Solve by elimination.


3 x+4 y=-1

-9 x-4 y=13

Answers

Answer 1

The solution to the system of equations is x = -2 and y = 1.25.

To solve the system of equations using the elimination method, we can eliminate one of the variables by adding or subtracting the equations. In this case, we can eliminate the variable y by adding the two equations together.
Adding the equations, we get:
(3x + 4y) + (-9x - 4y) = (-1) + 13
Simplifying the equation, we have:
-6x = 12
Dividing both sides of the equation by -6, we find:
x = -2
Now that we have the value of x, we can substitute it back into one of the original equations to solve for y. Let's use the first equation:
3x + 4y = -1
Substituting x = -2, we have:
3(-2) + 4y = -1
Simplifying the equation, we find:
-6 + 4y = -1
Adding 6 to both sides, we get:
4y = 5
Dividing both sides by 4, we find:
y = 5/4 or 1.25
Therefore, the solution to the system of equations is x = -2 and y = 1.25.

Learn more about system of equations here:

https://brainly.com/question/21620502

#SPJ11


Related Questions

As the first gift from their​ estate, Lily and Tom Phillips plan to give ​$20,290 to their​ son, Raoul, for a down payment on a house.

a. How much gift tax will be owed by Lily and​ Tom?

b. How much income tax will be owed by​ Raoul?

c. List three advantages of making this gift

Answers

a. How much gift tax will be owed by Lily and Tom?

No gift tax will be owed by Lily and Tom.

How to solve this

The annual gift tax exclusion for 2023 is $16,000 per person, so Lily and Tom can each give $16,000 to Raoul without owing any gift tax.

The total gift of $20,290 is less than the combined exclusion of $32,000, so no gift tax is due.

b. How much income tax will be owed by Raoul?

Raoul will not owe any income tax on the gift. Gift recipients are not taxed on gifts they receive.

c. List three advantages of making this gift

The gift can help Raoul save money on interest payments on a mortgage.The gift can help Raoul build equity in a home.The gift can help Raoul achieve financial independence.

Read more about gift tax here:

https://brainly.com/question/908415

#SPJ1

Question 4 of 10
Which of the following could be the ratio between the lengths of the two legs
of a 30-60-90 triangle?
Check all that apply.
□A. √2:√2
B. 15
□ C. √√√√5
□ D. 12
DE √3:3
OF. √2:√5
←PREVIOUS
SUBMIT

Answers

The ratios that could be the lengths of the two legs in a 30-60-90 triangle are √3:3 (option E) and 12√3 (option D).

In a 30-60-90 triangle, the angles are in the ratio of 1:2:3. The sides of this triangle are in a specific ratio that is consistent for all triangles with these angles. Let's analyze the given options to determine which ones could be the ratio between the lengths of the two legs.

A. √2:√2

The ratio √2:√2 simplifies to 1:1, which is not the correct ratio for a 30-60-90 triangle. Therefore, option A is not applicable.

B. 15

This is a specific value and not a ratio. Therefore, option B is not applicable.

C. √√√√5

The expression √√√√5 is not a well-defined mathematical operation. Therefore, option C is not applicable.

D. 12√3

This is the correct ratio for a 30-60-90 triangle. The ratio of the longer leg to the shorter leg is √3:1, which simplifies to √3:3. Therefore, option D is applicable.

E. √3:3

This is the correct ratio for a 30-60-90 triangle. The ratio of the longer leg to the shorter leg is √3:1, which is equivalent to √3:3. Therefore, option E is applicable.

F. √2:√5

This ratio does not match the ratio of the sides in a 30-60-90 triangle. Therefore, option F is not applicable. So, the correct option is D. 1 √2.

For more such questions on lengths

https://brainly.com/question/28322552

#SPJ8

(1) Consider the IVP y (a) This is not separable equation but it is homogeneous: every summand in that rational function is a polynomial of degree 1. Use the change of variables z = y/x like we did in class to rewrite the differential equation in the form xz (d) As a sanity check, solve the IVP 4x + 2y 5x + y z²+3z-4 5+2 (b) What are the special solutions you get from considering equilibrium solutions to the equation above? There are two of them! (c) Find the general solution to the differential equation (in the y variable). You can leave your answer in implicit form! y = 4x + 2y 5x + y y(2) = 2

Answers

(a) Rewrite the differential equation using the change of variables z = y/x: xz^3 + (5x - 2x)z^2 + (4x - 3)z + 4 = 0.

(b) The equilibrium solutions are (x, z) = (0, 4/3).

(c) The general solution to the differential equation in the y variable is xy^3 + 3y^2 + xy + 4x = 0.

(d) The given initial value problem y(2) = 2 does not satisfy the general solution.

To solve the given initial value problem (IVP), let's follow the steps outlined:

(a) Rewrite the differential equation using the change of variables z = y/x:

We have the differential equation:

4x + 2y = (5x + y)z^2 + 3z - 4

Substituting y/x with z, we get:

4x + 2(xz) = (5x + (xz))z^2 + 3z - 4

Simplifying further:

4x + 2xz = 5xz^2 + xz^3 + 3z - 4

Rearranging the equation:

xz^3 + (5x - 2x)z^2 + (4x - 3)z + 4 = 0

(b) Identify the equilibrium solutions by setting the equation above to zero:

xz^3 + (5x - 2x)z^2 + (4x - 3)z + 4 = 0

If we consider z = 0, the equation becomes:

4 = 0

Since this is not possible, z = 0 is not an equilibrium solution.

Now, consider the case when the coefficient of z^2 is zero:

5x - 2x = 0

3x = 0

x = 0

Substituting x = 0 back into the equation:

0z^3 + 0z^2 + (4(0) - 3)z + 4 = 0

-3z + 4 = 0

z = 4/3

So, the equilibrium solutions are (x, z) = (0, 4/3).

(c) Find the general solution to the differential equation:

To find the general solution, we need to solve the differential equation without the initial condition.

xz^3 + (5x - 2x)z^2 + (4x - 3)z + 4 = 0

Since we are interested in finding the solution in terms of y, we can substitute z = y/x back into the equation:

xy/x(y/x)^3 + (5x - 2x)(y/x)^2 + (4x - 3)(y/x) + 4 = 0

Simplifying:

y^3 + (5 - 2)(y^2/x) + (4 - 3)(y/x) + 4 = 0

y^3 + 3(y^2/x) + (y/x) + 4 = 0

Multiplying through by x to clear the denominators:

xy^3 + 3y^2 + xy + 4x = 0

This is the general solution to the differential equation in the y variable, given in implicit form.

Finally, let's solve the initial value problem with y(2) = 2:

Substituting x = 2 and y = 2 into the general solution:

(2)(2)^3 + 3(2)^2 + (2)(2) + 4(2) = 0

16 + 12 + 4 + 8 = 0

40 ≠ 0

Since the equation doesn't hold true for the given initial condition, y = 4x + 2y is not a solution to the initial value problem y(2) = 2.

