- The p-value is greater than 0.05.
- Based on the given p-value, we fail to reject the null hypothesis.
To complete the analysis of variance (ANOVA) table, we need to calculate the sum of squares, degrees of freedom, mean squares, and F-value for the Treatment, Blocks, and Error sources of variation.
1. Treatment:
The sum of squares for Treatment is given as 1,100. We need to determine the degrees of freedom (df) for Treatment, which is equal to the number of treatments minus 1. Since the number of treatments is not specified, we cannot calculate the degrees of freedom for Treatment. Thus, the degrees of freedom for Treatment will be denoted as dfTreatment = k - 1. Similarly, we cannot calculate the mean square for Treatment.
2. Blocks:
The sum of squares for Blocks is given as 600. The degrees of freedom for Blocks is equal to the number of blocks minus 1, which is 8 - 1 = 7. To calculate the mean square for Blocks, we divide the sum of squares for Blocks by the degrees of freedom for Blocks: Mean square (MS)Blocks = SSBlocks / dfBlocks = 600 / 7.
3. Error:
The sum of squares for Error is not given explicitly, but we can calculate it using the formula: SSError = SSTotal - (SSTreatment + SSBlocks). Given that the Total sum of squares (SSTotal) is 2,300 and the sum of squares for Treatment and Blocks, we can substitute the values to calculate the sum of squares for Error. After obtaining SSError, the degrees of freedom for Error can be calculated as dfError = dfTotal - (dfTreatment + dfBlocks). The mean square for Error is then calculated as Mean square (MS)Error = SSError / dfError.
Now, we can calculate the F-value for testing significant differences:
F = (Mean square (MS)Treatment) / (Mean square (MS)Error).
To test for significant differences, we compare the obtained F-value with the critical F-value at the given significance level (α = 0.05). If the obtained F-value is greater than the critical F-value, we reject the null hypothesis; otherwise, we fail to reject the null hypothesis.
Unfortunately, without the values for the degrees of freedom for Treatment and the specific calculations, we cannot determine the p-value or reach a conclusion regarding the significance of differences between treatments.
For more such questions on hypothesis, click on:
https://brainly.com/question/606806
#SPJ8
This discussion is about proving one of the Absorption Laws:
Let A and B be any two sets. Then:
1. Au (An B) = A
2. An (Au B) = A
Pick one of them and try to write down a direct proof using the two-column method explained in Section 2.1
We have shown both directions of inclusion, we can conclude that Au (An B) = A.
Let's pick the first Absorption Law: Au (An B) = A. We will write a direct proof using the two-column method.
vbnet
Copy code
| Step | Reason |
|------|---------------------------------|
| 1 | Assume x ∈ (Au (An B)) |
| 2 | By definition of union, x ∈ A |
| 3 | By definition of intersection, x ∈ An B |
| 4 | By definition of intersection, x ∈ B |
| 5 | By definition of union, x ∈ (Au B) |
| 6 | By definition of subset, (Au B) ⊆ A |
| 7 | Therefore, x ∈ A |
| 8 | Conclusion: Au (An B) ⊆ A |
Now, let's prove the other direction:
| Step | Reason |
|------|---------------------------------|
| 1 | Assume x ∈ A |
| 2 | By definition of union, x ∈ (Au B) |
| 3 | By definition of intersection, x ∈ An B |
| 4 | Therefore, x ∈ Au (An B) |
| 5 | Conclusion: A ⊆ Au (An B) |
Since we have shown both directions of inclusion, we can conclude that Au (An B) = A.
This completes the direct proof of the first Absorption Law.
to learn more about Absorption Law.
https://brainly.com/question/8831959
#SPJ11
For the system of equations
3x1+5x24x3 = 7 -3x1-2x2 + 4x3 = 1
6x1+x2-8x3 = -4
a. find the solution set of the linear system and write it in parametric vector form. b. Use your answer to apart a. to write down the solution set for the corresponding homogeneous system, that is, the system with zeros on the right-hand side of the equations.
