Compute the Laplace transform Luz(t) + uş(t)i'e c{) tucave'st use

Answers

Answer 1

The Laplace transform of the function,[tex]L[u(t)cos(t)][/tex] is [tex]1/(s^2+1)[/tex]where L[.] denotes the Laplace transform and u(t) represents the unit step function.

To compute the Laplace transform of the given function L[u(t)cos(t)], we apply the linearity property and the transform of the unit step function. The Laplace transform of u(t)cos(t) can be written as:

[tex]L[u(t)cos(t)] = L[cos(t)] = 1/(s^2+1)[/tex],

where s is the complex frequency variable.

The unit step function u(t) is defined as u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0. In this case, u(t) ensures that the function cos(t) is activated (has a value of 1) only for t ≥ 0.

Learn more about Laplace transform here:

https://brainly.com/question/30759963

#SPJ11


Related Questions

Please help me with this: Find the volume of the composite solid

Answers

The volume of the composite solid is equal to 290 cubic centimeters.

How to determine the volume of a solid

In this problem we find the representation of a composite solid, whose volume (V), in cubic centimeters, must be found. This solid is the result of combining a prism and pyramid, whose volume formulas are:

Prism with a right triangle base

V = (1 / 2) · w · l · h

Where:

w - Base width, in centimeters.l - Base height, in centimeters.h - Prism height, in centimeters.

Pyramid with triangular base

V = (1 / 6) · w · l · h

And the volume of the entire solid is:

V = (1 / 2) · (5 cm) · √[(13 cm)² - (5 cm)²] · (8 cm) + (1 / 6) · (5 cm) · √[(13 cm)² - (5 cm)²] · (5 cm)

V = 290 cm³

To learn more on volumes of composite solids: https://brainly.com/question/23755595

#SPJ1

Which of the following methods are equivalent when conducting a hypothesis test of independent sample means?
a.P-value, Critical Value, Confidence Interval
b.P-value and Critical Value
c.P-value and Confidence Interval
d. Critical Value and Confidence Interval

Answers

Therefore, the methods that are equivalent when conducting a hypothesis test of independent sample means are (b) P-value and Critical Value.

In a hypothesis test of independent sample means, we compare the test statistic (such as the t-statistic or z-statistic) to a critical value to determine whether to reject or fail to reject the null hypothesis. The critical value is determined based on the significance level chosen for the test.

The P-value, on the other hand, is the probability of obtaining a test statistic as extreme as the one observed, assuming that the null hypothesis is true. We compare the P-value to the significance level to make a decision about the null hypothesis.

While both the P-value and critical value provide information about the test result, they are conceptually different. The P-value gives the probability of observing the data under the null hypothesis, while the critical value is a predefined threshold that is used to determine the rejection region.

To know more about Value,

https://brainly.com/question/541749

#SPJ11

help
(4 points) Suppose that f and g are differentiable functions such that f(0) = -2, f'(0) = 4, g(0) = -1 and g'(0) = 3. Evaluate (f/g)'(0). bar, press ALT+F10 (PC) or ALT-FN-F10 (Mac) VS Paragraph

Answers

f and g are differentiable functions such that f(0) = -2, f'(0) = 4, g(0) = -1 and g'(0) = 3, then (f/g)'(0) is 2.

To evaluate (f/g)'(0), we will use the quotient rule for differentiation which states that if you have a function h(x) = f(x)/g(x), then h'(x) = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2.

In this case, f(0) = -2, f'(0) = 4, g(0) = -1, and g'(0) = 3.

So, we can apply the quotient rule to find (f/g)'(0) as follows:

(f/g)'(0) = (f'(0)g(0) - f(0)g'(0))/[g(0)]^2

(f/g)'(0) = (4 * -1 - (-2) * 3)/(-1)^2

(f/g)'(0) = (-4 + 6)/(1)

(f/g)'(0) = 2

So, the value of (f/g)'(0) is 2.

To know more about differentiable functions visit:

brainly.com/question/16798149

#SPJ11

Consider a deck of 52 cards with 4 suits and 13 cards (2-10,J,K,Q,A) in each suit. Jack takes one such deck and arranges them in a line in a completely random order. Now he wants to find the number of "Power Trios" in this line of cards. A "Power Trio" is a set of 3 consecutive cards where all cards are
either a Jack, Queen or King (J,Q or K). A "Perfect Power Trio" is a set of 3 consecutive cards with exactly 1 Jack, 1 Queen and 1 King (in any order).
Find the expected number of Power Trios that Jack will find.
Find the expected number of Perfect Power Trios that Jack will find.

Answers

Both the expected number of Power Trios and Perfect Power Trios that Jack will find is 50/3.

We have,

To find the expected number of Power Trios and Perfect Power Trios, we need to consider the total number of possible arrangements of the cards and calculate the probabilities of encountering Power Trios and Perfect Power Trios in a random arrangement.

First, let's determine the total number of possible arrangements of the 52 cards in a line.

This can be calculated as 52 factorial (52!). However, since we are only interested in the relative positions of the Jacks, Queens, and Kings, we divide by the factorial of the number of ways the three face cards can be arranged (3 factorial, or 3!).

Therefore, the total number of possible arrangements is:

Total arrangements = 52! / (3!)

Now let's calculate the expected number of Power Trios.

A Power Trio can occur at any position in the line, except for the last two positions since there would not be three consecutive cards.

So there are (52 - 3 + 1) = 50 possible starting positions for a Power Trio.

Each starting position has a 1/3 probability of having a Power Trio (as the three consecutive cards can be JQK, QKJ, or KJQ). Therefore, the expected number of Power Trios is:

Expected number of Power Trios = 50 x (1/3) = 50/3

Next, let's calculate the expected number of Perfect Power Trios.

For a Perfect Power Trio to occur, the three consecutive cards must have one Jack, one Queen, and one King in any order.

The probability of this happening at any given starting position is

3! / (3³) since there are 3! ways to arrange the face cards and 3³ possible combinations for the three consecutive cards.

Therefore, the expected number of Perfect Power Trios is:

Expected number of Perfect Power Trios = 50 x (3! / (3^3)) = 50/3

Thus,

Both the expected number of Power Trios and Perfect Power Trios that Jack will find is 50/3.

