Pythagorean theorem:

vf = sqrt(vh^2 + vv^2)

where vh is the horizontal velocity and vv is the vertical velocity.

Plugging in the values, we get:

vf = sqrt((78.3 mph x (1.609 km/m)(1/3600 h/s))^2 + (-9.81 m/s^2 x 4.1 s)^2)

vf ≈ 97.5 m/s

Therefore, the final velocity of the package is about 97.5 m/s at an angle of tan^-1(-(9.81 m/s^2 x 4.1 s) / (78.3 mph x (1.609 km/m)(1/3600 h/s))) = -0.134 rad = -7.7 degrees below the horizontal.

A man stands 10 m in front of a large plane mirror. How far must he walk before he is 5m away from his image? A. 10 cm B. 7.5 m C. 5 m D. 2.5 m

Answers

The man is 10m in front of a large plane mirror and we are to determine the distance he must walk before he is 5m away from his image.

The image formed by a plane mirror is a virtual image of the same size as the object and the distance between the object and its image is twice the distance of the object to the mirror.

The man’s distance to the mirror = 10m

Distance of man’s image to the mirror = 2 x 10 = 20m

Distance between man and his image = 20 - 10 = 10m To be 5m away from his image, he would need to walk half the distance between himself and the mirror.

Thus, he would need to walk a distance of 5m.

Option  C 5 m is correct.

#SPJ11

Learn more about the plane mirrors and  image https://brainly.com/question/1126858

2 Two small spherical charges (of +6.0 4C and +4.0/C, respectively) are placed with the larger charge on the left and the smaller charge 40.0 cm to the right of it. Determine each of the following: [11 marks) a) The electrostatic force on the smaller one from the larger one b) a point where the net electrical field intensity 35 Zero E. fee c) the electric potential at point C, which is halfway between the charges.

Answers

To determine the values requested, we need to use Coulomb's Law. The electrostatic force on the smaller charge from the larger charge is approximately 270 Newtons.  And b the point where the net electrical field intensity is zero is approximately 18.9 cm from the smaller charge and 21.1 cm from the larger charge.

a) The electrostatic force between two charges can be calculated using Coulomb's Law:

F = k * (q1 * q2) / r^2

where F is the force, k is the electrostatic constant (9 x 10^9 Nm^2/C^2), q1 and q2 are the magnitudes of the charges, and r is the distance between them.

Given q1 = +6.0 µC and q2 = +4.0 µC, and the distance between them is 40.0 cm (or 0.40 m), we can calculate the force:

F = (9 x 10^9 Nm^2/C^2) * ((6.0 x 10^-6 C) * (4.0 x 10^-6 C)) / (0.40 m)^2

F ≈ 270 N

Therefore, the electrostatic force on the smaller charge from the larger charge is approximately 270 Newtons.

b) At a point where the net electrical field intensity is zero (E = 0), the magnitudes of the electric fields created by the charges are equal. Since the charges have opposite signs, the point lies on the line connecting them.

The net electric field at a point on this line can be calculated as:

E = k * (q1 / r1^2) - k * (q2 / r2^2)

Since E = 0, we can set the two terms equal to each other:

k * (q1 / r1^2) = k * (q2 / r2^2)

q1 / r1^2 = q2 / r2^2

Substituting the given values:

(6.0 x 10^-6 C) / r1^2 = (4.0 x 10^-6 C) / r2^2

Simplifying the equation, we find:

r2^2 / r1^2 = (4.0 x 10^-6 C) / (6.0 x 10^-6 C)

r2^2 / r1^2 = 2/3

Taking the square root of both sides:

r2 / r1 = √(2/3)

Since the charges are positioned 40.0 cm apart, we have:

r1 + r2 = 40.0 cm

Substituting r2 / r1 = √(2/3):

r1 + √(2/3) * r1 = 40.0 cm

Solving for r1:

r1 ≈ 18.9 cm

Substituting r1 into r2 + r1 = 40.0 cm:

r2 ≈ 21.1 cm

Therefore, the point where the net electrical field intensity is zero is approximately 18.9 cm from the smaller charge and 21.1 cm from the larger charge.

c) The electric potential at point C, which is halfway between the charges, can be calculated using the formula:

V = k * (q1 / r1) + k * (q2 / r2)

Since the charges have equal magnitudes but opposite signs, the potential contributions cancel out, resulting in a net potential of zero at point C.