a) We can express the solution set of the linear system in parametric vector form as:
[tex]\[\begin{align*}\\x_1 &= -4 - x_2 + 8x_3 \\x_2 &= t \\x_3 &= s\end{align*}\][/tex]
b) Expressing the solution set of the homogeneous system in parametric vector form, we have:
[tex]\[\begin{align*}\\x_1 &= -x_2 + 8x_3 \\x_2 &= t \\x_3 &= s\end{align*}\][/tex]
How to find the solution set of the linear systemTo solve the system of equations:
[tex]\[\begin{align*}\\3x_1 + 5x_2 + 4x_3 &= 7 \\-3x_1 - 2x_2 + 4x_3 &= 1 \\x_1 + x_2 - 8x_3 &= -4\end{align*}\][/tex]
a. We can write the augmented matrix and perform row operations to solve the system:
[tex]\[\begin{bmatrix}3 & 5 & 4 & 7 \\-3 & -2 & 4 & 1 \\1 & 1 & -8 & -4\end{bmatrix}\][/tex]
Using row operations, we can simplify the matrix to row-echelon form:
[tex]\[\begin{bmatrix}1 & 1 & -8 & -4 \\0 & 7 & -4 & 4 \\0 & 0 & 0 & 0\end{bmatrix}\][/tex]
The simplified matrix represents the following system of equations:
[tex]\[\begin{align*}\\x_1 + x_2 - 8x_3 &= -4 \\7x_2 - 4x_3 &= 4 \\0 &= 0\end{align*}\][/tex]
We can express the solution set of the linear system in parametric vector form as:
[tex]\[\begin{align*}\\x_1 &= -4 - x_2 + 8x_3 \\x_2 &= t \\x_3 &= s\end{align*}\][/tex]
where [tex]\(t\)[/tex] and [tex]\(s\)[/tex] are arbitrary parameters.
b. For the corresponding homogeneous system, we set the right-hand side of each equation to zero:
[tex]\[\begin{align*}\\3x_1 + 5x_2 + 4x_3 &= 0 \\-3x_1 - 2x_2 + 4x_3 &= 0 \\x_1 + x_2 - 8x_3 &= 0\end{align*}\][/tex]
Simplifying the system, we have:
[tex]\[\begin{align*}\\x_1 + x_2 - 8x_3 &= 0 \\7x_2 - 4x_3 &= 0 \\0 &= 0\end{align*}\][/tex]
Expressing the solution set of the homogeneous system in parametric vector form, we have:
[tex]\[\begin{align*}\\x_1 &= -x_2 + 8x_3 \\x_2 &= t \\x_3 &= s\end{align*}\][/tex]
where [tex]\(t\)[/tex] and [tex]\(s\)[/tex] are arbitrary parameters.
Learn more about vector at https://brainly.com/question/25705666
#SPJ4
Using the formulas you learned in Lesson 11-1, make a conjecture about the formula for the area of this type of quadrilateral if B C is b_{1} , A D is b_{2} , and A B is h . Explain.
The formula for the area of the quadrilateral with side lengths B C = b₁, A D = b₂, and A B = h can be given by the expression:
Area = ½ × (b₁ + b₂) × h
Let's consider the quadrilateral with side lengths B C = b₁, A D = b₂, and A B = h. We can divide this quadrilateral into two triangles by drawing a diagonal from B to D. The height of both triangles is equal to h, which is the perpendicular distance between the parallel sides B C and A D.
To find the area of each triangle, we use the formula: Area = ½ × base × height. In this case, the base of each triangle is b₁ and b₂, respectively, and the height is h.
Therefore, the area of each triangle is given by:
Area₁ = ½ × b₁ × h
Area₂ = ½ × b₂ × h
Since the quadrilateral is composed of these two triangles, the total area of the quadrilateral is the sum of the areas of the two triangles:
Area = Area₁ + Area₂
= ½ × b₁ × h + ½ × b₂ × h
= ½ × (b₁ + b₂) × h
Hence, the conjecture is that the formula for the area of the quadrilateral with side lengths B C = b₁, A D = b₂, and A B = h is given by the expression: Area = ½ × (b₁ + b₂) × h.
To know more about quadrilaterals, refer here:
https://brainly.com/question/29934291#
#SPJ11
Simplify each expression.
sinθ secθ tanθ
The expression sinθ secθ tanθ simplifies to [tex]tan^{2\theta[/tex], which represents the square of the tangent of angle θ.
To simplify the expression sinθ secθ tanθ, we can use trigonometric identities. Recall the following trigonometric identities:
secθ = 1/cosθ
tanθ = sinθ/cosθ
Substituting these identities into the expression, we have:
sinθ secθ tanθ = sinθ * (1/cosθ) * (sinθ/cosθ)
Now, let's simplify further:
sinθ * (1/cosθ) * (sinθ/cosθ) = (sinθ * sinθ) / (cosθ * cosθ)
Using the identity[tex]sin^{2\theta} + cos^{2\theta} = 1[/tex], we can rewrite the expression as:
(sinθ * sinθ) / (cosθ * cosθ) = [tex]\frac { sin^{2\theta} } { cos^{2\theta} }[/tex]
Finally, using the quotient identity for tangent tanθ = sinθ / cosθ, we can further simplify the expression:
[tex]\frac { sin^{2\theta} } { cos^{2\theta} }[/tex] = [tex](sin\theta / cos\theta)^2[/tex] = [tex]tan^{2\theta[/tex]
Therefore, the simplified expression is [tex]tan^{2\theta[/tex].