Learn more about probability here:

https://brainly.com/question/14099682

#SPJ12

Problem 9. (1 point) Find the area of the surface obtained by rotating the curve 9x = y2 + 18, 257 < 6, about the x-axis. Area =

Answers

To find the area of the surface obtained by rotating the curve 9x = y^2 + 18, where 2 < y < 6, about the x-axis, we can use the formula for the surface area of revolution.

The formula for the surface area of revolution when rotating a curve y = f(x) about the x-axis over the interval [a, b] is given by:

A = 2π ∫[a,b] f(x) √(1 + (f'(x))^2) dx

In this case, the given curve is 9x = y^2 + 18, so we need to solve for y in terms of x:

9x = y^2 + 18

y^2 = 9x - 18

y = ±√(9x - 18)

Since the problem specifies that 2 < y < 6, we can consider the positive square root:

y = √(9x - 18)

To find the interval [a, b], we need to determine the values of x that correspond to the given range of y.

2 < y < 6

2 < √(9x - 18) < 6

4 < 9x - 18 < 36

22 < 9x < 54

22/9 < x < 6

Therefore, the interval [a, b] is [22/9, 6].

Next, we need to find the derivative f'(x) in order to calculate the expression inside the square root in the surface area formula:

f(x) = √(9x - 18)

f'(x) = 1/2(9x - 18)^(-1/2) * 9

Now, we can substitute the values into the surface area formula and integrate over the interval [a, b]:

A = 2π ∫[22/9, 6] √(9x - 18) √(1 + (1/2(9x - 18)^(-1/2) * 9)^2) dx

To simplify the expression, we can combine the square roots under the integral:

A = 2π ∫[22/9, 6] √(9x - 18) √(1 + (81/4(9x - 18))) dx

A = 2π ∫[22/9, 6] √(9x - 18) √(1 + 81/(4(9x - 18))) dx

to know more about derivative visit:

brainly.com/question/29144258

#SPJ11

1. Determine if the sequence if convergent. Explain your
conclusion. 2. Determine if the sequence if convergent. Explain your
conclusion.

Answers

To determine whether a sequence is convergent , we need to analyze its behavior as the terms of the sequence approach infinity.

Let's address each sequence separately:

1) Since the first sequence is not specified, we cannot determine its convergence without more information. The convergence of a sequence depends on the values of its terms, so we need the specific terms of the sequence to make a conclusion about its convergence.

2) Similarly, without specific information about the second sequence, we cannot determine its convergence. We need the actual values of the terms in the sequence to analyze its behavior and determine if it converges or not.

In general, to determine the convergence of a sequence, we can look for patterns, perform mathematical operations on the terms, or apply known convergence tests, such as the limit comparison test, ratio test, or the monotone convergence theorem. However, without any information about the sequences in question, it is not possible to make a conclusion about their convergence.

Learn more about convergent here:

https://brainly.com/question/30326862

#SPJ11

Write the following expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. 2 sin 15° cos 15° Write the following expression as the sine, cosine, or tangent of a double angle. Select the correct choice below and fill in the answer box to complete your choice. (Simplify your answer. Type your answer in degrees. Use integers or decimals for any numbers in the expression.) O A. 2 sin 15° cos 15º = sinº O B. 2 sin 15° cos 15º = tanº O C. 2 sin 15° cos 15º = cos º Click to select and enter your answer(s) and then click Check Answer.

Answers

Therefore, the correct choice is A, and the expression can be written as: 2 sin 15° cos 15° = sin(30°) = 1/2

The given expression is 2 sin 15° cos 15°. This expression can be written using the double angle formula for sine, which is sin(2θ) = 2 sinθ cosθ. In this case, θ is 15°.
So, 2 sin 15° cos 15° can be rewritten as sin(2 * 15°), which simplifies to sin(30°).
Now, we can find the exact value of sin(30°) using the properties of a 30-60-90 right triangle. In such a triangle, the side ratios are 1:√3:2, where the side opposite the 30° angle has a length of 1, the side opposite the 60° angle has a length of √3, and the hypotenuse has a length of 2. The sine function is defined as the ratio of the length of the opposite side to the length of the hypotenuse. So, sin(30°) = 1/2.
To know more about tangent visit:

https://brainly.com/question/10053881

#SPJ11

The number of hours of daylight in Toronto varies sinusoidally during the year, as described by the equation, h(t) = 2.81sin (3 (t - 78) + 12.2, where his hours of daylight and t is the day of the year since January 1. a. Find the function that represents the instantaneous rate of change.

Answers

The function that represents the instantaneous rate of change of the hours of daylight in Toronto is h'(t) = 8.43 * cos(3(t - 78)).

To find the function that represents the instantaneous rate of change of the hours of daylight in Toronto, we need to take the derivative of the given function, h(t) = 2.81sin(3(t - 78)) + 12.2, with respect to time (t).

Let's proceed with the calculation:

h(t) = 2.81sin(3(t - 78)) + 12.2

Taking the derivative with respect to t:

h'(t) = 2.81 * 3 * cos(3(t - 78))

Simplifying further:

h'(t) = 8.43 * cos(3(t - 78))

Therefore, the function that represents the instantaneous rate of change of the hours of daylight in Toronto is h'(t) = 8.43 * cos(3(t - 78)).

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ4

a point between a and b on each number line is chosen at random. what is the probability that thepoint is between c and d?

Answers

The probability that the point between a and b on each number line is chosen at random and is between c and d can be calculated using geometric probability.

Let the length of the segment between a and b be L1 and the length of the segment between c and d be L2. The probability of choosing a point between a and b at random is the same as the ratio of the length of the segment between c and d to the length of the segment between a and b.

Therefore, the probability can be expressed as:

P = L2/L1

In conclusion, the probability that the point between a and b on each number line is chosen at random and is between c and d is given by the ratio of the length of the segment between c and d to the length of the segment between a and b.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Question 1:
Question 2:
Please solve both questions
6 The region bounded by the curves y= and the lines x= 1 and x = 4 is revolved about the y-axis to generate a solid. Х a. Find the volume of the solid. b. Find the center of mass of a thin plate cove

Answers

Find the center of mass of a thin plate cove given, the region bounded by the curves y= and the lines x=1 and x=4 is revolved about the y-axis to generate a solid and we need to find the volume of the solid.