Therefore, the electric potential at point C is zero.

To learn more about, Coulomb's Law, click here, https://brainly.com/question/506926

#SPJ11

Question 27 of 37 Galaxy B moves away from galaxy A at 0.577 times the speed of light. Galaxy C moves away from galaxy B in the same direction at 0.745 times the speed of light. How fast does galaxy Crecede from galaxy A? Express your answer as a fraction of the speed of light. Galaxy Crecedes from Galaxy A at n 26 of 37 > Processes at the center of a nearby galaxy cause the emission of electromagnetic radiation at a frequency of 3.81 x 10' Hz. Detectors on Earth measure the frequency of this radiation as 2.31 x 1013 Hz. How fast is thic galaxy receding from Earth? m/s speed of recession:

Answers

Galaxy C recedes from Galaxy A at approximately 1.322 times the speed of light, and the nearby galaxy is receding from Earth at approximately 0.939 times the speed of light.

A. To calculate how fast Galaxy C recedes from Galaxy A, we can use the relativistic velocity addition formula. According to special relativity, the formula for adding velocities is v = (v1 + v2) / (1 + (v1*v2)/c²), where v1 and v2 are the velocities and c is the speed of light.

Given that Galaxy B moves away from Galaxy A at 0.577 times the speed of light (v1 = 0.577c) and Galaxy C moves away from Galaxy B at 0.745 times the speed of light (v2 = 0.745c), we can substitute these values into the formula:

v = (0.577c + 0.745c) / (1 + (0.577c * 0.745c) / c²)

Simplifying the equation gives:

v = 0.577c + 0.745c / (1 + 0.577 * 0.745)

v ≈ 1.322c

Therefore, Galaxy C recedes from Galaxy A at approximately 1.322 times the speed of light.

B. To determine how fast the galaxy is receding from Earth, we can use the formula for the redshift effect caused by the Doppler effect in the context of cosmological redshift. The formula is Δλ/λ = v/c, where Δλ is the change in wavelength, λ is the original wavelength, v is the recessional velocity, and c is the speed of light.

Given that the original frequency is 3.81 x 10¹⁴ Hz (λ = c/3.81 x 10¹⁴ Hz) and the measured frequency on Earth is 2.31 x 10¹³ Hz, we can calculate the change in wavelength:

Δλ/λ = (c/3.81 x 10¹⁴ Hz - c/2.31 x 10¹³ Hz) / (c/3.81 x 10¹⁴ Hz)

Simplifying the equation gives:

v/c = (2.31 x 10¹³ Hz - 3.81 x 10¹⁴ Hz) / 3.81 x 10¹⁴ Hz

v ≈ -0.939c

Therefore, the galaxy is receding from Earth at approximately 0.939 times the speed of light.

In conclusion, According to the given information, Galaxy C recedes from Galaxy A at approximately 1.322 times the speed of light, and the nearby galaxy is receding from Earth at approximately 0.939 times the speed of light.

To know more about speed refer here:

https://brainly.com/question/28060745#

#SPJ11

Complete Question:

A. Galaxy B moves away from galaxy A at 0.577 times the speed of light. Galaxy C moves away from galaxy B in the same direction at 0.745 times the speed of light. How fast does galaxy Crecede from galaxy A? Express your answer as a fraction of the speed of light.

B. Processes at the center of a nearby galaxy cause the emission of electromagnetic radiation at a frequency of 3.81 x 10' Hz. Detectors on Earth measure the frequency of this radiation as 2.31 x 1013 Hz. How fast is this galaxy receding from Earth?

A system has three energy levels 0, & and 2 and consists of three particles. Explain the distribution of particles and determine the average energy if the particles comply the particle properties according to : (1) Maxwell-Boltzman distribution (II) Bose-Einstein distribution

Answers

The distribution of three particles in three energy levels can be described by Maxwell-Boltzmann or Bose-Einstein distribution. Probability and average energy calculations differ for the two.

The distribution of particles among the energy levels of a system depends on the temperature and the quantum statistics obeyed by the particles.

Assuming the system is in thermal equilibrium, the distribution of particles among the energy levels can be described by the Maxwell-Boltzmann distribution or the Bose-Einstein distribution, depending on whether the particles are distinguishable or indistinguishable.