Learn more about expression here:
https://brainly.com/question/29809800
#SPJ11
Consider the vectors: a=(1,1,2),b=(5,3,λ),c=(4,4,0),d=(2,4), and e=(4k,3k)
Part(a) [3 points] Find k such that the area of the parallelogram determined by d and e equals 10 Part(b) [4 points] Find the volume of the parallelepiped determined by vectors a,b and c. Part(c) [5 points] Find the vector component of a+c orthogonal to c.
The value of k is 1, the volume of the parallelepiped is 12 + 4λ, and the vector component of a + c orthogonal to c is (1,1,1.5).
a) Here the area of the parallelogram determined by d and e is given as 10. The area of the parallelogram is given as `|d×e|`.
We have,
d=(2,4)
and e=(4k,3k)
Then,
d×e= (2 * 3k) - (4 * 4k) = -10k
Area of parallelogram = |d×e|
= |-10k|
= 10
As we know, area of parallelogram can also be given as,
|d×e| = |d||e| sin θ
where, θ is the angle between the two vectors.
Then,10 = √(2^2 + 4^2) * √((4k)^2 + (3k)^2) sin θ
⇒ 10 = √20 √25k^2 sin θ
⇒ 10 = 10k sin θ
∴ k sin θ = 1
Therefore, sin θ = 1/k
Hence, the value of k is 1.
Part(b) The volume of the parallelepiped determined by vectors a, b and c is given as,
| a . (b × c)|
Here, a=(1,1,2),
b=(5,3,λ), and
c=(4,4,0)
Therefore,
b × c = [(3 × 0) - (λ × 4)]i + [(λ × 4) - (5 × 0)]j + [(5 × 4) - (3 × 4)]k
= -4i + 4λj + 8k
Now,| a . (b × c)|=| (1,1,2) .
(-4,4λ,8) |=| (-4 + 4λ + 16) |
=| 12 + 4λ |
Therefore, the volume of the parallelepiped is 12 + 4λ.
Part(c) The vector component of a + c orthogonal to c is given by [(a+c) - projc(a+c)].
Here, a=(1,1,2) and
c=(4,4,0).
Then, a + c = (1+4, 1+4, 2+0)
= (5, 5, 2)
Now, projecting (a+c) onto c, we get,
projc(a+c) = [(a+c).c / |c|^2] c
= [(5×4 + 5×4) / (4^2 + 4^2)] (4,4,0)
= (4,4,0.5)
Therefore, [(a+c) - projc(a+c)] = (5,5,2) - (4,4,0.5)
= (1,1,1.5)
Therefore, the vector component of a + c orthogonal to c is (1,1,1.5).
Conclusion: The value of k is 1, the volume of the parallelepiped is 12 + 4λ, and the vector component of a + c orthogonal to c is (1,1,1.5).
To know more about orthogonal visit
https://brainly.com/question/32250610
#SPJ11
Situation:
A hiker in Africa discovers a skull that
contains 51% of its original amount of C-
14.
N=Noekt
No inital amount of C-14 (at time
=
t = 0)
N = amount of C-14 at time t
k = 0.0001
t= time, in years
Find the age of the skull to the nearest year.
Enter the correct answer.
Step-by-step explanation:
To determine the age of the skull, we can use the equation for radioactive decay:
N = N0 * e^(-kt)
where N is the remaining amount of C-14, N0 is the initial amount of C-14, k is the decay constant, and t is the time elapsed.
In this situation, we know that N = 0.51N0 (since the skull contains 51% of its original amount of C-14) and k = 0.0001. Plugging these values in, we get:
0.51N0 = N0 * e^(-0.0001t)
Simplifying, we can divide both sides by N0 to get:
0.51 = e^(-0.0001t)
Taking the natural log of both sides, we get:
ln(0.51) = -0.0001t
Solving for t, we get:
t = -ln(0.51)/0.0001
t ≈ 3,841 years
Therefore, the age of the skull is approximately 3,841 years old.
Let f(x)= 1/2 x^4 −4x^3 For what values of x does the graph of f have a point of inflection? Choose all answers that apply: x=0 x=4 x=8 f has no points of inflection.
x = 4 is the point of inflection on the curve.
The second derivative of f(x) = 1/2 x^4 - 4x^3 is f''(x) = 6x^2 - 24x.
To find the critical points, we set f''(x) = 0, which gives us the equation 6x(x - 4) = 0.
Solving for x, we find x = 0 and x = 4 as the critical points.
We evaluate the second derivative of f(x) at different intervals to determine the sign of the second derivative. Evaluating f''(-1), f''(1), f''(5), and f''(9), we find that the sign of the second derivative changes when x passes through 4.
Therefore, The point of inflection on the curve is x = 4.