It is given that the region bounded by the curves y= and the lines x=1 and x=4 is revolved about the y-axis to generate a solid.(i) Find the volume of the solidWe have, y= intersects x-axis at (0, 1) and (0, 4). Hence, the y-axis is the axis of revolution. We will use disk method to find the volume of the solid.Volumes of the disk, V(x) = π(outer radius)² - π(inner radius)²where outer radius = x and inner radius = 1Volume of the solid generated by revolving the region bounded by the curve y = , and the lines x = 1 and x = 4 about the y-axis is given by:V = ∫ V(x) dx for x from 1 to 4V = ∫[ πx² - π(1)²] dx for x from 1 to 4V = π ∫ [x² - 1] dx for x from 1 to 4V = π [ (x³/3) - x] for x from 1 to 4V = π [(4³/3) - 4] - π [(1³/3) - 1]V = 21π cubic units(ii) Find the center of mass of a thin plate coveThe coordinates of the centroid of a lamina with the density function ρ(x, y) = 1 are given by:xc= 1/A ∫ ∫ x ρ(x,y) dAyc= 1/A ∫ ∫ y ρ(x,y) dAzc= 1/A ∫ ∫ z ρ(x,y) dAwhere A = Area of the lamina.The lamina is a thin plate of uniform density, therefore the density function is ρ(x, y) = 1 and A is the area of the region bounded by the curves y= and the lines x= 1 and x = 4.Now, xc is the x-coordinate of the center of mass, which is obtained by:xc= 1/A ∫ ∫ x ρ(x,y) dAwhere the limits of integration for x and y are obtained from the region bounded by the curves y= and the lines x= 1 and x = 4, as follows:1 ≤ x ≤ 4and0 ≤ y ≤The above integral can be written as:xc= 1/A ∫ ∫ x dA for x from 1 to 4 and for y from 0 toTo evaluate the above integral, we need to express dA in terms of dx and y. We have:dA = dx dyNow, we can write the above integral as:xc= 1/A ∫ ∫ x dA for x from 1 to 4 and for y from 0 toxc= 1/A ∫ ∫ x dx dy for x from 1 to 4 and for y from 0 toOn substituting the limits and the values, we get:xc= [1/(21π)] ∫ ∫ x dx dy for x from 1 to 4 and for y from 0 to= [1/(21π)] ∫[∫(4-y) y dy] dx for x from 1 to 4= [1/(21π)] ∫[4∫ y dy - ∫y² dy] dx for x from 1 to 4= [1/(21π)] ∫[4(y²/2) - (y³/3)] dx for x from 1 to 4= [1/(21π)] [(8/3) ∫ [1 to 4] dx - ∫ [(1/27) (y³)] [0 to ] dx]= [1/(21π)] [(8/3)(4 - 1) - (1/27) ∫ [0 to ] y³ dy]= [1/(21π)] [(8/3)(3) - (1/27)(³/4)]= [32/63π]Therefore, the x-coordinate of the center of mass is 32/63π.

Learn more about  center of mass here:

https://brainly.com/question/15578432

#SPJ11

5) Determine the concavity and inflection points (if any) of 34 y = e² - e et

Answers

There is no inflection point of the given equation. Thus, we can conclude that the given equation is concave up and has no inflection points.

The given equation is:34y=e²−eet

Let's differentiate the equation to determine the concavity of the given equation:

Differentiating with respect to t, we get, y′=d⁄dt(e²−eet)34y′=d⁄dt(e²)−d⁄dt(eet)34y′=0−eet34y′=−eet⁄34

Now, differentiating it with respect to t once again, we get:

y′′=d⁄dt(eet⁄34)y′′=et⁄34 × (1/34)34y′′=et⁄34 × 1/34y′′=et⁄1156

We know that the given function is concave down for y′′<0 and concave up for y′′>0.

Let's check for concavity:

For y′′<0,et⁄1156 < 0⇒ e < 0

This is not possible, therefore, the given function is not concave down.

For y′′>0,et⁄1156 > 0⇒ e > 0

Thus, the given function is concave up. Now, let's find out the inflection point of the given equation:

To find out the inflection point, let's find out the value of 't' where the second derivative becomes zero.

34y′′=et⁄1156=0⇒ e = 0

Therefore, there is no inflection point of the given equation. Thus, we can conclude that the given equation is concave up and has no inflection points.

Learn more about function :

https://brainly.com/question/30721594

#SPJ11

Find dy/dx if
y=x^3(4-3x+5x^2)^1/2

Answers

Answer: To find dy/dx of the given function y = x^3(4-3x+5x^2)^(1/2), we can apply the chain rule. Let's break down the process step by step:

First, let's define u as the function inside the parentheses: u = 4-3x+5x^2.

Next, we can rewrite the function as y = x^3u^(1/2).

Now, let's differentiate y with respect to x using the product rule and chain rule.

dy/dx = (d/dx)[x^3u^(1/2)]

Using the product rule, we have:

dy/dx = (d/dx)[x^3] * u^(1/2) + x^3 * (d/dx)[u^(1/2)]

Differentiating x^3 with respect to x gives us:

dy/dx = 3x^2 * u^(1/2) + x^3 * (d/dx)[u^(1/2)]

Now, we need to find (d/dx)[u^(1/2)] by applying the chain rule.

Let's define v as u^(1/2): v = u^(1/2).

Differentiating v with respect to x gives us:

(d/dx)[v] = (d/dv)[v^(1/2)] * (d/dx)[u]

= (1/2)v^(-1/2) * (d/dx)[u]

= (1/2)(4-3x+5x^2)^(-1/2) * (d/dx)[u]

Finally, substituting back into our expression for dy/dx:

dy/dx = 3x^2 * u^(1/2) + x^3 * (1/2)(4-3x+5x^2)^(-1/2) * (d/dx)[u]

Since (d/dx)[u] is the derivative of 4-3x+5x^2 with respect to x, we can calculate it separately:

(d/dx)[u] = (d/dx)[4-3x+5x^2]

= -3 + 10x

Substituting this back into the expression:

dy/dx = 3x^2 * u^(1/2) + x^3 * (1/2)(4-3x+5x^2)^(-1/2) * (-3 + 10x)

Simplifying further if desired, but this is the general expression for dy/dx based on the given function.

Step-by-step explanation:

(q6) Find the volume of the solid obtained by rotating the region bounded by y = 2x and y = 2x2 about the line y = 2.

Answers

The volume of the solid obtained by rotating the region bounded by y = 2x and y = 2x² about the line y = 2 is π/3 units cube.

option D is the correct answer.

What is the volume of the solid obtained?