Learn more about differential equation

https://brainly.com/question/32645495

#SPJ11

Let f(x) = x¹ find approximate value of derivative for x = 7 ƒ' (7) =? Use the following approximation f(xo)−6ƒ(x₁)+3ƒ(x2)+2ƒ(x3) f'(x₂) ~ 6h and assume that h = 1. ƒ' (7) = df (7) dx

Answers

Using the given approximation, the approximate value of the derivative of f(x) = x at x = 7 is -2.33. The values used for the approximation were x₀ = 5, x₁ = 6, x₂ = 7, and x₃ = 8, with h = 1.

Using the given approximation, we have:

f'(x₂) ≈ [f(x₀) - 6f(x₁) + 3f(x₂) + 2f(x₃)] / (6h)

We want to find f'(7), so we need to choose values for x₀, x₁, x₂, and x₃ such that x₂ = 7.

Let's choose x₁ = 6, x₂ = 7, and h = 1. Then, we can choose x₀ = 5 and x₃ = 8. Plugging in these values and using f(x) = x, we get:

f'(7) ≈ [f(5) - 6f(6) + 3f(7) + 2f(8)] / (6*1)

f'(7) ≈ [5 - 6(6) + 3(7) + 2(8)] / 6

f'(7) ≈ (-14) / 6

f'(7) ≈ -2.33

Therefore, the approximate value of the derivative of f(x) = x at x = 7 using the given approximation is approximately -2.33.

To know more about derivative, visit:
brainly.com/question/32963989
#SPJ11

Find the line of intersection between the lines: <3,−1,2>+t<1,1,−1> and <−8,2,0>+t<−3,2,−7>. (3) (10.2) Show that the lines x+1=3t,y=1,z+5=2t for t∈R and x+2=s,y−3=−5s, z+4=−2s for t∈R intersect, and find the point of intersection. (10.3) Find the point of intersection between the planes: −5x+y−2z=3 and 2x−3y+5z=−7. (3)

Answers

Solving given equations, we get line of intersection as  t = -11/4, t = -1, and t = 1/4, respectively. The point of intersection between the given lines is (-8, 2, 0). The point of intersection between the two planes is (2, 2, 86/65).

(10.2) To find the line of intersection between the lines, let's set up the equations for the two lines:

Line 1: r1 = <3, -1, 2> + t<1, 1, -1>

Line 2: r2 = <-8, 2, 0> + t<-3, 2, -7>

Now, we equate the two lines to find the point of intersection:

<3, -1, 2> + t<1, 1, -1> = <-8, 2, 0> + t<-3, 2, -7>

By comparing the corresponding components, we get:

3 + t = -8 - 3t   [x-component]

-1 + t = 2 + 2t   [y-component]

2 - t = 0 - 7t    [z-component]

Simplifying these equations, we find:

4t = -11   [from the x-component equation]

-3t = 3     [from the y-component equation]

8t = 2      [from the z-component equation]

Solving these equations, we get t = -11/4, t = -1, and t = 1/4, respectively.

To find the point of intersection, substitute the values of t back into any of the original equations. Taking the y-component equation as an example, we have:

-1 + t = 2 + 2t

Substituting t = -1, we find y = 2.

Therefore, the point of intersection between the given lines is (-8, 2, 0).

(10.3) Let's solve for the point of intersection between the two given planes:

Plane 1: -5x + y - 2z = 3

Plane 2: 2x - 3y + 5z = -7

To find the point of intersection, we need to solve this system of equations simultaneously. We can use the method of substitution or elimination to find the solution.

Let's use the method of elimination:

Multiply the first equation by 2 and the second equation by -5 to eliminate the x term:

-10x + 2y - 4z = 6

-10x + 15y - 25z = 35

Now, subtract the second equation from the first equation:

0x - 13y + 21z = -29

To simplify the equation, divide through by -13:

y - (21/13)z = 29/13

Now, let's solve for y in terms of z:

y = (21/13)z + 29/13

We still need another equation to find the values of z and y. Let's use the y-component equation from the second plane:

y - 3 = -5s

Substituting y = (21/13)z + 29/13, we have:

(21/13)z + 29/13 - 3 = -5s

Simplifying, we get:

(21/13)z - (34/13) = -5s

Now, we can equate the z-components of the two equations:

(21/13)z - (34/13) = 2z + 4

Simplifying further, we have:

(21/13)z - 2z = (34/13) + 4

(5/13)z = (34/13) + 4

(5/13)z = (34 + 52)/13

(5/13)z =

86/13

Solving for z, we find z = 86/65.

Substituting this value back into the y-component equation, we can find the value of y:

y = (21/13)(86/65) + 29/13

Simplifying, we have: y = 2

Therefore, the point of intersection between the two planes is (2, 2, 86/65).

To know more about Intersection, visit

https://brainly.com/question/30915785

#SPJ11

Consider the matrix
A= [-6 -1
1 -8]
One eigenvalue of the matrix is____ which has algebraic multiplicity 2 and has an associated eigenspace with dimension 1
Is the matrix diagonalizable?
Is the matrix invertible?

Answers

The eigenvalue of matrix A is -7, which has an algebraic multiplicity of 2. The associated eigenspace has dimension 1.

The matrix A is diagonalizable if and only if it has n linearly independent eigenvectors, where n is the size of the matrix. In this case, since the eigenspace associated with the eigenvalue -7 has dimension 1, we only have one linearly independent eigenvector. Therefore, the matrix A is not diagonalizable.

To determine if the matrix is invertible, we can check if its determinant is non-zero. If the determinant is non-zero, the matrix is invertible; otherwise, it is not.

det(A) = (-6)(-8) - (-1)(1) = 48 - (-1) = 48 + 1 = 49

Since the determinant is non-zero (det(A) ≠ 0), the matrix A is invertible.

Learn more about Eigenspace here

https://brainly.com/question/28564799

#SPJ11

Q2) a) The function defined by b) The equation (1) f(I, y) = e² x² + xy + y² = 1 (11) takes on a minimum and a maximum value along the curve Give two extreme points (x,y). (1+x) e = (1+y)e* is satisfied along the line y=x Determine a critical point on this line at which the equation is locally uniquely solvable neither for x not for y How does the solution set of the equation look like in the vicinity of this critical point? Note on (ii) use Taylor expansion upto degree 2

Answers

The extreme points (x, y) along the curve are (-1, -1) and (0, 0).

The given function f(I, y) = e² x² + xy + y² = 1 represents a quadratic equation in two variables, x and y. To find the extreme points, we need to determine the values of x and y that satisfy the equation and minimize or maximize the function.

a) The function defined by f(x, y) = e² x² + xy + [tex]y^2[/tex] - 1 takes on a minimum and a maximum value along the curve.

To find the extreme points, we need to find the critical points of the function where the gradient is zero.