Learn more about inflection
https://brainly.com/question/30760634
#SPJ11
Find the domain and range of the function graphed below
Answer:
Domain: [tex][-1,3)[/tex]
Range: [tex](-5,4][/tex]
Step-by-step explanation:
Domain is all the x-values, so starting with x=-1 which is included, we keep going to the left until we hit x=3 where it is not included, so we get [-1,3) as our domain.
Range is all the y-values, so starting with y=-5 which is not included, we keep going up until we hit y=4 where it is included, so we get (-5,4] as our range.
Consider ()=5ln+8
for >0. Determine all inflection points
To find the inflection points of the function f(x) = 5ln(x) + 8, we need to determine where the concavity changes.The function f(x) = 5ln(x) + 8 does not have any inflection points.
First, we find the second derivative of the function f(x):
f''(x) = d²/dx² (5ln(x) + 8)
Using the rules of differentiation, we have:
f''(x) = 5/x
To find the inflection points, we set the second derivative equal to zero and solve for x:
5/x = 0
Since the second derivative is never equal to zero, there are no inflection points for the function f(x) = 5ln(x) + 8.
Therefore, the function f(x) = 5ln(x) + 8 does not have any inflection points.
Learn more about inflection here
https://brainly.com/question/29249123
#SPJ11
9. (6 pts)Due to a slump in the economy, Val's mutual fund dropped in value from last quarter to this quarter. Last quarter her fund was worth $37,500 and this quarter it is worth only $32,100. What is the percent decrease in Val's fund from last quarter to this quarter?
The percent decrease in Val's fund from last quarter to this quarter is 14.4%
To calculate the percent decrease in Val's mutual fund from last quarter to this quarter, we can use the following formula:
Percent Decrease = (Change in Value / Initial Value) * 100
Given that last quarter her fund was worth $37,500 and this quarter it is worth $32,100, we can calculate the change in value:
Change in Value = Initial Value - Final Value
= $37,500 - $32,100
= $5,400
Now we can plug these values into the formula for percent decrease:
Percent Decrease = (5,400 / 37,500) * 100
= 0.144 * 100
= 14.4%
Therefore, the percent decrease in Val's fund from last quarter to this quarter is 14.4%.
This means that the value of Val's mutual fund decreased by 14.4% over the given time period. It is important to note that this calculation assumes a simple percentage decrease based on the initial and final values and does not take into account any additional factors such as fees or dividends.
Learn more about: percent decrease
https://brainly.com/question/2913116
#SPJ11
Find the coordinates of the midpoint of a segment with the given endpoints.
A(-8,-5), B(1,7)
The midpoint of the segment with endpoints A(-8, -5) and B(1, 7) is found by taking the average of the x-coordinates and the average of the y-coordinates.
To find the midpoint of a segment with given endpoints, we take the average of the x-coordinates and the average of the y-coordinates of the endpoints.
For the given endpoints A(-8, -5) and B(1, 7), we can calculate the midpoint as follows:
Midpoint x-coordinate:
(x-coordinate of A + x-coordinate of B) / 2 = (-8 + 1) / 2
= -7/2
= -3.5
Midpoint y-coordinate:
(y-coordinate of A + y-coordinate of B) / 2 = (-5 + 7) / 2
= 2 / 2
= 1
Therefore, the coordinates of the midpoint of the segment with endpoints A(-8, -5) and B(1, 7) are (-3.5, 1). The x-coordinate is -3.5, and the y-coordinate is 1.
Learn more about midpoint visit:
brainly.com/question/28970184
#SPJ11
Solve for the indicated variable. a+b²=² for b (b>0) 9 X 0/6 5
Step 1: The solution for the indicated variable b is b = ±√a.
Step 2: To solve the equation a + b² = ² for b, we need to isolate the variable b.
First, let's subtract 'a' from both sides of the equation: b² = ² - a.
Next, we take the square root of both sides to solve for b: b = ±√(² - a).
Since the question specifies that b > 0, we can discard the negative square root solution. Therefore, the solution for b is b = √(² - a).
Step 3: In the given equation, a + b² = ², we need to solve for the variable b. To do this, we follow a few steps. First, we subtract 'a' from both sides of the equation to isolate the term b²: b² = ² - a. Next, we take the square root of both sides to solve for b. However, we must consider that the question specifies b > 0. Therefore, we discard the negative square root solution and obtain the final solution: b = √(² - a). This means that the value of b is equal to the positive square root of the quantity (² - a).
Learn more about the process of solving equations.
brainly.com/question/11653895
#SPJ11
Square of a negative number?
If we find the square of a negative number, say -x, where x > 0, then (-x) × (-x) = x 2. Here, x 2 > 0. Therefore, the square of a negative number is always positive.