(1) Maxwell-Boltzmann distribution:

If the particles are distinguishable, they follow the Maxwell-Boltzmann distribution. In this case, each particle can occupy any of the available energy levels independently of the other particles. The probability of a particle occupying an energy level is proportional to the Boltzmann factor exp(-E/kT), where E is the energy of the level, k is Boltzmann's constant, and T is the temperature.

For a system of three particles and three energy levels, the possible distributions of particles are:

- All three particles in the ground state (0, 0, 0)

- Two particles in the ground state and one in the first excited state (0, 0, 2), (0, 2, 0), or (2, 0, 0)

- Two particles in the first excited state and one in the ground state (0, 2, 2), (2, 0, 2), or (2, 2, 0)

- All three particles in the first excited state (2, 2, 2)

The probability of each distribution is given by the product of the Boltzmann factors for the occupied energy levels and the complementary factors for the unoccupied levels. For example, the probability of the state (0, 0, 2) is proportional to exp(0) * exp(0) * exp(-2/kT) = exp(-2/kT).

The average energy of the system is given by the sum of the energies of all possible distributions weighted by their probabilities. For example, the average energy for the distribution (0, 0, 2) is 2*(exp(-2/kT))/(exp(-2/kT) + 2*exp(0) + 3*exp(-0/kT)).

(2) Bose-Einstein distribution:

If the particles are indistinguishable and obey Bose-Einstein statistics, they follow the Bose-Einstein distribution. In this case, the particles are subject to the Pauli exclusion principle, which means that no two particles can occupy the same quantum state at the same time.

For a system of three identical bosons and three energy levels, the possible distributions of particles are:

- All three particles in the ground state (0, 0, 0)

- Two particles in the ground state and one in the first excited state (0, 0, 2), (0, 2, 0), or (2, 0, 0)

- One particle in the ground state and two in the first excited state (0, 2, 2), (2, 0, 2), or (2, 2, 0)

The probability of each distribution is given by the Bose-Einstein occupation number formula, which is a function of the energy, temperature, and chemical potential of the system. The average energy of the system can be calculated similarly to the Maxwell-Boltzmann case.

Note that for fermions (particles obeying Fermi-Dirac statistics), the Pauli exclusion principle applies, but the distribution of particles is different from the Bose-Einstein case because of the antisymmetry of the wave function.

know more about fermions here: brainly.com/question/31833306

#SPJ11

A glass slab of thickness 3 cm and refractive index 1.66 is placed on on ink mark on a piece of paper.
For a person looking at the mark from a distance of 6.0 cm above it, what well the distance to the ink mark appear to be in cm?

Answers

The distance to the ink mark on a piece of paper, when viewed through a glass slab of thickness 3 cm and refractive index 1.66, from a distance of 6 cm above it will appear to be 4.12 cm.

This is because when light enters the glass slab, it bends due to the change in refractive index.

The angle of incidence and the angle of refraction are related by Snell's law. Since the slab is thick, the light again bends when it exits the slab towards the observer’s eye.

This causes an apparent shift in the position of the ink mark. The distance is calculated using the formula:

Apparent distance = Real distance / refractive index

Therefore, the apparent distance to the ink mark is:

Apparent distance = 6cm / 1.66 = 4.12 cm

Hence, the distance to the ink mark appears to be 4.12 cm when viewed through a 3 cm thick glass slab with a refractive index of 1.66 from a distance of 6 cm above it.

Learn more about Distance from the given link:
https://brainly.com/question/15172156

#SPJ11

And here is this weeks HIP: This week is mostly about the photoelectric effect. You measure the energy of electrons that are produced in a tube like the one we studied and find K = 2.8 eV. You then change the wavelength of the incoming light and increase it by 40%. What happens? Are the photoelectrons faster or slower? The kinetic energy now is 0.63 eV. A) Based on that information, what is the material of the cathode? Determine the work function of the metal in the tube, and check against table 28.1. B) What was the wavelength of the light initially used in the experiment? C) And for a bit of textbook review, what would be the temperature of a metal that would radiate light at such a wavelength like you calculate in B) (see in chapter 25).

Answers

A) The material of the cathode is Zinc.

B) The wavelength initially used in the experiment is 327.4 nm.

C) The temperature of the metal that would radiate light with a wavelength of 327.4 nm is 8.86 × 10³ K.

The wavelength initially used in the experiment is 327.4 nm. Now, let's look at the given question and solve the sub-parts step by step.

Sub-part A The work function of the metal in the tube can be determined as shown below :K = hf - ϕ,where K is the maximum kinetic energy of the ejected electrons, f is the frequency of the incident light, h is Planck's constant, and ϕ is the work function of the metal.