Step 1: Calculate the partial derivatives of f with respect to x and y:

∂f/∂x = 2[tex]e^2^x[/tex] + y

∂f/∂y = x + 2y

Step 2: Set the partial derivatives equal to zero and solve for x and y:

2[tex]e^2^x[/tex] + y = 0

x + 2y = 0

Step 3: Solve the system of equations to find the values of x and y:

Using the second equation, we can solve for x: x = -2y

Substitute x = -2y into the first equation: 2(-2y) + y = 0

Simplify the equation: -4e² y + y = 0

Factor out y: y(-4e^2 + 1) = 0

From this, we have two possibilities:

1) y = 0

2) -4e²  + 1 = 0

Case 1: If y = 0, substitute y = 0 into x + 2y = 0:

x + 2(0) = 0

x = 0

Therefore, one extreme point is (x, y) = (0, 0).

Case 2: If -4e^2 + 1 = 0, solve for e:

-4e²  = -1

e²  = 1/4

e = ±1/2

Substitute e = 1/2 into x + 2y = 0:

x + 2y = 0

x + 2(-1/2)x = 0

x - x = 0

0 = 0

Substitute e = -1/2 into x + 2y = 0:

x + 2y = 0

x + 2(-1/2)x = 0

x - x = 0

0 = 0

Therefore, the second extreme point is (x, y) = (0, 0) when e = ±1/2.

b) The equation (1+x)e = (1+y)e* is satisfied along the line y = x.

To find a critical point on this line where the equation is neither locally uniquely solvable for x nor y, we need to find a point where the equation has multiple solutions.

Substitute y = x into the equation:

(1+x)e = (1+x)e*

Here, we see that for any value of x, the equation is satisfied as long as e = e*.

Therefore, the equation is not locally uniquely solvable for x or y along the line y = x.

c) Taylor expansion up to degree 2:

To understand the solution set of the equation in the vicinity of the critical point, we can use Taylor expansion up to degree 2.

2. Expand the function f(x, y) = e²x²  + xy + [tex]y^2[/tex] - 1 using Taylor expansion up to degree 2:

f(x, y) = f(a, b) + ∂f/∂x(a, b)(x-a) + ∂f/∂y(a, b)(y-b) + 1/2(∂²f/∂x²(a, b)(x-a)^2 + 2∂²f/∂x∂y(a, b)(x-a)(y-b) + ∂²f/∂y²(a, b)(y-b)^2)

The critical point we found earlier was (a, b) = (0, 0).

Substitute the values into the Taylor expansion equation and simplify the terms:

f(x, y) = 0 + (2e²x + y)(x-0) + (x + 2y)(y-0) + 1/2(2e²x² + 2(x-0)(y-0) + 2([tex]y^2[/tex])

Simplify the equation:

f(x, y) = (2e² x² + xy) + ( x² + 2xy + 2[tex]y^2[/tex]) + e² x² + xy + [tex]y^2[/tex]

Combine like terms:

f(x, y) = (3e² + 1)x² + (3x + 4y + 1)xy + (3 x² + 4xy + 3 [tex]y^2[/tex])

In the vicinity of the critical point (0, 0), the solution set of the equation, given by f(x, y) = 0, looks like a second-degree polynomial with terms involving  x² , xy, and  [tex]y^2[/tex].


Learn more about extreme points

brainly.com/question/28975150

#SPJ11

7. Solve the linear system of differential equations for y₁ (t) and y₂(t): S 1/2 where the initial conditions are y₁ (0) = 2y₁ + 1/2 ₁ + 2y/2' = 2 and 3/₂ (0) = 4.

Answers

The solution to the linear system of differential equations for y₁(t) and y₂(t) is [Explanation of the solution].

To solve the given linear system of differential equations, we will use the method of undetermined coefficients. Let's begin by writing the differential equations in matrix form:

d/dt [y₁(t); y₂(t)] = [[1, 1/2]; [2, 2]] [y₁(t); y₂(t)]

Now, we need to find the eigenvalues and eigenvectors of the coefficient matrix [[1, 1/2]; [2, 2]]. The eigenvalues can be found by solving the characteristic equation:

|1 - λ, 1/2     |

|2,     2 - λ |

Setting the determinant of the coefficient matrix equal to zero, we get:

(1 - λ)(2 - λ) - (1/2)(2) = 0

(2 - λ - 2λ + λ²) - 1 = 0

λ² - 3λ + 1 = 0

Solving this quadratic equation, we find two distinct eigenvalues: λ₁ ≈ 2.618 and λ₂ ≈ 0.382.

Next, we find the eigenvectors corresponding to each eigenvalue. For λ₁ ≈ 2.618, we solve the system of equations:

(1 - 2.618)v₁ + (1/2)v₂ = 0

2v₁ + (2 - 2.618)v₂ = 0

Solving this system, we find the eigenvector corresponding to λ₁: [v₁ ≈ 0.618, v₂ ≈ 1].

Similarly, for λ₂ ≈ 0.382, we solve the system:

(1 - 0.382)v₁ + (1/2)v₂ = 0

2v₁ + (2 - 0.382)v₂ = 0

Solving this system, we find the eigenvector corresponding to λ₂: [v₁ ≈ -0.382, v₂ ≈ 1].

Now, we can express the solution as a linear combination of the eigenvectors multiplied by exponential terms:

[y₁(t); y₂(t)] = c₁ * [0.618, -0.382] * e^(2.618t) + c₂ * [1, 1] * e^(0.382t)

Using the initial conditions y₁(0) = 2 and y₂(0) = 4, we can solve for the constants c₁ and c₂. Substituting the initial conditions into the solution, we get two equations:

2 = c₁ * 0.618 + c₂

4 = c₁ * -0.382 + c₂

Solving this system of equations, we find c₁ ≈ 5.274 and c₂ ≈ -2.274.

Therefore, the solution to the given linear system of differential equations is:

y₁(t) = 5.274 * 0.618 * e^(2.618t) - 2.274 * e^(0.382t)

y₂(t) = 5.274 * -0.382 * e^(2.618t) + 2.274 * e^(0.382t)

Learn more about method of undetermined coefficients.
brainly.com/question/30898531
#SPJ11

one of the following pairs of lines is parallel; the other is skew (neither parallel nor intersecting). which pair (a or b) is parallel? explain how you know

Answers

To determine which pair of lines is parallel and which is skew, we need the specific equations or descriptions of the lines. Without that information, it is not possible to identify which pair is parallel and which is skew.

Parallel lines are lines that lie in the same plane and never intersect, no matter how far they are extended. They have the same slope but different y-intercepts. Skew lines, on the other hand, are lines that do not lie in the same plane and do not intersect. They have different slopes and are not parallel.

To determine whether a pair of lines is parallel or skew, we need to compare their slopes. If the slopes are equal, the lines are parallel. If the slopes are different, the lines are skew.

Without the equations or descriptions of the lines (such as their slopes or any other relevant information), it is not possible to provide a definite answer regarding which pair is parallel and which is skew.

Learn more about Parallel lines here:

brainly.com/question/19714372

#SPJ11

cuánto es x al cuadrado menos 6x + 8 = 0

Answers

Answer:

the solutions to the equation x^2 - 6x + 8 = 0 are x = 4 and x = 2.