The answer is:
below
Work/explanation:
The square of a negative number is always a positive number :
[tex]\sf{(-a)^2 = b}[/tex]
where b = the square of -a
The thing is, the square of a positive number is equal to the square of the same negative number :
[tex]\rhd\phantom{333} \sf{a^2 = (-a)^2}[/tex]
So if we take the square root of a number, let's say the number is 49 - we will end up with two solutions :
7, and -7
This was it.
Therefore, this is the answer.In this project, we will examine a Maclaurin series approximation for a function. You will need graph paper and 4 different colors of ink or pencil. Project Guidelines Make a very careful graph of f(x)=e−x2
- Use graph paper - Graph on the intervai −0.5≤x≤0.5 and 0.75≤y≤1.25 - Scale the graph to take up the majority of the page - Plot AT LEAST 10 ordered pairs. - Connect the ordered pairs with a smooth curve. Find the Maclaurin series representation for f(x)=e−x2
Find the zeroth order Maclaurin series approximation for f(x). - On the same graph with the same interval and the same scale, choose a different color of ink. - Plot AT LEAST 10 ordered pairs. Make a very careful graph of f(x)=e−x2
- Use graph paper - Graph on the interval −0.5≤x≤0.5 and 0.75≤y≤1.25 - Scale the graph to take up the majority of the page - PIotAT LEAST 10 ordered pairs.
1. Find the Maclaurin series approximation: Substitute [tex]x^2[/tex] for x in [tex]e^x[/tex] series expansion.
2. Graph the original function: Plot 10 ordered pairs of f(x) = [tex]e^(-x^2)[/tex] within the given range and connect them with a curve.
3. Graph the zeroth order Maclaurin approximation: Plot 10 ordered pairs of f(x) ≈ 1 within the same range and connect them.
4. Scale the graph appropriately and label the axes to present the functions clearly.
1. Maclaurin Series Approximation
The Maclaurin series approximation for the function f(x) = [tex]e^(-x^2)[/tex] can be found by substituting [tex]x^2[/tex] for x in the Maclaurin series expansion of the exponential function:
[tex]e^x = 1 + x + (x^2 / 2!) + (x^3 / 3!) + ...[/tex]
Substituting x^2 for x:
[tex]e^(-x^2) = 1 - x^2 + (x^4 / 2!) - (x^6 / 3!) + ...[/tex]
So, the Maclaurin series approximation for f(x) is:
f(x) ≈ [tex]1 - x^2 + (x^4 / 2!) - (x^6 / 3!) + ...[/tex]
2. Graphing the Original Function
To graph the original function f(x) =[tex]e^(-x^2)[/tex], follow these steps:
i. Take a piece of graph paper and draw the coordinate axes with labeled units.
ii. Determine the range of x-values you want to plot, which is -0.5 to 0.5 in this case.
iii. Calculate the corresponding y-values for at least 10 x-values within the specified range by evaluating f(x) =[tex]e^(-x^2)[/tex].
For example, let's choose five x-values within the range and calculate their corresponding y-values:
x = -0.5, y =[tex]e^(-(-0.5)^2) = e^(-0.25)[/tex]
x = -0.4, y = [tex]e^(-(-0.4)^2) = e^(-0.16)[/tex]
x = -0.3, y = [tex]e^(-(-0.3)^2) = e^(-0.09)[/tex]
x = -0.2, y = [tex]e^(-(-0.2)^2) = e^(-0.04)[/tex]
x = -0.1, y = [tex]e^(-(-0.1)^2) = e^(-0.01)[/tex]
Similarly, calculate the corresponding y-values for five more x-values within the range.
iv. Plot the ordered pairs (x, y) on the graph, using one color to represent the original function. Connect the ordered pairs with a smooth curve.
3. Graphing the Zeroth Order Maclaurin Approximation
To graph the zeroth order Maclaurin series approximation f(x) ≈ 1, follow these steps:
i. On the same graph with the same interval and scale as before, choose a different color of ink or pencil to distinguish the approximation from the original function.
ii. Plot the ordered pairs for the zeroth order approximation, which means y = 1 for all x-values within the specified range.
iii. Connect the ordered pairs with a smooth curve.
Remember to scale the graph to take up the majority of the page, label the axes, and any important points or features on the graph.
Learn more about Maclaurin series approximation visit
brainly.com/question/32769570
#SPJ11
At the movie theatre, child admission is $5.70 and adult admission is $9.10. On Wednesday, 136 tickets were sold for a total sales of $1033.60. How many child tickets were sold that day?
Let's denote the number of child tickets sold as 'c' and the number of adult tickets sold as 'a'. Therefore, 60 child tickets were sold on Wednesday at the movie theatre.
Let's denote the number of child tickets sold as 'c' and the number of adult tickets sold as 'a'. We know that the price of a child ticket is $5.70 and the price of an adult ticket is $9.10. The total sales from 136 tickets sold is $1033.60.