The work function is given by ϕ = hf - K.ϕ = (6.63 × 10⁻³⁴ J/s × 3 × 10⁸ m/s)/(4.11 × 10¹⁵ Hz) - 2.8 eVϕ = 4.83 × 10⁻¹⁹ J - 2.8 × 1.602 × 10⁻¹⁹ Jϕ = 2.229 × 10⁻¹⁹ J Refer to Table 28.1 in the textbook to identify the material of the cathode.

We can see that the work function of the cathode is approximately 2.22 eV, which corresponds to the metal Zinc (Zn). Thus, Zinc is the material of the cathode.

Sub-part B The equation to calculate the kinetic energy of a photoelectron is given by K.E. = hf - ϕwhere h is Planck's constant, f is frequency, and ϕ is work function.

We can calculate the wavelength (λ) of the light initially used in the experiment using the equation: c = fλwhere c is the speed of light.f2 = f1 + 0.4f1 = 1.4 f1 Therefore, λ1 = c/f1 λ2 = c/f2λ2/λ1 = (f1/f2) = 1.4 λ2 = (1.4)λ1 = (1.4) × 327.4 nm = 458.4 nm Therefore, the wavelength initially used in the experiment is 327.4 nm.

Sub-part C The maximum wavelength for the emission of visible light corresponds to a temperature of around 5000 K.

The wavelength of the emitted radiation is given by the Wien's displacement law: λmaxT = 2.9 × 10⁻³ m·K,T = (2.9 × 10⁻³ m·K)/(λmax)T = (2.9 × 10⁻³ m·K)/(327.4 × 10⁻⁹ m)T = 8.86 × 10³ K Therefore, the temperature of the metal that would radiate light with a wavelength of 327.4 nm is 8.86 × 10³ K.

To know more about wavelength refer here:

https://brainly.com/question/31322456#

#SPJ11

How far apart will the second to the right bright spot be from the center spot on a screen showing the diffraction of blue light at 650 nm through a grating with 100 slits per crn. The distance between the grating and the screen is 2 m

Answers

The distance between the second to the right bright fringes and the center spot on the screen is 7.8 mm.

To find the distance between the second to the right bright spot and the center spot on the screen, we can use the formula for the angular position of the bright fringes in a diffraction grating:

θ = mλ / d

Where:

θ is the angular position of the bright fringe,

m is the order of the fringe (in this case, m = 1 for the center spot and m = 2 for the second to the right spot),

λ is the wavelength of light,

d is the slit spacing (distance between slits).

Given:

Wavelength of blue light (λ) = 650 nm = 650 × 10^(-9) m,

Slit spacing (d) = 1 / (100 slits per cm) = 1 / (100 × 0.01 m) = 0.01 m,

Distance between grating and screen (L) = 2 m.

For the center spot (m = 1):

θ_center = (1 * λ) / d

For the second to the right spot (m = 2):

θ_2nd_right = (2 * λ) / d

The distance between the center spot and the second to the right spot on the screen is given by:

x = L * (θ_2nd_right - θ_center)

Substituting the values:

θ_center = (1 * 650 × 10^(-9) m) / 0.01 m

θ_2nd_right = (2 * 650 × 10^(-9) m) / 0.01 m

x = 2 m * [(2 * 650 × 10^(-9) m) / 0.01 m - (650 × 10^(-9) m) / 0.01 m]

Calculating this expression gives:

x ≈ 7.8 mm

Therefore, the distance between the second to the right bright spot and the center spot on the screen is approximately 7.8 mm.

Learn more about  bright fringes from the given link

https://brainly.com/question/32611237

#SPJ11

A bumper car with a mass of 113.4 kg is moving to the right with a velocity of 3.3 m/s. A second bumper car with a mass of 88.5 kg is moving to the left with a velocity of -4.7 m/s. If the first car ends up with a velocity of -1.0 m/s, what is the change in kinetic energy of the first car?

Answers

Given that the mass of the first bumper car (m1) is 113.4 kg and its initial velocity (u1) is 3.3 m/s.

The second bumper car with mass (m2) of 88.5 kg is moving to the left with a velocity (u2) of -4.7 m/s. The final velocity of the first car (v1) is -1.0 m/s. We need to find the change in kinetic energy of the first car. Kinetic energy (KE) = 1/2mv2where, m is the mass of the object v is the velocity of the object.