Step-by-step explanation:

To find the value of x in the equation x^2 - 6x + 8 = 0, we can use the quadratic formula, which is given by:

x = (-b ± √(b^2 - 4ac)) / (2a)

For this equation, a = 1, b = -6, and c = 8. Substituting these values into the quadratic formula, we get:

x = (-(-6) ± √((-6)^2 - 4(1)(8))) / (2(1))

= (6 ± √(36 - 32)) / 2

= (6 ± √4) / 2

= (6 ± 2) / 2

This gives us two possible solutions:

x = (6 + 2) / 2 = 8 / 2 = 4

x = (6 - 2) / 2 = 4 / 2 = 2

Therefore, the solutions to the equation x^2 - 6x + 8 = 0 are x = 4 and x = 2.

Given 4 students in CS major, where: Bob and John are taking CSE116; John and Steve are taking CSE191. Amy, Amy, Consider the relation R on the set P = {Amy, Bob, John, Steve) and R is defined as: aRb if and only if a and b are classmates (only consider CSE116 and CSE191). What property isn't satisfied for this to be an equivalence relation?

Answers

The property that isn't satisfied for this relation to be an equivalence relation is transitivity.

To be an equivalence relation, a relation must satisfy three properties: reflexivity, symmetry, and transitivity. Reflexivity means that every element is related to itself. Symmetry means that if a is related to b, then b is related to a. Transitivity means that if a is related to b and b is related to c, then a must be related to c.

In this case, we have a relation R defined on the set P = {Amy, Bob, John, Steve}. The relation R is defined as aRb if and only if a and b are classmates in the courses CSE116 and CSE191.

Reflexivity is satisfied because each student is a classmate of themselves. Symmetry is satisfied because if a is a classmate of b, then b is also a classmate of a. However, transitivity is not satisfied.

To demonstrate the lack of transitivity, let's consider the students' enrollment in the courses. Bob and John are taking CSE116, and John and Steve are taking CSE191. Based on the definition of R, we can say that Bob is a classmate of John and John is a classmate of Steve.

However, this does not imply that Bob is a classmate of Steve. Transitivity would require that if Bob is a classmate of John and John is a classmate of Steve, then Bob must also be a classmate of Steve. But this is not the case here.

In conclusion, the relation R defined as aRb if and only if a and b are classmates does not satisfy the property of transitivity, which is necessary for it to be an equivalence relation.

The lack of transitivity in this relation can be illustrated by the enrollment of the students in specific courses. Transitivity would require that if a is related to b and b is related to c, then a must be related to c. In this case, Bob is related to John because they are classmates in CSE116, and John is related to Steve because they are classmates in CSE191.

However, Bob is not related to Steve because they are not classmates in any of the specified courses. This violates the transitivity property and prevents the relation from being an equivalence relation.

Learn more about:equivalence.

brainly.com/question/25197597

#SPJ11

Solve for x in the equation below. Round your answer to the nearest hundredth. Do not round any intermediate computations. et-7=6 x = 8.79 X Ś ?

Answers

The rounded solution for x in the equation et-7 = 6 is approximately x = 2.56. To solve the equation et-7 = 6 for x, we need to isolate the variable x on one side of the equation. Let's go through the steps:

Start with the equation et-7 = 6.

Add 7 to both sides of the equation to get et = 13.

Now, we need to eliminate the exponential term on the left side. To do this, we take the natural logarithm (ln) of both sides. Applying the logarithmic property ln(et) = t, we get ln(et) = ln(13).

Simplifying the left side using the property ln(et) = t, we have t = ln(13).

The variable t represents the value of x. So, x = ln(13).

Evaluating ln(13) using a calculator, we find ln(13) ≈ 2.5649.

Finally, rounding the value of ln(13) to the nearest hundredth, we get x ≈ 2.56 as the solution to the equation et-7 = 6.

Therefore, the rounded solution for x in the equation et-7 = 6 is approximately x = 2.56.

Lear more about equation here:

brainly.com/question/12860277

#SPJ11

Solve the system. \( -4 x-8 y=16 \) \[ -6 x-12 y=22 \]

Answers

The system of equations can be solved using elimination or substitution method. Here, let us use the elimination method to solve this system of equation. We have[tex],\[-4 x-8 y=16\]\[-6 x-12 y=22\][/tex]Multiply the first equation by 3, so that the coefficient of x becomes equal but opposite in the second equation.

This is because when we add two equations, the variable with opposite coefficients gets eliminated.

[tex]\[3(-4 x-8 y=16)\]\[-6 x-12 y=22\]\[-12 x-24 y=48\]\[-6 x-12 y=22\][/tex]

Now, we can add the two equations,

[tex]\[-12 x-24 y=48\]\[-6 x-12 y=22\]\[-18x-36y=70\][/tex]

Simplifying the equation we get,\[2x+4y=-35\]

Again, multiply the first equation by 2, so that the coefficient of x becomes equal but opposite in the second equation. This is because when we add two equations, the variable with opposite coefficients gets eliminated.

[tex]\[2(-4 x-8 y=16)\]\[8x+16y=-32\]\[-6 x-12 y=22\][/tex]

Now, we can add the two equations,

tex]\[8x+16y=-32\]\[-6 x-12 y=22\][2x+4y=-35][/tex]

Simplifying the equation we get,\[10x=-45\]We can solve for x now,\[x = \frac{-45}{10}\]Simplifying the above expression,\[x=-\frac{9}{2}\]Now that we have found the value of x, we can substitute this value of x in any one of the equations to find the value of y. Here, we will substitute in the first equation.

[tex]\[-4x - 8y = 16\]\[-4(-\frac{9}{2}) - 8y = 16\]\[18 - 8y = 16\][/tex]

Simplifying the above expression[tex],\[-8y = -2\]\[y = \frac{1}{4}\[/tex]

The solution to the system of equations is \[x=-\frac{9}{2}\] and \[y=\frac{1}{4}\].

This solution satisfies both the equations in the system of equations.

To know more about second  visit:

https://brainly.com/question/31828197

#SPJ11

I need to make sure this answer is right for finals.

Answers

Answer:

u r wrong lol , the correct answer is b when x= 1 then y is 0

Answer:

y = - (x + 5)(x - 1)

Step-by-step explanation:

given zeros x = a , x = b then the corresponding factors are

(x - a) and (x - b)

the corresponding equation is then the product of the factors

y = a(x - a)(x - b) ← a is a multiplier

• if a > zero then minimum turning point U

• if a < zero then maximum turning point

here the zeros are x = - 5 and x = 1 , then

(x - (- 5) ) and (x - 1) , that is (x + 5) and (x - 1) are the factors

since the graph has a maximum turning point then a = - 1 , so

y = - (x + 5)(x - 1)

Describe the Span Describe the span of {(1,0,0),(0,1,1),(1,1,1)}. Describe the span of {(−1,2),(2,−4)}. Is it in the Span? Is (1,−2) in the span of {(−1,2),(2,−4)} ? Is it in the Span? Is (1,0) in the span of {(−1,2),(2,−4)} ?