We can set up the following system of equations:
c + a = 136 (equation 1, representing the total number of tickets sold)
5.70c + 9.10a = 1033.60 (equation 2, representing the total sales)
From equation 1, we can rewrite it as a = 136 - c and substitute it into equation 2:
5.70c + 9.10(136 - c) = 1033.60
Simplifying the equation, we have:
5.70c + 1237.60 - 9.10c = 1033.60
Combining like terms, we get:
-3.40c + 1237.60 = 1033.60
Subtracting 1237.60 from both sides, we have:
-3.40c = -204
Dividing both sides by -3.40, we find:
c = 60
Therefore, 60 child tickets were sold on Wednesday at the movie theatre.
Learn more about like terms here:
https://brainly.com/question/29169167
#SPJ11
A publisher reports that 34% of their readers own a personal computer. A marketing executive wants to test the claim that the percentage is actually different from the reported percentage. A random sample of 360 found that 30% of the readers owned a personal computer. Find the value of the test statistic. Round your answer to two decimal places.'
The test statistic is z = -1.60
To test the claim that the percentage of readers who own a personal computer is different from the reported percentage, we can use a hypothesis test. Let's define our null hypothesis (H0) and alternative hypothesis (H1) as follows:
H0: The percentage of readers who own a personal computer is equal to 34%.
H1: The percentage of readers who own a personal computer is different from 34%.
We can use the z-test statistic to evaluate this hypothesis. The formula for the z-test statistic is:
[tex]z = (p - P) / \sqrt_((P * (1 - P)) / n)_[/tex]
Where:
p is the sample proportion (30% or 0.30)
P is the hypothesized population proportion (34% or 0.34)
n is the sample size (360)
Let's plug in the values and calculate the test statistic:
[tex]z = (0.30 - 0.34) / \sqrt_((0.34 * (1 - 0.34)) / 360)_\\[/tex]
[tex]z = (-0.04) / \sqrt_((0.34 * 0.66) / 360)_\\[/tex]
[tex]z = -0.04 / \sqrt_(0.2244 / 360)_\\[/tex]
[tex]z= -0.04 / \sqrt_(0.0006233)_[/tex]
[tex]z = -0.04 / 0.02497\\z = -1.60[/tex]
Rounding the test statistic to two decimal places, the value is approximately -1.60.
Learn more about test statistics:
https://brainly.com/question/30458874
#SPJ11
A mass of one kg is attached to a spring with constant k=4 N/m. An external force F(t)=−cos(3t)−2sin(3t) is applied to the mass. Find the displacement y(t) for t>0. Assume that the mass is initially displaced 3 m above equilibrium and given an upward velocity of 4.50 m/s.
The displacement function y(t) for the given scenario can be determined by solving the second-order linear homogeneous differential equation that describes the motion of the mass-spring system.
Step 1: Write the Differential Equation
The equation of motion for the mass-spring system can be expressed as m*y'' + k*y = F(t), where m is the mass, y'' represents the second derivative of y with respect to time, k is the spring constant, and F(t) is the external force.
Step 2: Determine the Particular Solution
To find the particular solution, we need to solve the nonhomogeneous equation. In this case, F(t) = −cos(3t) − 2sin(3t). We can use the method of undetermined coefficients to find a particular solution that matches the form of the forcing function.
Step 3: Find the General Solution
The general solution of the homogeneous equation (m*y'' + k*y = 0) can be obtained by assuming a solution of the form y(t) = A*cos(ω*t) + B*sin(ω*t), where A and B are arbitrary constants and ω is the natural frequency of the system.
Step 4: Apply Initial Conditions
Use the given initial conditions (displacement and velocity) to determine the values of A and B in the general solution.
Step 5: Combine the Particular and General Solutions
Add the particular solution and the general solution together to obtain the complete solution for y(t).
Learn more about differential equations for mass-spring systems and their applications visit:
https://brainly.com/question/14996226
#SPJ11
For f(x)=9/x-5 and g(x) = 5/x, find the following composite functions and state the domain of each. a. f°g b. g°f c. f°f d. g°g
The composite functions for the given problems, which are as follows:f°g = 9x/5 - 5, domain is {x: x ≠ 0}.g°f = 5(x - 5)/9, domain is {x: x ≠ 5}.f°f = x - 5, domain is {x: x ≠ 5}.g°g = x, domain is {x: x ≠ 0}.