The volume of the solid obtained by rotating the region bounded by y = x and y = 2x² about the line y = 2 is calculated as follows;

y = 2x²

x² = y/2

x = √(y/2) ----- (1)

2x = y

x = y/2 ------- (2)

Solve (1) and (2) to obtain the limit of the integration.

y/2 =  √(y/2)

y²/4 = y/2

y = 2 or 0

The volume obtained by the rotation is calculated as follows;

V = π∫(R² - r²)

V = π ∫[(√(y/2)² - (y/2)² ] dy

V = π ∫ [ y/2  - y²/4 ] dy

V = π [ y²/4 - y³/12 ]

Substitute the limit of the integration as follows;

y = 2 to 0

V = π [ 1  -  8/12 ]

V = π [1/3]

V = π/3 units cube

Learn more about volume of solid here: https://brainly.com/question/24259805

#SPJ1

help asap
A particle moves along the x-axis with velocity v(t)=t-cos(t) for t20 seconds. A) Given that the position of the particle at t=0 seconds is given by x(0)-2. Find x(2), the position of the particle at

Answers

After integrating, the position function is: x(t) = (1/2)t^2 - sin(t) - 2, position of the particle at t = 2 seconds is -sin(2)

To find the position of the particle at t = 2 seconds, we need to integrate the velocity function v(t) = t - cos(t) with respect to t to obtain the position function x(t).

∫v(t) dt = ∫(t - cos(t)) dt

Integrating the terms separately, we have:

∫t dt = (1/2)t^2 + C1

∫cos(t) dt = sin(t) + C2

Combining the integrals, we get:

x(t) = (1/2)t^2 - sin(t) + C

Now, to find the constant C, we can use the initial condition x(0) = -2. Substituting t = 0 and x(0) = -2 into the position function, we have:

x(0) = (1/2)(0)^2 - sin(0) + C

-2 = 0 + C

C = -2

Therefore, the position function is:

x(t) = (1/2)t^2 - sin(t) - 2

To find x(2), we substitute t = 2 into the position function:

x(2) = (1/2)(2)^2 - sin(2) - 2

x(2) = 2 - sin(2) - 2

x(2) = -sin(2)

Hence, the position of the particle at t = 2 seconds is -sin(2).

To know more about integrals refer here:

https://brainly.com/question/31059545#

#SPJ11

Question 2 (2 points) Evaluate the definite integral $(x)g(**)dx shown in arriving at your answer. when g(0) = 0 and g(8) = 5 All work, all steps must be

Answers

To evaluate the definite integral [tex]∫[0 to 8] x * g(x^2) dx[/tex], where g(0) = 0 and g(8) = 5, we can follow these steps:the value of the definite integral [tex]∫[0 to 8] x * g(x^2)[/tex] dx is 20.

Step 1: Apply the substitution

Let [tex]u = x^2[/tex]. Then, du = 2x dx, which implies dx = du / (2x).

Step 2: Rewrite the integral with the new variable

The original integral becomes:

[tex]∫[0 to 8] x * g(x^2) dx = ∫[u=0 to u=64] (1/2) * g(u) du[/tex]

Step 3: Evaluate the integral

Now we can substitute the limits of integration:

[tex]∫[0 to 8] x * g(x^2) dx = ∫[u=0 to u=64] (1/2) * g(u) du[/tex]

[tex]= (1/2) * ∫[0 to 64] g(u) du[/tex]

Step 4: Apply the given information

Since g(0) = 0 and g(8) = 5, we can use these values to evaluate the definite integral:

[tex]∫[0 to 8] x * g(x^2) dx = (1/2) * ∫[0 to 64] g(u) du[/tex]

= (1/2) * [0 to 8] 5 du

= (1/2) * 5 * [0 to 8] du

= (1/2) * 5 * [8 - 0]

= (1/2) * 5 * 8

= 20.

To know more about integral click the link below:

brainly.com/question/31056014

#SPJ11

Tell if the series below converges or diverges. identify the name of the appropriat test /or series. below. work a) Ž (-1)" n=1 2 5+ e-n

Answers

Answer:

Based on the alternating series test, we can conclude that the series Σ((-1)^n)/(2^(5+n)) converges.

Step-by-step explanation:

To determine if the series Σ((-1)^n)/(2^(5+n)) converges or diverges, we can use the alternating series test.

The alternating series test states that if a series has the form Σ((-1)^n)*b_n or Σ((-1)^(n+1))*b_n, where b_n is a positive sequence that decreases monotonically to 0, then the series converges.

In the given series, we have Σ((-1)^n)/(2^(5+n)). Let's analyze the terms:

b_n = 1/(2^(5+n))

The sequence b_n is positive for all n and decreases monotonically to 0 as n approaches infinity. This satisfies the conditions of the alternating series test.

Therefore, based on the alternating series test, we can conclude that the series Σ((-1)^n)/(2^(5+n)) converges.

Learn more about diverges:https://brainly.com/question/15415793

#SPJ11

What percent of 4c is each expression?
*2a

Answers

4c is 50a/c % of the expression 2a

How to determine what percent of 4c is 2a

From the question, we have the following parameters that can be used in our computation:

Expression = 2a

Percentage = 4c

Represent the percentage expression with x

So, we have the following equation

x% * Percentage  = Expression

Substitute the known values in the above equation, so, we have the following representation

x% * 4c = 2a

Evaluate

x = 50a/c %

Express as percentage

Hence, the percentage is 50a/c %

Read more about percentage at

https://brainly.com/question/11360390

#SPJ1

You are located 55 km from the epicenter of an earthquake. The Richter scale for the magnitude m of the earthquake at this distance is calculated from the amplitude of shaking, A (measured in um = 10-6m) using the following formula m = - log A + 2.32 The news reports the earthquake had a magnitude of 5. What was the amplitude of shaking for this earthquake? Make sure to remember that log is the logarithm of base 10. The amplitude A is um. Round your answer to the nearest integer.

Answers

The amplitude of shaking for this earthquake is approximately 0.004 um(rounded to the nearest integer).

Given that you are located 55 km from the epicenter of an earthquake. The Richter scale for the magnitude m of the earthquake at this distance is calculated from the amplitude of shaking, A (measured in um = 10⁻⁶) using the following formula; m = - log A + 2.32

Also, the news reports the earthquake had a magnitude of 5. To find the amplitude of shaking for this earthquake, substitute m = 5 in the given formula; m = - log A + 2.325 = - log A + 2.32log A = 2.32 - 5log A = -2.68

Taking antilog of both sides, we get;

A = antilog (-2.68)A = 0.00375 um.