Answers

The span of {(1,0,0),(0,1,1),(1,1,1)} is the set of all vectors of the form (x - z, y - z, z), where x, y, and z are arbitrary. The span of {(-1,2),(2,-4)} is the set of all scalar multiples of (-1,2). Vector (1,-2) is in the span, but (1,0) is not.

For the set {(1,0,0),(0,1,1),(1,1,1)}, we can find the span by solving a system of linear equations:

a(1,0,0) + b(0,1,1) + c(1,1,1) = (x,y,z)

This gives us the following system of equations:

a + c = x

b + c = y

c = z

Solving for a, b, and c in terms of x, y, and z, we get:

a = x - z

b = y - z

c = z

Therefore, the span of the set {(1,0,0),(0,1,1),(1,1,1)} is the set of all vectors of the form (x - z, y - z, z), where x, y, and z are arbitrary.

For the set {(-1,2),(2,-4)}, we can see that the two vectors are linearly dependent, since one is a scalar multiple of the other. Specifically, (-1,2) = (-1/2)(2,-4). Therefore, the span of this set is the set of all scalar multiples of (-1,2) (or equivalently, the set of all scalar multiples of (2,-4)).

To determine if a vector is in the span of a set, we need to check if it can be written as a linear combination of the vectors in the set.

For the vector (1,-2), we need to check if there exist constants a and b such that:

a(-1,2) + b(2,-4) = (1,-2)

This gives us the following system of equations:

- a + 2b = 1

2a - 4b = -2

Solving for a and b, we get:

a = 0

b = -1/2

Therefore, (1,-2) can be written as a linear combination of (-1,2) and (2,-4), and is in their span.

For the vector (1,0), we need to check if there exist constants a and b such that:

a(-1,2) + b(2,-4) = (1,0)

This gives us the following system of equations:

- a + 2b = 1

2a - 4b = 0

Solving for a and b, we get:

a = 2b

b = 1/4

However, this implies that a is not an integer, so it is impossible to write (1,0) as a linear combination of (-1,2) and (2,-4). Therefore, (1,0) is not in their span.

To know more about span, visit:
brainly.com/question/32762479
#SPJ11



The fuse of a three-break firework rocket is programmed to ignite three times with 2-second intervals between the ignitions. When the rocket is shot vertically in the air, its height h in feet after t seconds is given by the formula h(t)=-5 t²+70 t . At how many seconds after the shot should the firework technician set the timer of the first ignition to make the second ignition occur when the rocket is at its highest point?

(A) 3 (B) 9(C) 5 (D) 7

Answers

The fuse of the firework should be set for 5` seconds after launch. the correct option is (C) 5.

The height of a rocket launched vertically is given by the formula `h(t) = −5t² + 70t`.The fuse of a three-break firework rocket is programmed to ignite three times with 2-second intervals between the ignitions. Calculation:To find the highest point of the rocket, we need to find the maximum of the function `h(t)`.We have the function `h(t) = −5t² + 70t`.

We know that the graph of the quadratic function is a parabola and the vertex of the parabola is the maximum point of the parabola.The x-coordinate of the vertex of the parabola `h(t) = −5t² + 70t` is `x = -b/2a`.

Here, a = -5 and b = 70.So, `x = -b/2a = -70/2(-5) = 7`

Therefore, the highest point is reached 7 seconds after launch.The second ignition should occur at the highest point.

Therefore, the fuse of the firework should be set for `7 - 2 = 5` seconds after launch.

Thus, the correct option is (C) 5.

Know more about quadratic function here,

https://brainly.com/question/18958913

#SPJ11

Samantha is starting a test that takes 3/5 of an hour to complete but she only has 1/2 of an hour to work on it if she works and it even pays what fraction of the test will she complete.

Answers

Step-by-step explanation:

The fraction she will complete is   1/2  /  3/5   = 1/2 * 5/3 =  5/6 completed



Find the measure of each interior angle.

decagon, in which the measures of the interior angles are x+5, x+10, x+20 , x+30, x+35, x+40, x+60, x+70, x+80 , and x+90

Answers

Each interior angle of the decagon measures 150 degrees.

A decagon is a polygon with ten sides and ten interior angles. To find the measure of each interior angle, we can use the fact that the sum of the interior angles of a polygon with n sides is given by the formula (n-2) * 180 degrees.

In this case, we have a decagon, so n = 10. Substituting this value into the formula, we get (10-2) * 180 = 8 * 180 = 1440 degrees. Since we want to find the measure of each individual interior angle, we divide the total sum by the number of angles, which gives us 1440 / 10 = 144 degrees.

Therefore, each interior angle of the decagon measures 144 degrees.

However, in the given question, the angles are expressed in terms of an unknown variable x. We can set up an equation to find the value of x:

(x+5) + (x+10) + (x+20) + (x+30) + (x+35) + (x+40) + (x+60) + (x+70) + (x+80) + (x+90) = 1440

By solving this equation, we can find the value of x and substitute it into the expressions x+5, x+10, x+20, etc., to determine the exact measures of each interior angle.

Learn more about Decagon

brainly.com/question/27314678

brainly.com/question/27314677

#SPJ11

Suppose you need to turn on a light by crossing the 3 correct wires. There are 6 wires: blue, white, red, green, yellow, and black. How many different ways can the wires be crossed? Select one: a. 20 b. 10 c. 60 d. 120

Answers

There are 20 different ways the wires can be crossed.

What is the total number of combinations when crossing the 3 correct wires?

To determine the number of different ways the wires can be crossed, we need to find the number of combinations of 3 wires out of the total 6 wires. This can be calculated using the formula for combinations, which is given by:

C(n, r) = n! / (r! * (n - r)!)

Where n is the total number of items and r is the number of items to be chosen.

In this case, we have 6 wires and we need to choose 3 of them, so we can calculate the number of ways as follows:

C(6, 3) = 6! / (3! * (6 - 3)!)

        = 6! / (3! * 3!)

        = (6 * 5 * 4) / (3 * 2 * 1)

        = 20

Therefore, there are 20 different ways the wires can be crossed.

The correct option is a. 20.

Learn more about Combinations

brainly.com/question/31586670

#SPJ11

For how long must contributions of $2,000 be made at the end of each year to accumulate to $100,000 at 6% compounded quarterly?

Answers

Contributions of $2,000 made at the end of each year for approximately 15.95 years will accumulate to $100,000 at a 6% interest rate compounded quarterly.

How long the contributions must be made?

To calculate the time required for contributions of $2,000 at the end of each year to accumulate to $100,000 at a 6% interest rate compounded quarterly, we can use the formula for the future value of an ordinary annuity:

[tex]FV = P * [(1 + r/n)^{n*t} - 1] / (r/n)[/tex]

Where:

FV = Future value ($100,000 in this case)P = Payment amount ($2,000)r = Annual interest rate (6% or 0.06)n = Number of compounding periods per year (quarterly compounding, so n = 4)t = Number of years (unknown)

Plugging in the values, the equation becomes:

[tex]100,000 = 2,000 * [(1 + 0.06/4)^{4*t} - 1] / (0.06/4)[/tex]

Let's solve this equation for t:

[tex]100,000 = 2,000 * [(1 + 0.015)^{4*t} - 1] / 0.015[/tex]

Simplifying further:

[tex]50 = (1.015^{4*t} - 1) / 0.015[/tex]

We can now solve for t using logarithms:

[tex](1.015^{4*t} - 1) / 0.015 = 50[/tex]

[tex]1.015^{4*t} = 1.75[/tex]

Take the natural logarithm (ln) of both sides:

4*t * ln(1.015) = ln(1.75)

4*t = ln(1.75) / ln(1.015)

t = (ln(1.75) / ln(1.015)) / 4

Using a calculator:

t ≈ 15.95

That is the number of years.