The initial kinetic energy of the first car isK1 = 1/2m1u12= 1/2 × 113.4 × (3.3)2= 625.50 J The final kinetic energy of the first car isK2 = 1/2m1v12= 1/2 × 113.4 × (−1.0)2= 56.70 J The change in kinetic energy of the first car isΔK = K2 − K1ΔK = 56.70 − 625.50ΔK = - 568.80 J Therefore, the change in kinetic energy of the first car is -568.80 J. Note: The negative sign indicates that the kinetic energy of the first bumper car is decreasing.

To know more about bumper visit:

https://brainly.com/question/28297370

#SPJ11

QUESTION 14 A capacitor is hooked up in series with a battery. When electrostatic equilibrium is attained the potential energy stored in the capacitor is 200 nJ. If the distance between the plates of

Answers

The new potential energy is 800nJ.

The potential energy stored in a capacitor is proportional to the square of the electric field between the plates. If the distance between the plates is halved, the electric field will double, and the potential energy will quadruple. Therefore, the final potential energy stored in the capacitor will be 800 nJ

Here's the calculation

Initial potential energy: 200 nJ

New distance between plates: d/2

New electric field: E * 2

New potential energy: (E * 2)^2 = 4 * E^2

= 4 * (200 nJ)

= 800 nJ

Learn more about Potential energy with the given link,

https://brainly.com/question/24142403

#SPJ

A classic example of a diffusion problem with a time-dependent condition is the diffusion of heat into the Earth's crust, since the surface temperature varies with the season of the year. Suppose the daily average temperature at a particular point on the surface varies as: To(t) = A + B sin 2πt/t
where t = 356 days, A = 10° C and B = 12° C. At a depth of 20 m below the surface the annual temperature variation disappears, and it is a good approximation to consider the constant temperature 11°C (which is higher than the average surface temperature of 10° C- temperature increases with depth due to heating of part of the planet's core). The thermal diffusivity of the Earth's crust varies somewhat from place to place, but for our purposes we will consider it constant with value D = 0.1 m2 day-1. = a) Write a program or modify one from Chapter 9 of the book that calculates the temperature distribution as a function of depth up to 20 m and 10 years. Start with the temperature equal to 100 C, except at the surface and at the deepest point. b) Run your program for the first 9 simulated years in a way that allows you to break even. Then for the 10th year (and final year of the simulation) show in a single graph the distribution of temperatures every 3 months in a way that illustrates how the temperature changes as a function of depth and time. c) Interpret the result of part b)

Answers

The problem described involves the diffusion of heat into the Earth's crust, where the surface temperature varies with the season. A program needs to be written or modified to calculate the temperature distribution as a function of depth up to 20 m and over a period of 10 years. The initial temperature is set at 100°C, except at the surface and the deepest point, which have specified temperatures. The thermal diffusivity of the Earth's crust is assumed to be constant.

In part b, the program is run for the first 9 simulated years. Then, in the 10th year, a graph is generated to show the distribution of temperatures every 3 months. This graph illustrates how the temperature changes with depth and time, providing a visual representation of the temperature variation throughout the year.

In part c, the interpretation of the results from part b is required. This involves analyzing the temperature distribution graph and understanding how the temperature changes over time and at different depths. The interpretation could include observations about the seasonal variations, the rate of temperature change with depth, and any other significant patterns or trends that emerge from the graph.

In conclusion, the problem involves simulating the diffusion of heat into the Earth's crust with time-dependent conditions. By running a program and analyzing the temperature distribution graph, insights can be gained regarding the temperature variations as a function of depth and time, providing a better understanding of the thermal dynamics within the Earth's crust.

To know more about Diffusion visit-

brainly.com/question/14852229

#SPJ11

What is the net force on a mass if the force of 100N at 53o AND
a force of 120N at 135o act on it at the same time?

Answers

The net force on the mass is approximately 25.7N at an angle of 11.8° (measured counterclockwise from the positive x-axis).

To find the net force on the mass when two forces are acting on it, we need to break down the forces into their horizontal (x) and vertical (y) components and then sum up the components separately.