Given function f(x) = 9/x - 5 and g(x) = 5/x
We need to find the composite functions and state the domain of each.
a) Composite function f°g
We have, f(g(x)) = f(5/x) = 9/(5/x) - 5= 9x/5 - 5
The domain of f°g: {x : x ≠ 0}
Composite function g°f
We have, g(f(x)) = g(9/(x - 5)) = 5/(9/(x - 5))= 5(x - 5)/9
The domain of g°f: {x : x ≠ 5}
Composite function f°f
We have, f(f(x)) = f(9/(x - 5)) = 9/(9/(x - 5)) - 5= x - 5
The domain of f°f: {x : x ≠ 5}
Composite function g°g
We have, g(g(x)) = g(5/x) = 5/(5/x)= x
The domain of g°g: {x : x ≠ 0}
We have four composite functions in the given problem, which are as follows:f°g = 9x/5 - 5, domain is {x: x ≠ 0}.g°f = 5(x - 5)/9, domain is {x: x ≠ 5}.f°f = x - 5, domain is {x: x ≠ 5}.g°g = x, domain is {x: x ≠ 0}.
Composite functions are a way of expressing the relationship between two or more functions. They are used to describe how one function is dependent on another. The domain of a composite function is the set of all real numbers for which the composite function is defined. It is calculated by taking the intersection of the domains of the functions involved in the composite function. In this problem, we have calculated the domains of four composite functions, which are f°g, g°f, f°f, and g°g. The domains of each of the composite functions are different, and we have calculated them using the domains of the functions involved.
To know more about composite functions visit:
brainly.com/question/30143914
#SPJ11
Suppose n∈N and z∈C with ∣z∣=1 and z 2n =/=−1. Prove that z^n/1+z 2n ∈R.
(1 + z^(2n))* is equal to (1 - z^(2n)) or its square. Hence, z^n/(1 + z^(2n)) can be converted to a real number, Therefore, z^n/(1 + z^(2n)) is a real number.
Given that n ∈ N and z ∈ C with |z| = 1 and z^(2n) ≠ -1, we need to prove that z^n/(1 + z^(2n)) ∈ R.
Let's take the conjugate of the denominator 1 + z^(2n). We know that for any complex number a + bi, its conjugate is given by a - bi.
Now, the conjugate of 1 + z^(2n) is 1 - z^(2n), and this is true for all values of z as z has magnitude 1.
Thus, (1 + z^(2n)) + (1 - z^(2n)) = 2 is real.
Also, z^n is a complex number as z is a complex number. Let's write z^n as cos(nx) + isin(nx), where x is some real number.
Now, z^n/(1 + z^(2n)) = (cos(nx) + isin(nx))/2, hence it is a complex number.
Dividing by a real number will convert the result into a real number. We can obtain a real number by taking the conjugate of the denominator (1 + z^(2n)) and multiplying the numerator and the denominator with it, because (1 + z^(2n))(1 - z^(2n)) = 1 - z^(4n). Let's call this C.
Let's take the conjugate of C, which is C* = (1 + z^(2n))* (1 - z^(2n))* = (1 - z^(2n))(1 - z^(2n)*).
Now, z^(2n) + z^(2n)* = 2cos(2nx), which is a real number.
So, C* = (1 - z^(2n))(1 - z^(2n)* ) = (1 - z^(2n))(1 - z^(2n)) = (1 - z^(2n))^2 is a non-negative real number, as the square of a real number is non-negative.
Thus, (1 + z^(2n))* is equal to (1 - z^(2n)) or its square. Hence, z^n/(1 + z^(2n)) can be converted to a real number.
Therefore, z^n/(1 + z^(2n)) is a real number.
Learn more about real number.
https://brainly.com/question/17019115
#SPJ11
SKATING PARTYYou are planning a birthday party for your youngerbrother at a skating rink. The cost of admission is $3. 50 per adult and $2. 25 perchild, and there is a limit of 20 people. Youhave $50 to spend. Use an inversematrix to determine how many adults and how many childrenyou can invite
Answer:
To determine how many adults and children you can invite to the skating party within the given budget, we can use an inverse matrix. Let's set up the problem as a system of equations.
Let:
x = number of adults to invite
y = number of children to invite
We can form two equations based on the given information:
Equation 1: Cost of admission for adults: 3.50x
Equation 2: Cost of admission for children: 2.25y
We also have the constraint that the total number of people (adults and children) should not exceed 20:
x + y ≤ 20
To solve this system of equations, we can represent it in matrix form:
[3.50 2.25] [x] [50]
[y]
Let's call the coefficient matrix A, the variable matrix X, and the constant matrix B:
A = [3.50 2.25]
X = [x]
[y]
B = [50]
To find the solution, we can use the inverse matrix of A:
A^-1 = [a b]
[c d]
where a, b, c, and d are the elements of the inverse matrix.
The solution is given by X = A^-1 * B:
X = [a b] [50]
[c d]
Multiplying A^-1 and B, we get:
[a b] [50] [solution for x]
[c d] = [solution for y]
Once we determine the values for x and y, we will know how many adults and children you can invite within the given budget.