Learn more about logarithms at:

https://brainly.com/question/13473114

#SPJ4

Contributions of $2,000 be made at the end of each year to accumulate to $100,000 at 6% compounded quarterly for approximately 149 years.

Let's say contributions of $2,000 be made at the end of each year to accumulate to $100,000 at 6% compounded quarterly.

Now, we have to calculate how long must contributions be made. We will use the formula for the future value of an annuity which is: FV = PMT × [(1 + r)n - 1] / r

Where: FV is the future value, PMT is the periodic payment, r is the interest rate per period, and n is the number of periods.

So, let's plug in the given values:

PMT = $2,000.

r = 6%/4 = 1.5% (since it is compounded quarterly)

n = ?

FV = $100,000

Now, let's put the values in the formula: $100,000 = $2,000 × [(1 + 1.5%)n - 1] / 1.5%$100,000 × 1.5% / $2,000 + 1 = (1 + 1.5%)n$1.015n = $1.015 × log (1.015) × n = log (1.015)$1.015n = log (1.015)n = log (1.015) / log (1.015)n = 148.97 (approx)

Therefore, contributions of $2,000 be made at the end of each year to accumulate to $100,000 at 6% compounded quarterly for approximately 149 years.

To learn more about compounded follow the given link

https://brainly.com/question/28020457

#SPJ11

A family buys a studio apartment for $150,000. They pay a down payment of $30,000. Their down payment is what percent of the purchase price?

Answers

Answer:

Their down payment is 20% of the purchase price.

Step-by-step explanation:

The down payment is $30,000 and the purchase price is $150,000.

To find the percentage, we can divide the down payment by the purchase price and multiply by 100:

($30,000 / $150,000) x 100% = 20%

Therefore, the down payment is 20% of the purchase price.

A partly-full paint can has 0.878 U.S. gallons of paint left in it. (a) What is the volume of the paint, in cubic meters? (b) If all the remaining paint is used to coat a wall evenly (wall area = 13.7 m2), how thick is the layer of wet paint? Give your answer in meters.

Answers

a)  The volume of paint left in the can is:

.878 gallons * 0.00378541 m^3/gallon = 0.003321 m^3

b)  the thickness of the layer of wet paint is 0.000242 meters or 0.242 millimeters (since there are 1000 millimeters in a meter).

(a) To convert gallons to cubic meters, we need to know the conversion factor between the two units. One U.S. gallon is equal to 0.00378541 cubic meters. Therefore, the volume of paint left in the can is:

0.878 gallons * 0.00378541 m^3/gallon = 0.003321 m^3

(b) We can use the formula for the volume of a rectangular solid to find the volume of wet paint needed to coat the wall evenly:

Volume = area * thickness

We want to solve for the thickness, so we rearrange the formula to get:

Thickness = Volume / area

The volume of wet paint needed is equal to the volume of dry paint needed since they both occupy the same space when the paint dries. Therefore, the volume of wet paint needed is:

0.003321 m^3

The area of the wall is given as:

13.7 m^2

So the thickness of the layer of wet paint is:

0.003321 m^3 / 13.7 m^2 = 0.000242 m

Therefore, the thickness of the layer of wet paint is 0.000242 meters or 0.242 millimeters (since there are 1000 millimeters in a meter).

Learn more about meters here:

https://brainly.com/question/29367164

#SPJ11

Find a basis B for the domain of T such that the matrix T relative to B is
diagonal.
a. T: R3 ⟶ R3; T(x, y, z) = (−2x + 2y − 3z, 2x + y − 6z, −x − 2y)
b. T: P1 ⟶ P1; T(a + bx) = a + (a + 2b)x

Answers

The basis B for the domain of T such that the matrix T relative to B is diagonal is:

a. B = {(2, 1, -2)}

b. B = {1, x}

To find a basis for the domain of T such that the matrix T relative to that basis is diagonal, we need to find a set of linearly independent vectors that span the domain of T.

a. For T: R3 ⟶ R3; T(x, y, z) = (−2x + 2y − 3z, 2x + y − 6z, −x − 2y):

To find the basis for the domain of T, we need to solve the homogeneous equation T(x, y, z) = (0, 0, 0). This will give us the kernel (null space) of T, which represents the vectors that get mapped to the zero vector.

Setting each component of T equal to zero, we have:

-2x + 2y - 3z = 0

2x + y - 6z = 0

-x - 2y = 0

Solving this system of equations, we obtain:

x = 2y

z = -2y

Taking y = 1, we get:

x = 2(1) = 2

z = -2(1) = -2

Thus, the kernel of T consists of the vector (2, 1, -2).

Since the kernel of T consists of only one vector, this vector forms a basis for the domain of T. Therefore, the basis B for the domain of T such that the matrix T relative to B is diagonal is B = {(2, 1, -2)}.

b. For T: P1 ⟶ P1; T(a + bx) = a + (a + 2b)x:

The domain of T is the set of polynomials of degree 1 or less. To find a basis for this domain such that the matrix T relative to that basis is diagonal, we can choose the standard basis {1, x} for P1.

The matrix T relative to this basis is:

|1 1 |

|0 2 |

The matrix is already diagonal, so the standard basis {1, x} forms a basis for the domain of T such that the matrix T relative to B is diagonal.

Know more about diagonal matrix here:

brainly.com/question/31490580

#SPJ11



Read each question. Then write the letter of the correct answer on your paper.A worker is taking boxes of nails on an elevator. Each box weighs 54 lb , and the worker weighs 170 lb . The elevator has a weight limit of 2500 lb . Which inequality describes the number of boxes b that he can safely take on each trip? (f) 54 b-170 ≤ 2500 (g) 54 b+170 ≤ 2500 (h) 54(b-170) ≤ 2500 (i) 54(b+170) ≤ 2500

Answers

The correct answer is (f) 54b - 170 ≤ 2500. Th inequality (f) 54b - 170 ≤ 2500 describes the number of boxes b that he can safely take on each trip.

To determine the inequality that describes the number of boxes the worker can safely take on each trip, we need to consider the weight limits. The worker weighs 170 lb, and each box weighs 54 lb. Let's denote the number of boxes as b.

The total weight on the elevator should not exceed the weight limit of 2500 lb. Since the worker's weight and the weight of the boxes are added together, the inequality can be written as follows: 54b + 170 ≤ 2500.

However, since we want to determine the number of boxes the worker can safely take, we need to isolate the variable b. By rearranging the inequality, we get 54b ≤ 2500 - 170, which simplifies to 54b - 170 ≤ 2500.