First, let's calculate the horizontal (x) components of the forces:

Force 1 (100N at 53°):

Fx1 = 100N * cos(53°)

Force 2 (120N at 135°):

Fx2 = 120N * cos(135°)

Next, let's calculate the vertical (y) components of the forces:

Force 1 (100N at 53°):

Fy1 = 100N * sin(53°)

Force 2 (120N at 135°):

Fy2 = 120N * sin(135°)

Now, we can calculate the net horizontal (x) component of the forces by summing up the individual horizontal components:

Net Fx = Fx1 + Fx2

And, we can calculate the net vertical (y) component of the forces by summing up the individual vertical components:

Net Fy = Fy1 + Fy2

Finally, we can find the magnitude and direction of the net force by using the Pythagorean theorem and the inverse tangent function:

Magnitude of the net force = √(Net Fx² + Net Fy²)

Direction of the net force = atan(Net Fy / Net Fx)

Calculating the values:

Fx1 = 100N * cos(53°) = 100N * 0.6 ≈ 60N

Fx2 = 120N * cos(135°) = 120N * (-0.71) ≈ -85.2N

Fy1 = 100N * sin(53°) = 100N * 0.8 ≈ 80N

Fy2 = 120N * sin(135°) = 120N * (-0.71) ≈ -85.2N

Net Fx = 60N + (-85.2N) ≈ -25.2N

Net Fy = 80N + (-85.2N) ≈ -5.2N

Magnitude of the net force = √((-25.2N)² + (-5.2N)²) ≈ √(634.04N² + 27.04N²) ≈ √661.08N² ≈ 25.7N

Direction of the net force = atan((-5.2N) / (-25.2N)) ≈ atan(0.206) ≈ 11.8°

Therefore, the net force on the mass is approximately 25.7N at an angle of 11.8° (measured counterclockwise from the positive x-axis).

To know more about net force click this link -

brainly.com/question/18109210

#SPJ11

A radio signal is broadcast uniformly in all directions. The average energy density is ⟨u 0 ​ ⟩ at a distance d 0 ​ from the transmitter. Determine the average energy density at a distance 2d 0 ​ from the transmitter. 4 2 (1/2)
(1/4)

Answers

The average energy density at a distance 2d₀ from the transmitter is one-fourth (1/4) of the average energy density at distance d₀.

According to the inverse square law, the energy density of a signal decreases proportionally to the square of the distance from the transmitter. This means that if the distance from the transmitter is doubled (i.e., 2d₀), the energy density will decrease by a factor of 4 (2²) compared to the energy density at distance d₀.

Therefore, the average energy density at a distance 2d₀ from the transmitter is given by:

⟨u₂⟩ = 1/4 * ⟨u₀⟩

Here, ⟨u₂⟩ represents the average energy density at a distance 2d₀. This demonstrates the decrease in energy density as the distance from the transmitter increases, following the inverse square law.

Learn more about energy here:
https://brainly.com/question/1932868

#SPJ11

A 4000 Hz tone is effectively masked by a 3% narrow-band noise of the same frequency. If the band-pass critical bandwidth is 240 Hz total, what are the lower and upper cutoff frequencies of this narrow-band noise?
Lower cutoff frequency = ____Hz
Upper cutoff frequency = ____Hz

Answers

The lower cutoff frequency is 3880 Hz and the upper cutoff frequency is 4120 Hz. We can use the critical bandwidth and the frequency of the tone.

To find the lower and upper cutoff frequencies of the narrow-band noise, we can use the critical bandwidth and the frequency of the tone.

Given:

Tone frequency (f) = 4000 Hz

Critical bandwidth (B) = 240 Hz

The lower cutoff frequency (f_lower) can be calculated by subtracting half of the critical bandwidth from the tone frequency:

f_lower = f - (B/2)

Substituting the values:

f_lower = 4000 Hz - (240 Hz / 2)

f_lower = 4000 Hz - 120 Hz

f_lower = 3880 Hz

The upper cutoff frequency (f_upper) can be calculated by adding half of the critical bandwidth to the tone frequency:

f_upper = f + (B/2)

Substituting the values:

f_upper = 4000 Hz + (240 Hz / 2)

f_upper = 4000 Hz + 120 Hz

f_upper = 4120 Hz

Therefore, the lower cutoff frequency is 3880 Hz and the upper cutoff frequency is 4120 Hz.

To learn more about cutoff frequency click here

https://brainly.com/question/30092924

#SPJ11

A resistor is made of material of resistivity \( p \). The cylindrical resistor has a diameter d and length \( L \). What happens to the resistance \( R \) if we half the diameter, triple the length a

Answers

If we halve the diameter of the cylindrical resistor and triple its length, the resistance R will increase by a factor of 6.