Therefore, the amplitude of shaking for this earthquake is approximately 0.004 um(rounded to the nearest integer).

To know more about amplitude click on below link :

https://brainly.com/question/30283156#

#SPJ11

Let R be the region in the first quadrant bounded above by the parabola y = 4 - x² and below by the line y = 1. Then the area of R is: 6 units squared √√3 units squared This option None of these

Answers

The area of the region R bounded above by the parabola y = 4 - x² and below by the line y = 1 in the first quadrant is [tex]3\sqrt3 - (\sqrt3)^3/3[/tex].

To find the area of the region R bounded above by the parabola

y = 4 - x² and below by the line y = 1 in the first quadrant, we need to determine the limits of integration and evaluate the integral.

The region R can be defined by the following inequalities:

1 ≤ y ≤ 4 - x²

0 ≤ x

To find the limits of integration for x, we set the two equations equal to each other and solve for x:

4 - x² = 1

x² = 3

x = ±[tex]\sqrt{3}[/tex]

Since we are interested in the region in the first quadrant, we take the positive square root: x =[tex]\sqrt{3}[/tex].

Therefore, the limits of integration are:

0 ≤ x ≤ √3

1 ≤ y ≤ 4 - x²

The area of the region R can be found using the double integral:

Area =[tex]\int\int_R \,dA[/tex]=[tex]\int\limits^{\sqrt{3}}_0\int\limits^{(4-x^2)}_1 \,dy \,dx[/tex]

Integrating first with respect to y and then with respect to x:

Area =[tex]\int\limits^{\sqrt{3}}_0 [(4 - x^2) - 1] dx[/tex] = [tex]=\int\limits^{\sqrt3}_0 (3 - x^2) dx[/tex]

Integrating the expression (3 - x²) with respect to x:

Area =[tex][3x - (x^3/3)]^{\sqrt3}_0[/tex] = [tex]= [3\sqrt3 - (\sqrt3)^3/3] - [0 - (0/3)][/tex]

Simplifying:

Area =[tex]3\sqrt3 - (\sqrt3)^3/3[/tex]

Therefore, the area of the region R is [tex]3\sqrt3 - (\sqrt3)^3/3[/tex].

To learn more about Area refer the below link

https://brainly.in/question/50270542

#SPJ11

Find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve r(t) = 6t³i-2t³j-3t³k 1st≤2 The curve's unit tangent vector is i+j+k (Type an integer or a simplified fraction.) units. The length of the indicated portion of the curve is (Simplify your answer.)

Answers

The curve's unit tangent vector is i - 1/3j - 1/7k units. The length of the indicated portion of the curve is 56.

Given curve r(t) = 6t³i - 2t³j - 3t³k, 1st ≤ 2.

To find the curve's unit tangent vector we have to find the derivative of the given function.

r(t) = 6t³i - 2t³j - 3t³kr'(t) = 18t²i - 6t²j - 9t²k

To find the unit vector, we have to divide the tangent vector by its magnitude.

r'(t) = √(18t²)² + (-6t²)² + (-9t²)²r'(t) = √(324[tex]t^4[/tex] + 36[tex]t^4[/tex] + 81[tex]t^4[/tex])r'(t) = √(441[tex]t^4[/tex])r'(t) = 21t²i - 7t²j - 3t²k

The unit vector u is given by

u = r'(t) / |r'(t)|u = (21t²i - 7t²j - 3t²k) / √(441[tex]t^4[/tex])u = (21t²/21i - 7t²/21j - 3t²/21k)u = i - 1/3j - 1/7k

Therefore the curve's unit tangent vector is i - 1/3j - 1/7k.

Now, we need to find the length of the curve from t = 1 to t = 2.

So the length of the curve is given by

S = ∫₁² |r'(t)| dtS = ∫₁² √(18t²)² + (-6t²)² + (-9t²)² dS = ∫₁² √(324[tex]t^4[/tex] + 36[tex]t^4[/tex] + 81[tex]t^4[/tex]) dS = ∫₁² √(441[tex]t^4[/tex]) dS = ∫₁² 21t² dtS = [7t³] from 1 to 2S = 56 units

Therefore the length of the indicated portion of the curve is 56.

Hence, the correct option is "The curve's unit tangent vector is i - 1/3j - 1/7k units. The length of the indicated portion of the curve is 56."

Learn more about tangent vector :

https://brainly.com/question/31476175

#SPJ11

Solve the following absolute value inequality. 6 X Give your answer in interval notation using STACK's interval functions. For example, enter co (2,5) for 2 < x < 5 or [2, 5), and oc(-inf, 2) for x �

Answers

It seems like the absolute value inequality equation is missing. Please provide the complete equation, and I'd be happy to help you solve it using the terms "inequality," "interval," and "notation."

To solve the absolute value inequality |6x| < 12, we first isolate x by dividing both sides by 6:

|6x|/6 < 12/6

|x| < 2

This means that x is within 2 units from 0 on the number line, including negative values.

In interval notation, we can write this as (-2, 2).

Therefore, the answer to the question is: (-2, 2), using STACK's interval functions, we can write this as co(-2, 2).

(term used as functions are justified as diffrent meanings in the portal of mathematics educations or any elementary form of education.A function is defined as a relation between a set of inputs having one output each. In simple words, a function is a relationship between inputs where each input is related to exactly one output. Every function has a domain and codomain or range. A function is generally denoted by f(x) where x is the input. The general representation of a function is y = f(x).)

to know more about function, please visit;

https://brainly.com/question/11624077

#SPJ11

Please explain each step in neat handwriting. thank you!
2. Use an integral to find the area above the curve y = -e* + e(2x-3) and below the x-axis, for x > 0. You need to use a graph to answer this question. You will not receive any credit if you use the m

Answers

The area above the curve y = -eˣ + e²ˣ⁻³ and below the x-axis, for x ≥ 0, is infinite.

To begin, let's define the given function as f(x) = -eˣ + e²ˣ⁻³. Our objective is to find the area between this curve and the x-axis for x ≥ 0.

Step 1: Determine the interval of integration

The given condition, x ≥ 0, tells us that we need to calculate the area starting from x = 0 and moving towards positive infinity. Therefore, our interval of integration is [0, +∞).