Read more about inequality here:

https://brainly.com/question/20383699

#SPJ11

how
to rearrange these to get an expression of the form ax^2 + bx + c
=0

Answers

To rearrange the expression to the form [tex]ax^2 + bx + c = 0[/tex], follow these three steps:

Step 1: Collect all the terms with [tex]x^2[/tex] on one side of the equation.

Step 2: Collect all the terms with x on the other side of the equation.

Step 3: Simplify the constant terms on both sides of the equation.

When solving a quadratic equation, it is often helpful to rearrange the expression into the standard form [tex]ax^2 + bx + c = 0[/tex]. This form allows us to easily identify the coefficients a, b, and c, which are essential in finding the solutions.

Step 1: To collect all the terms with x^2 on one side, move all the other terms to the opposite side of the equation using algebraic operations. For example, if there are terms like [tex]3x^2[/tex], 2x, and 5 on the left side of the equation, you would move the 2x and 5 to the right side. After this step, you should have only the terms with x^2 remaining on the left side.

Step 2: Collect all the terms with x on the other side of the equation. Similar to Step 1, move all the terms without x to the opposite side. This will leave you with only the terms containing x on the right side of the equation.

Step 3: Simplify the constant terms on both sides of the equation. Combine any like terms and simplify the expression as much as possible. This step ensures that you have the equation in its simplest form before proceeding with further calculations.

By following these three steps, you will rearrange the given expression into the standard form [tex]ax^2 + bx + c = 0[/tex], which will make it easier to solve the quadratic equation.

Learn more about quadratic equations

brainly.com/question/29269455

#SPJ11

Let S = {1,2,...,6} and let P(A): An {2,4,6} = 0). And Q(A): A ‡ Ø. be open sentences over the domain P(S). (a) Determine all A = P(S) for which P(A) ^ Q(A) is true. (b) Determine all A = P(S) for which P(A) V (~ Q(A)) is true. (c) Determine all A = P(S) for which (~P(A)) ^ (~ Q(A)) is true.

Answers

a) The set A = {1,3,5} satisfies the condition A ∩ {2,4,6} = ∅, making P(A) ^ Q(A) true.

b) The set A = {2,4,6} satisfies the condition A ∩ {2,4,6} ≠ ∅, making P(A) V (~Q(A)) true.

c) The sets A = {2,4,6}, {2,4}, {2,6}, {4,6}, {2}, {4}, {6}, and ∅ satisfy the condition A ⊆ {2,4,6}, making (~P(A)) ^ (~Q(A)) true.

In mathematics, a set is a well-defined collection of distinct objects, considered as an entity on its own. These objects, referred to as elements or members of the set, can be anything such as numbers, letters, or even other sets. The concept of a set is fundamental to various branches of mathematics, including set theory, algebra, and analysis.

Sets are often denoted using curly braces, and the elements are listed within the braces, separated by commas. For example, {1, 2, 3} represents a set with the elements 1, 2, and 3. Sets can also be described using set-builder notation or by specifying certain properties that the elements must satisfy.

Learn more about set

https://brainly.com/question/30705181

#SPJ11

The set of notation

(a) A = Ø

(b) A = P(S) - {Ø}

(c) A = {2, 4, 6} U P(S - {2, 4, 6})

To determine the sets A that satisfy the given conditions, let's analyze each case:

(a) P(A) ^ Q(A) is true if and only if both P(A) and Q(A) are true.

P(A) = A ∩ {2, 4, 6} = Ø (i.e., the intersection of A with {2, 4, 6} is the empty set).

Q(A) = A ≠ Ø (i.e., A is not empty).

To satisfy both conditions, A must be an empty set since the intersection with {2, 4, 6} is empty. Therefore, A = Ø is the only solution.

(b) P(A) V (~ Q(A)) is true if either P(A) is true or ~ Q(A) is true.

P(A) = A ∩ {2, 4, 6} = Ø (the intersection of A with {2, 4, 6} is empty).

~ Q(A) = A = S (i.e., A is the entire set S).

To satisfy either condition, A can be any subset of S except for the empty set. Therefore, A can be any subset of S other than Ø. In set notation, A = P(S) - {Ø}.

(c) (~P(A)) ^ (~ Q(A)) is true if both ~P(A) and ~ Q(A) are true.

~P(A) = A ∩ {2, 4, 6} ≠ Ø (i.e., the intersection of A with {2, 4, 6} is not empty).

~ Q(A) = A = S (i.e., A is the entire set S).

To satisfy both conditions, A must be a non-empty subset of S that intersects with {2, 4, 6}. Therefore, A can be any subset of S that contains at least one element from {2, 4, 6}. In set notation, A = {2, 4, 6} U P(S - {2, 4, 6}).

Summary of solutions:

(a) A = Ø

(b) A = P(S) - {Ø}

(c) A = {2, 4, 6} U P(S - {2, 4, 6})

Learn more about set of notation

https://brainly.com/question/30607679

#SPJ11

The measure θ of an angle in standard position is given. 180°

b. Find the exact values of cosθ and sin θ for each angle measure.

Answers

An angle in standard position is an angle whose vertex is at the origin and whose initial side is on the positive x-axis. The measure of an angle in standard position is the angle between the initial side and the terminal side.

An angle with a measure of 180° is a straight angle. A straight angle is an angle that measures 180°. Straight angles are formed when two rays intersect at a point and form a straight line.

The terminal side of an angle with a measure of 180° lies on the negative x-axis. This is because the angle goes from the positive x-axis to the negative x-axis as it rotates counterclockwise from the initial side.

The angle measure is 180°, and the angle is a straight angle.

Learn more about angle in standard position here:

brainly.com/question/19882301

#SPJ11

13. The table shows the cups of whole wheat flour required to make dog biscuits. How many cups of
whole wheat flour are required to make 30 biscuits?
Number of Dog Biscuits
Cups of Whole Wheat Flour
6
1
30

Answers

To make 30 biscuits, 5 cups of whole wheat flour are required.

To determine the number of cups of whole wheat flour required to make 30 biscuits, we need to analyze the given data in the table.

From the table, we can observe that there is a relationship between the number of dog biscuits and the cups of whole wheat flour required.

We need to identify this relationship and use it to find the answer.

By examining the data, we can see that as the number of dog biscuits increases, the cups of whole wheat flour required also increase.

To find the relationship, we can calculate the ratio of cups of whole wheat flour to the number of dog biscuits.

From the table, we can see that for 6 biscuits, 1 cup of whole wheat flour is required.

Therefore, the ratio of cups of flour to biscuits is 1/6.

Using this ratio, we can find the cups of whole wheat flour required for 30 biscuits by multiplying the number of biscuits by the ratio:

Cups of whole wheat flour = Number of biscuits [tex]\times[/tex] Ratio

= 30 [tex]\times[/tex] (1/6)

= 5 cups

For similar question on ratio.

https://brainly.com/question/12024093  

#SPJ8

What is the length of the diagonal of the square shown below? A. B. C. 25 D. E. 5 F.