The resistance R of a cylindrical resistor can be calculated using the formula:

R=(ρ *l)/A

where ρ is the resistivity of the material, L is the length of the resistor, and A is the cross-sectional area of the resistor.

The cross-sectional area of a cylinder can be calculated using the formula:

A=π.(d/2)^2  where d is the diameter of the cylinder.

If we halve the diameter, the new diameter d' would be d/2

If we triple the length, the new length l' would be 3l

Substituting the new values into the resistance formula, we get:

R'= ρ*3l/π*(d/2)^2

Simplifying the equation, we find:

R'=6*(ρ*l/π(d/2)^2)

Therefore, the resistance R' is six times greater than the original resistance R, indicating that the resistance increases by a factor of 6.

To learn more about resistance , click here : https://brainly.com/question/30548369

#SPJ11

A 0.23-kg stone is held 1.1 m above the top edge of a water well and then dropped into it. The well has a depth of 4.6 m.
a) Relative to the configuration with the stone at the top edge of the well, what is the gravitational potential energy of the stone-Earth system before the stone is released?
]
(b) Relative to the configuration with the stone at the top edge of the well, what is the gravitational potential energy of the stone-Earth system when it reaches the bottom of the well?
(c) What is the change in gravitational potential energy of the system from release to reaching the bottom of the well?

Answers

A. Before the stone is released, the system's gravitational potential energy is 2.4794 Joules.

B. When the stone sinks to the bottom of the well, the gravitational potential energy of the system will be present at or around -10.3684 Joules.

C. The gravitational potential energy of the system changed by about -12.84 Joules from release until it reached the bottom of the well.

A. The formula can be used to determine the gravitational potential energy of the stone-Earth system before the stone is freed.

Potential Energy = mass * gravity * height

Given:

Mass of the stone (m) = 0.23 kg

Gravity (g) = 9.8 m/s²

Height (h) = 1.1 m

Potential Energy = 0.23 kg * 9.8 m/s² * 1.1 m = 2.4794 Joules

Therefore, before the stone is released, the system's gravitational potential energy is roughly  2.4794 Joules.

B. The height of the stone from the top edge of the well to the lowest point is equal to the depth of the well, which is 4.6 m. Using the same approach, the gravitational potential energy can be calculated as:

Potential Energy = mass * gravity * height

Potential Energy = 0.23 kg * 9.8 m/s² * (-4.6 m) [Negative sign indicates the change in height]

P.E.= -10.3684 Joules

Therefore, when the stone sinks to the bottom of the well, the gravitational potential energy of the system will be present at or around -10.3684 Joules

C. By subtracting the initial potential energy from the final potential energy, it is possible to determine the change in the gravitational potential energy of the system from release to the time it reaches the bottom of the well:

Change in Potential Energy = Final Potential Energy - Initial Potential Energy

Change in Potential Energy = -10.3684 Joules - 2.4794 Joules = -12.84Joules.

As a result, the gravitational potential energy of the system changed by about -12.84Joules from release until it reached the bottom of the well.

Learn more about Potential energy, here:

https://brainly.com/question/24284560

#SPJ12

A thin plastic lens with index of refraction n = 1.68 has radii of curvature given by R1 = -10.5 cm and R2 = 35.0 cm. HINT (a) Determine the focal length in cm of the lens.

Answers

The focal length in cm of the lens is  -11.9 cm.

To determine the focal length of the thin plastic lens, we can use the lens maker's formula, which relates the focal length (f) of a lens to its index of refraction (n) and the radii of curvature (R1 and R2) of its two surfaces.

The formula is as follows:

1/f = (n - 1) × ((1/R1) - (1/R2))

Index of refraction (n) = 1.68

Radii of curvature (R1) = -10.5 cm

Radii of curvature (R2) = 35.0 cm

Using the lens maker's formula, we can substitute these values and solve for the focal length (f):

1/f = (1.68 - 1) × (1/(-10.5 cm) - (1/35.0 cm)

To simplify the calculation, let's convert the radii of curvature to meters:

1/f = (1.68 - 1) × (1/(-0.105 m) - (1/0.35 m)

Now we can calculate the value of 1/f:

1/f = (0.68) × (-9.52 m⁻¹) - (2.86 m⁻¹)

1/f = (0.68) × (-12.38 m⁻¹)

1/f = -8.41 m⁻¹

Finally, to find the focal length (f), we take the reciprocal of both sides of the equation:

f = -1/8.41 m⁻¹

f = -0.119 m

Converting the focal length back to centimeters:

f = -0.119 m × 100 cm/m

f = -11.9 cm

The focal length of the lens is approximately -11.9 cm. The negative sign indicates that the lens is a diverging lens.