Step 2: Set up the integral

The area we want to find can be calculated as the integral of the function f(x) = -eˣ + e²ˣ⁻³ from 0 to +∞. Mathematically, this can be represented as:

A = ∫[0,+∞) [-eˣ + e²ˣ⁻³] dx

Step 3: Evaluate the integral

To evaluate the integral, we need to find the antiderivative of the integrand. Let's integrate term by term:

∫[-eˣ + e²ˣ⁻³] dx = -∫eˣ dx + ∫e²ˣ⁻³ dx

Integrating the first term, we have:

-∫eˣ dx = -eˣ + C1

For the second term, let's make a substitution to simplify the integration. Let u = 2x-3. Then, du = 2 dx, or dx = du/2. The limits of integration will also change according to this substitution. When x = 0, u = 2(0) - 3 = -3, and when x approaches +∞, u approaches 2(+∞) - 3 = +∞. Thus, the integral becomes:

∫e²ˣ⁻³ dx = ∫eᵃ * (1/2) du = (1/2) ∫eᵃ du = (1/2) eᵃ + C2

Now we can rewrite the integral as:

A = -eˣ + (1/2)e²ˣ⁻³ + C

Step 4: Evaluate the definite integral

To find the area, we need to evaluate the definite integral from 0 to +∞:

A = ∫[0,+∞) [-eˣ + e²ˣ⁻³] dx

= lim as b->+∞ (-eˣ + (1/2)e²ˣ⁻³) - (-e⁰ + (1/2)e²⁽⁰⁾⁻³)

= -lim as b->+∞ eˣ + (1/2)e²ˣ⁻³ + 1

As b approaches +∞, the first term eˣ and the second term (1/2)e²ˣ⁻³ both go to +∞. Thus, the overall limit is +∞.

To know more about integral here

https://brainly.com/question/18125359

#SPJ4

A cheesecake is taken out of the oven with an ideal internal temperature of 180° F, and is placed into a 25° F refrigerator. After 10 minutes, the cheesecake has cooled to 160° F. If we must wait until the cheesecake has cooled to 60° F before we
eat it, how long will we have to wait? Show all your
work.

Answers

The cheesecake is initially taken out of the oven at 180°F and placed in a refrigerator at 25°F. After 10 minutes, its temperature decreases to 160°F.

Let's denote the temperature of the cheesecake at time t as T(t). We can set up the following differential equation:

dT/dt = k(T - 25),

where k is a constant of proportionality.

Given that T(0) = 180 (initial temperature) and T(10) = 160 (temperature after 10 minutes), we can solve for the value of k using the initial condition T(0):

k = (dT/dt)/(T - 25) = (180 - 25)/(180 - 25) = 1/3.

Now we can set up the differential equation with the known value of k:

dT/dt = (1/3)(T - 25).

To find the time required for T(t) to reach 60°F, we integrate the differential equation:

∫(1/(T - 25)) dT = (1/3)∫dt.

Solving the integrals and applying the initial condition T(0) = 180, we obtain:

ln|T - 25| = (1/3)t + C,

where C is the constant of integration.

Using the condition T(10) = 160, we can solve for C:

ln|160 - 25| = (1/3)(10) + C,

ln|135| = 10/3 + C,

C = ln|135| - 10/3.

Finally, we can solve for the time required to reach 60°F by substituting T = 60 and C into the equation:

ln|60 - 25| = (1/3)t + ln|135| - 10/3,

ln|35| + 10/3 = (1/3)t + ln|135|,

(1/3)t = ln|35| - ln|135| + 10/3,

(1/3)t = ln(35/135) + 10/3,

t = 3[ln(35/135) + 10/3].

Therefore, we have to wait approximately t ≈ 3[ln(35/135) + 10/3] minutes for the cheesecake to cool down to 60°F before we can eat it.

Learn more about degree to celcius conversion: brainly.com/question/30460033

#SPJ11

T/F. a vector b inrm is in the range of t if and only if ax=b has a solution

Answers

The statement "a vector b in R^m is in the range of matrix A if and only if the equation Ax = b has a solution" is true.

The range of a matrix A, also known as the column space of A, consists of all possible linear combinations of the columns of A. If a vector b is in the range of A, it means that there exists a vector x such that Ax = b. This is because the range of A precisely represents all the possible outputs that can be obtained by multiplying A with a vector x.

Conversely, if the equation Ax = b has a solution, it means that b is in the range of A. The existence of a solution x guarantees that the vector b can be obtained as an output by multiplying A with x.

Therefore, the statement is true: a vector b in R^m is in the range of matrix A if and only if the equation Ax = b has a solution.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

Find the equilibrium point for a product D(x) = 16 -0.0092? and S(x) = 0.0072²Round only final answers to 2 decimal places The equilibrium point (*e, p.) is

Answers

We need to set the two functions equal to each other and solve for the value of x that satisfies the equation. The equilibrium point is the point where the quantity demanded equals the quantity supplied.

Setting the demand function D(x) equal to the supply function S(x), we have:

16 - 0.0092x = 0.0072x^2

To find the equilibrium point, we need to solve this equation for x. Rearranging the equation, we have:

0.0072x^2 + 0.0092x - 16 = 0

This is a quadratic equation. We can solve it by factoring, completing the square, or using the quadratic formula. Once we find the values of x that satisfy the equation, we can substitute them back into either the demand or supply function to determine the corresponding equilibrium price. Without the complete equation or further information, it is not possible to calculate the equilibrium point or determine the values of x and p. Additional details are needed to provide a specific answer.

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

Approximate the Area under the curve from (a) to (b) by calculating the Riemann Sum with the given number of rectangles (n) rounding to three decimal places 4. f(x) = 3x from a = 1 to b= 2 use Left-Hand side and 5 rectangles 5. f(x) = x + 2 from a = 0 to b = 1 use Right-Hand side and 6 rectangles 6. f(x) = et from a = -1 to b = 1 use Average value and 7 rectangles . 7. f(x) = x from a = 1 to b = 5 use Left-Hand side and 5 rectangles f(x) = ta (= 1 8. 9. from a = 1 to b= 8 use Right-Hand side and 7 rectangles f(x) from a = 1 to b = 2 use Average value and 5 rectangles 10. f(x) = x2 from a - 2 to b = 2 use Left-Hand side and 4 rectangles 11. f(x) = x3 from a = 0 to b = 2 use Right-Hand side and 4 rectangles

Answers

The approximate the area under the curve using Riemann sums is 4.085.