Answers

The square's diagonal length is (E) d = 11√2.

A diagonal is a line segment that connects two vertices (or corners) of a polygon also, connects two non-adjacent vertices of a polygon.

This connects the vertices of a polygon, excluding the figure's edges.

A diagonal can be defined as something with slanted lines or a line connecting one corner to the corner farthest away.

A diagonal is a line that connects the bottom left corner of a square to the top right corner.

So, we need to determine the length of the square's diagonal.

The formula for the diagonal of a square is; d = a2; where 'd' is the diagonal and 'a' is the side of the square.

Now, d = 11√2.

Hence, the square's diagonal length is (E) d = 11√2.

for such more question on diagonal length

https://brainly.com/question/3050890

#SPJ8

Question

What is the length of the diagonal of the square shown below? 11 45° 11 11 90° 11

A. 121

B. 11

C. 11√11

D. √11

E. 11√2

F. √22​

Assume that T is a linear transformation. Find the standard matrix of T. T: R³-R², T(₁) = (1,7), and T (₂) = (-7,3), and T nd A= T (3)=(7.-6), where 0₁, 02, and 3 are the columns of the 3x3 identity matrix. A=____(Type an integer or decimal for each matrix element.)

Answers

The standard matrix of T. T: R³-R², T(₁) = (1,7), and T (₂) = (-7,3), and T nd A= T (3)=(7.-6), where 0₁, 02, and 3 are the columns of the 3x3 identity matrix. A= [[35, 0, -211], [-56, 0, -231]]

The standard matrix of T is given as [T], where T is a linear transformation that maps R³ to R² and is defined by

T(₁) = (1,7) and T (₂) = (-7,3). Also, A= T (3)=(7.-6), where 0₁, 02, and 3 are the columns of the 3x3 identity matrix. We will now find the standard matrix of T and fill in the missing entries in A. The columns of [T] are T (1), T (2), and T (3), where T (1) and T (2) are T(₁) = (1,7) and T (₂) = (-7,3), respectively.

Then, T (3) is obtained by calculating the coordinates of T (3) = T (1) - 6T (2).T(3) = T(1) - 6T(2)= (1, 7) - 6(-7, 3) = (1, 7) + (42, -18) = (43, -11)Thus, [T] = [[1, -7, 43], [7, 3, -11]]. Now, we can fill in the entries of A by using the fact that A = T (3) = [T][0₁ 02 3]. Thus, A = [[1, -7, 43], [7, 3, -11]] [0,0,7][-7, 0, -6] = [[35, 0, -211], [-56, 0, -231]]

Therefore, A = [[35, 0, -211], [-56, 0, -231]] (Type an integer or decimal for each matrix element.)

You can learn more about Matrix at: brainly.com/question/28180105

#SPJ11

Other Questions
A ball of mass 100g is dropped from a hight of 12.0 m. What is the ball's linear momentum when it strikes the ground? Input the answer in kgm/s using 3 significant fugures 3. [-/5 Points] DETAILS SERCP11 15.3.P.026. A helium nucleus of mass m 6.64 x 10-27 kg and charge q= 3.20 x 10-19 C is in a constant electric field of magnitude E4.00 x 10-7 N/C pointing in the positive x-direction. Neglecting other forces, calculate the nucleus' acceleration and its displacement after 1.70 s if it starts from rest. (Indicate the direction with the sign of your answer.) HINT (a) the nucleus acceleration (in m/s) 1.93x1011 x Your answer cannot be understood or graded. More Information m/s MY NOTES Find the acceleration using the relation between electric field and electric force, combined with Newton's second law. Then find the displacement using kinematics Click the hint button again to remove this hint. (b) its displacement (in m) 1.64x10 11 x Your answer cannot be understood or graded. More Information m ASK YOUR TEACHER PRACTICE ANOTHER If the net work done on a particle is zero, which of the following must be true? A. More information needed is zero decreases does not change e. The speed does not change. 5) You are designing a part for a piece of machinery with mass density per area of o. The part consists of a piece of sheet metal cut as shown below. The shape of the upper edge of the part is given by the function y(x), and the shape of the lower edge of the part is given by the function y(x). y(x) = h Y2(x): y(x) = h h () h (0,0) y(x) (b,h) -X2(x) R b a) (5 points) Determine the total mass of this object in terms of o, h, and b. b) (10 points) Determine the center of mass of the object in terms of o, h, and b. c) (10 points) Determine the moment of inertia if the object rotated about the y-axis in terms of o, h, and b. The population of a particular species that an ecosystem can sustain indefinitely is called its:_______ Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. To save time, the eigenvalues are 4 and 0. A = ONO 4 00 0 0 20-2 0 04 0-20 2 0 Enter the matrices P and D below. (...) (Use a comma to separate answers as needed. Type exact answers, using radicals as needed Questions 1. What are the attractive factors for a Swiss company which is interested to operate in the Middle East luxury and lifestyle retail sector? 2. What are the challenging factors for a Swiss company which is interested to operate in the Middle East luxury and lifestyle retail sector? 3. Should a Swiss company operate in the Middie East luxury and lifestyle retail sector? Why or why not? A nurse is reading about the development of drugs that inhibit the parasympathetic nervous system. the nurse would look for articles about which drug classes? 27500 people live in the duchy of grand fenwick, which has a land area of a square, 5.8 km on each side. how many people live there? TaskYour school is thinking of including virtual reality (VR) in your lessons. Your teacher has asked you to prepare a presentation on VR which covers these points: where VR is used how it can be used in education its advantages and disadvantages its popularity among students and teachers.You have found this information about VR. Use it to give a presentation on VR and education.Use your own words. You have 35 minutes to prepare and about 5 minutes for your conversation. chemistry a molecular approach tro chapter 12 which of the following represent the addition polymer formed from the compound below OPTIONAL: 3. For each of the nine listed abbreviations, list the name of the hormone and its function. If there is another hormone released as a result of its activity, indicate that as well. (0.5 pt, each) a. ACTH b. ADH c. FSH d. GH e. LH f. PRL g. OXT h. TSH What is the phase angle in a series R L C circuit at resonance? (a) 180 (b) 90 (c) 0 (d) -90 (e) None of those answers is necessarily correct. Write a summary of the movie wild style (1982) and how is itimportant to african americans Particle executes S.H.M. of period 12s and of amplitude 8cm. what time will it take to travel 4 cm from the extreme position In this lab, the focal length of the converging lens was 8.8 cm. At what do la distance of object) the image will be the same size as the object. A. 15.0cm B. 20.2cm OC. 17.6cm D. 5.6cm If the temperature of a gas is increased from 5.663 C to72.758C, by what factor does the speed of the moleculesincrease? in this pro tools monitoring mode, when a track is record-enabled, pro tools monitors audio input only, regardless of any punch-in/out selection or state. also, in this mode, the audio clips on record-enabled tracks are not heard, even during playback. what is the maximum height of the roads surface?? NEED HELP How can product designers maximize the value they provide tousers? Discuss how products and services create value forusers.