Learn more about focal length-

brainly.com/question/28039799

#SPJ11

Other Questions
What other ways of categorizing the world's peoples might work as well or better? 54. An extra-solar planet orbits the distant star Pegasi 51. The planet has an orbital velocity of 2.3 X 10 m/s and an orbital radius of 6.9 X 10 m from the centre of the star. Determine the mass of the star. (6.2) One-month-old Jerry is upset, and his facial expression shows that he is in distress. This is an example of __________.a.normative communicationb.cultural communicationc.nonverbal emergenced.nonverbal expression of emotion 13) You find an old gaming system in a closet and are eager to let nostalgia take over while you play old games. However, you find that the transformer in the power supply to the system is not working. You read on the console that it requires a 9V AC voltage to work correctly and can be plugged into a standard 120V AC wall socket to get the power. Using your spiffy new physics knowledge, how could you make a transformer that would accomplish the task? (Show any calculations that could be performed.) What do you think of the idea that cohabitation is a substitutefor singleness instead of a preparation for marriage? 1. For a double slit experiment the distance between the slits and screen is 85 cm. For the n=4 fringe, y=6 cm. The distance between the slits is d=.045 mm. Calculate the wavelength used. ( 785 nm) 2. For a double slit experiment the wavelength used is 450 nm. The distance between the slits and screen is 130 cm. For the n=3 fringe, y=5.5 cm. Calculate the distance d between the slits. (3.210 5m) What questions would you include while conducting a cultural history for Mr. T? - - - - - -" In a conditioning procedure, before conditioning happens, an unconditioned stimulus, such as food, automatically causes a(n) response, such as salivation. The bell, which is a stimulus, causes no response. A 326-g object is attached to a spring and executes simple harmonic motion with a period of 0.250 s . If the total energy of the system is 5.83 J , find (a) the maximum speed of the object. 0.005627 to 3 decimal places Write the formula to find the sum of the measures of the exterior angles. Question 16 An element, X has an atomic number 45 and a atomic mass of 133.559 u. This element is unstable and decays by decay, with a half life of 68d. The beta particle is emitted with a kinetic energy of 11.71 MeV. Initially there are 9.4110 atoms present in a sample. Determine the activity of the sample after 107 days (in Ci). 1 pts how many members of a certain legislature voted against the measure to raise their salaries? 1 4 of the members of the legislature did not vote on the measure. if 5 additional members of the legislature had voted against the measure, then the fraction of members of the legislature voting against the measure would have been 1 3 . Jewel plans to go for vacation to France in 7 years from now. She estimates that she will need $17,732 for the trip. How much does she need to place in a saving account today that earns 2.91 percent per year (compounded quarterly) to accumulate this amount? According to Kant, animals can be moved by respect for the moral law. True False Surface AreaPart AWhat is the area of each face of cube A?Part BHow can you calculate the surface area of cube A? What is the surface area of cube A?Part CWhat is the area of each face of cube B?Part DHow is the area of each face of cube B related to the area of each face of cube A?Part EWhat is the surface area of cube B? Evaluate the expression.10-41/16= Joyce Morgan has just started working as a Medical Assistant for a group of Gastroenterologists . She is unsure why she needs to know and use root operation codes and asks you to explain what they mean and why there are so many to choose from, and why she needs to use them. It's winter in MN and you are walking along a horizontal sidewalk with a constant velocity of 5.20 m/s. As you are walking, you hit a patch of ice on the sidewalk. You have a mass of 70.0 kg and you slide across the sidewalk. The sidewalk has acoefficient of friction 0.17. You slide for 5.20 m, slowing down. But before you come to a stop, you run into your friend who is stationary on the sidewalk. You collide with your friend, and startmoving together. Your friend has a mass of 71.0 kg.After you stick together, you and your friend slide down a hill with a height of 18.5m. The ice on the hill is so slick the coefficient of friction becomes essentially O.When you and your friend reach the bottom of the hill, what is your velocity? a poem you made yourself and found it great. Steam Workshop Downloader