To approximate the area under the curve using Riemann sums, we'll use the given information for each function and interval.

For f(x) = 3x, a = 1, b = 2, and 5 rectangles using the Left-Hand Riemann sum:

Delta x = (b - a) / n = (2 - 1) / 5 = 0.2

Riemann sum = Delta x * [f(a) + f(a + Delta x) + f(a + 2Delta x) + f(a + 3Delta x) + f(a + 4*Delta x)]

= 0.2 * [3(1) + 3(1.2) + 3(1.4) + 3(1.6) + 3(1.8)]

≈ 0.2 * [3 + 3.6 + 4.2 + 4.8 + 5.4]

≈ 0.2 * 21

≈ 4.2 (rounded to three decimal places)

For f(x) = x + 2, a = 0, b = 1, and 6 rectangles using the Right-Hand Riemann sum:

Delta x = (b - a) / n = (1 - 0) / 6 = 1/6

Riemann sum = Delta x * [f(a + Delta x) + f(a + 2Delta x) + f(a + 3Delta x) + f(a + 4Delta x) + f(a + 5Delta x) + f(a + 6*Delta x)]

= 1/6 * [(1/6 + 2) + (2/6 + 2) + (3/6 + 2) + (4/6 + 2) + (5/6 + 2) + (6/6 + 2)]

≈ 1/6 * [8/6 + 10/6 + 12/6 + 14/6 + 16/6 + 8/6]

≈ 1/6 * 68/6

≈ 0.0278 * 11.33

≈ 0.307 (rounded to three decimal places)

For f(x) = e^t, a = -1, b = 1, and 7 rectangles using the Average Value method:

Delta x = (b - a) / n = (1 - (-1)) / 7 = 2/7

Average value of f(x) = [f(a) + f(b)] / 2 = [e^(-1) + e^1] / 2 = (1/e + e) / 2

Approximate area = Delta x * Average value * n = (2/7) * [(1/e + e) / 2] * 7

= (1/e + e)

≈ 1/2.718 + 2.718

≈ 1.367 + 2.718

≈ 4.085 (rounded to three decimal places)

For f(x) = x, a = 1, b = 5, and 5 rectangles using the Left-Hand Riemann sum:

Delta x = (b - a) / n = (5 - 1) / 5 = 4/5

Riemann sum = Delta x * [f(a) + f(a + Delta x) + f(a + 2Delta x) + f(a + 3Delta x) + f(a + 4*Delta x)]

= (4/5) * [1 + (9/5) + (13/5) + (17/5) + (21/5)]

= (4/5) * (61/5)

≈ 48.8/5

≈ 9.76 (rounded to three decimal places)

For f(x) = x^2, a = -2, b = 2, and 4 rectangles using the Left-Hand Riemann sum:

Delta x = (b - a) / n = (2 - (-2)) / 4 = 4/4 = 1

Riemann sum = Delta x * [f(a) + f(a + Delta x) + f(a + 2Delta x) + f(a + 3Delta x)]

= 1 * [(-2)^2 + (-1)^2 + (0)^2 + (1)^2]

= 1 * [4 + 1 + 0 + 1]

= 1 * 6

= 6

For f(x) = x^3, a = 0, b = 2, and 4 rectangles using the Right-Hand Riemann sum:

Delta x = (b - a) / n = (2 - 0) / 4 = 2/4 = 1/2

Riemann sum = Delta x * [f(a + Delta x) + f(a + 2Delta x) + f(a + 3Delta x) + f(a + 4*Delta x)]

= (1/2) * [(1/2)^3 + (1)^3 + (3/2)^3 + (2)^3]

= (1/2) * [1/8 + 1 + 27/8 + 8]

= (1/2) * (49/8 + 32/8)

= (1/2) * (81/8)

= 81/16

≈ 5.0625 (rounded to three decimal places).

Know more about Riemann sums here

https://brainly.com/question/29012686#

#SPJ11

Use Green's Theorem to evaluate f xyºda + xºdy, where C is the rectangle with vertices (0,0), (8,0), (3,2), and (0,2) Add Work

Answers

The f xyºda + xºdy, where C is the rectangle with vertices (0,0), (8,0), (3,2), and (0,2) is 16 using Green's Theorem.

We first need to find the partial derivatives of f:

f_x = y

f_y = x

Then, we can evaluate the line integral over C using the double integral of the curl of F:

Curl(F) = (0, 0, 1)

∬curl(F) · dA = area of rectangle = 16

Therefore,

∫C fxy dx + x dy = ∬curl(F) · dA

= 16

So the value of the line integral is 16.

To know more about Green's Theorem refer here:

https://brainly.com/question/30080556#

#SPJ11

Find the perimeter and area of each regular polygon to the nearest tenth.

Answers

The perimeter and area of the regular polygon, (a pentagon), obtained from the radial length of the circumscribing circle of the polygon are about 17.6 ft and 21.4 ft²

What is a regular pentagon?

A regular pentagon is a five sided polygon with the same length for the five sides of forming a loop.

The polygon is a regular pentagon, therefore;

The interior angle of a pentagon = 108°

The 3ft radial segment bisect the interior angle, such that half the length of a side, s, of the pentagon is therefore;

cos(108/2) = (s/2)/3

(s/2) = 3 × cos(108/2)

s = 2 × 3 × cos(108/2)

The perimeter of the pentagon, 5·s = 5 × 2 × 3 × cos(108°/2) ≈ 17.6

The perimeter of the pentagon is about 17.6 ft

The area of the pentagon can be obtained from the areas of the five congruent triangles in a pentagon as follows;

Altitude of one triangle = Apothem, a = 3 × sin(108°/2)

Area of one triangle, A = (1/2)·s·a = (1/2) × 2 × 3 × cos(108°/2) × 3 × sin(108°/2) = 9 × cos(108°/2) × sin(108°/2)

Trigonometric identities indicates that we get;

A = 9 × cos(108°/2) × sin(108°/2) = 9/2 × sin(108°)

The area of the pentagon = 5 × A = 5 × 9/2 × sin(108°) ≈ 21.4 ft²

Learn more on the perimeter of a polygon here: https://brainly.com/question/13303683

#SPJ1







[5]. Calculate the exact values of the following definite integrals. S xsin(2x) dx ſusin (a) 4 s dx ( b) 3 x² – 4

Answers

The exact value of the definite integral ∫ xsin(2x) dx is (-1/2)x cos(2x) + 1/4 sin(2x) + C. And the exact value of the definite integral ∫ (3x² - 4) dx is [tex]x^3[/tex] - 4x + C.

To calculate the exact values of the definite integrals, let's evaluate each integral separately:

(a) ∫ xsin(2x) dx

To solve this integral, we can use integration by parts.

Let u = x and dv = sin(2x) dx.

Then, du = dx and v = -1/2 cos(2x).

Using the integration by parts formula:

∫ u dv = uv - ∫ v du

∫ xsin(2x) dx = (-1/2)x cos(2x) - ∫ (-1/2 cos(2x)) dx

                   = (-1/2)x cos(2x) + 1/4 sin(2x) + C

Therefore, the exact value of the definite integral ∫ xsin(2x) dx is (-1/2)x cos(2x) + 1/4 sin(2x) + C.

(b) ∫ (3x² - 4) dx

To integrate the given function, we apply the power rule of integration:

[tex]\int\ x^n dx = (1/(n+1)) x^{(n+1) }+ C[/tex]

Applying this rule to each term:

∫ (3x² - 4) dx = (3/3) [tex]x^3[/tex] - (4/1) x + C

                    = [tex]x^3[/tex] - 4x + C

Therefore, the exact value of the definite integral ∫ (3x² - 4) dx is x^3 - 4x + C.

Learn more about Integrals at

brainly.com/question/31059545

#SPJ4

(For a Dot Plot) Out of 20 kids, 1 kid is 5 y/o, 2 kids are 6 y/o, 3 kids are 7 y/o, 7 kids are 8 y/o, 4 kids are 9 y/o, 2 kids are 10 y/o, and 1 kid is 12 y/o. Evie is 9 years old, so what percent of the kids are older than her?

Answers

25% of the kids are older than Evie.

To find the percentage of kids older than Evie, we need to determine the total number of kids who are older than 9 and divide it by the total number of kids (20), then multiply by 100.

The number of kids older than 9 is the sum of the kids who are 10 and 12 years old: 4 + 1 = 5.

Now we can calculate the percentage:

Percentage = (Number of kids older than 9 / Total number of kids) * 100

Percentage = (5 / 20) × 100

Percentage = 25%

Therefore, 25% of the kids are older than Evie.

for such more question on percentage

https://brainly.com/question/24877689

#SPJ8

Other Questions
how to fix badimageformatexception: could not resolve field token 0x04000092, due to: invalid type udonsharp.udonsharpprogramasset for instance field udonsharppiler.modulebinding:programasset assembly Evaluate the integral using integration by parts. Do not use any other method. You must show your work. Vu x sin(x) dx Find the local maxima, local minima, and saddle points, if any, for the function z = 2x3 + 3xy + 4y. (Use symbolic notation and fractions where needed. Give your answer as point coordinates in the f Use a change of variables or the table to evaluate the following definite integral. 1 Sex ( 9x8 (1-x) dx 0 Click to view the table of general integration formulas. 1 9x ( 1 x) dx = ( what is the final step after cementing the provisional crown Find the equation of the tangent line to f(x) = 4(x at the point where x = 2 x 3 In 2 217 x+3 a) y = 4x + 1 b) y = x - 4 c) y = x + 8 d) y = x +4 2 2.743 4 e) None of the above Select any of the following that represent a common reason why companies invest in other companies (select all that apply)a. to invest excess cash created bt operating in seasonal industriesb. to increase employees moralec. to build strategic alliancesd. to reduce government regulatione. to receive interest and divodends With a 26 percent marginal tax rate, which would give you a better return on your savings, a tax-free yield of 8 percent or a taxable yield of 9.5 percent? Why? Suppose you show up at a bus stop to wait for a bus that comes by once every 15 minutes. You do not know what time the bus came by last. The arrival time of the next bus is a uniform distribution with c=0 and d=15 measured in minutes. Find the probability that you will wait 5 minutes for the next bus. That is, find P(X=5) A.7.5 B.0 C.0.667 D.0.333 break down your solution into stepsAssess the differentiability of the following function. State value(s) of x where it is NOT differentiable, and state why. |(x2 2x + 1) f(x) = (x2 2x)", ) = x + 1 what region of florida providing rich habitats for a variety of animals and plant species is threatened by environmental degradation? Compute the derivative of the following function. f(x) = 6xe 2x f'(x) = f Jamel uses the two equations to solve the system algebraically. Since both equations start with h=, he can set the expressions 18 - s and 12.5 - 0.5s equal to one another.`h = 18 - s ``h = 12.5 - 0.5s``18 - s= 12.5 - 0.5s`Then use one of the original equations and replace s with number of shirts to find the partnerships have several advantages over sole proprietorships including find the derivative2-3x (c) [8] y = x+sinx (d) [8] f(x) = (x2 2)4(3x + 2)5 (Simplify your answer) State True or False:1. First and foremost, managerial skills are personality traits, so they are uncontrollable and cannot be changed.2. The dimensions included in Trompenaarss model of national differences include individualism versus communitarianism, neutral versus affective, and internal versus external.3. As Maslow points out, it is natural for individuals to seek self-knowledge, for people rarely avoid personal growth or avoid knowledge that might bring ourselves into question. For almost everyone, improvement that comes from acquiring additional information builds self-esteem.4. College students give the highest ratings for interpersonal competence to high self-disclosers.5. Values are among the most stable and enduring characteristics of individuals. The trouble with values, unfortunately, is that they are taken for granted, and people are often unaware of them. investigations of the flint michigan lead poisoning crisis revealed that all of the following are considered to be measures of a company's short-term debt-paying ability except:a. current ratio.b. earnings per share.c. inventory turnover.d. average collection period. An experimenter conducted a two-tailed hypothesis test on a set of data and obtained a p-value of 0.44. If the experimenter had conducted a one-tailed test on the same set of data, which of the following is true about the possible p-value(s) that the experimenter could have obtained? 0.94 (A) The only possible p-value is 0.22. (B) The only possible p-value is 0.44. The only possible p-value is 0.88. (D) T'he possible p-values are 0.22 and 0.78.18 (E) The possible p-values are 0.22 and 0.88. az Perpendicular Bisector and Isosceles Triangle Theorems solve for the unknown side lengths.Please explain how you got your answer because I don't know how to solve this and the rest of my assignment is solving for the unknown side. And then I would be able to solve the rest on my own. Steam Workshop Downloader