Please note that I have used approximate values for the admission costs.
3.
(i) Show that t(n + 1) = n t(n).
(ii) Find t(2), (3) and T() if given t(1) = 1,T()= √π.
Given a differential equation below where p is a constant.
(1 - x²)y" - 2xy' +p(p+1)y = 0.
(i) Determine the singular point and the ordinary point for the differential equation above.
Go Premium
&
(b) Usng the values of a; obtained in 1 (a), solve the initial value problem below: (+ a₁ay + αoy = 2(1 + ex)
where y(0) = 4,y'(0) = 2,y" (0) = 2.
The Legendre polynomials P (x) are defined by Po (x) = 1 and 1 1 d Pn(x) = (x²-n)", n = 1,2,3,...
(1) Verify that P(x)=(3x-1) and P(x)=(5x-3x).
(ii) For k = 0,1,...,n-1, show that x* P(x)dx = 0.
2.
The given statement is proven below:
(i) t(n + 1) = n t(n)
(ii) t(2) = 2t(1), t(3) = 3t(2), T() = √π
(i) To show that t(n + 1) = n t(n), we can use mathematical induction.
First, we establish the base case: t(2) = 2t(1). This is given in the problem statement.
Next, we assume that the equation holds for some arbitrary value k: t(k + 1) = k t(k).
Now, we need to prove that it holds for k + 1 as well: t((k + 1) + 1) = (k + 1) t(k + 1).
Using the recursive definition of t(n), we can rewrite the equation as t(k + 2) = (k + 1) t(k + 1).
Expanding t(k + 2) using the recursive definition, we have t(k + 2) = (k + 2) t(k + 1).
Since (k + 2) is equal to (k + 1) + 1, we can substitute it into the equation.
This gives us (k + 2) t(k + 1) = (k + 1) t(k + 1), which simplifies to t(k + 2) = (k + 1) t(k + 1).
Therefore, the equation t(n + 1) = n t(n) holds for all positive integers n.
(ii) To find the values of t(2), t(3), and T(), we can use the given initial conditions.
We are given that t(1) = 1. Using the recursive definition, we can find t(2) = 2t(1) = 2(1) = 2.
Similarly, t(3) = 3t(2) = 3(2) = 6.
Finally, we are given that T() = √π.
Learn more about mathematical induction
brainly.com/question/29503103
#SPJ11
Write step-by-step solutions and justify your answers. 1) [25 Points] Reduce the given Bernoulli's equation to a linear equation and solve it. dy X - 6xy = 5xy³. dx 2) [20 Points] The population, P, of a town increases as the following equation: P(t) 100ekt If P(4) = 130, what is the population size at t = 10? =
1) The linear equation formed is [tex]\(y^3 = \frac{6xy}{4v - 5x}\)[/tex]
2) The population size at t = 10 is approximately 177.82.
1) To reduce the given Bernoulli's equation to a linear equation, we can use a substitution method.
Given the equation: [tex]\(\frac{dy}{dx} - 6xy = 5xy^3\)[/tex]
Let's make the substitution: [tex]\(v = y^{1-3} = y^{-2}\)[/tex]
Differentiate \(v\) with respect to \(x\) using the chain rule:
[tex]\(\frac{dv}{dx} = \frac{d(y^{-2})}{dx} = -2y^{-3} \frac{dy}{dx}\)[/tex]
Now, substitute [tex]\(y^{-2}\)[/tex] and \[tex](\frac{dy}{dx}\)[/tex] in terms of \(v\) and \(x\) in the original equation:
[tex]\(-2y^{-3} \frac{dy}{dx} - 6xy = 5xy^3\)[/tex]
Substituting the values:
[tex]\(-2v \cdot (-2y^3) - 6xy = 5xy^3\)[/tex]
Simplifying:
[tex]\(4vy^3 - 6xy = 5xy^3\)[/tex]
Rearranging the terms:
[tex]\(4vy^3 - 5xy^3 = 6xy\)[/tex]
Factoring out [tex]\(y^3\)[/tex]:
[tex]\(y^3(4v - 5x) = 6xy\)[/tex]
Now, we have a linear equation: [tex]\(y^3 = \frac{6xy}{4v - 5x}\)[/tex]
Solve this linear equation to find the solution for (y).
2) The population equation is given as: [tex]\(P(t) = 100e^{kt}\)[/tex]
Given that [tex]\(P(4) = 130\)[/tex], we can substitute these values into the equation to find the value of (k).
[tex]\(P(4) = 100e^{4k} = 130\)[/tex]
Dividing both sides by 100:
[tex]\(e^{4k} = 1.3\)[/tex]
Taking the natural logarithm of both sides:
[tex]\(4k = \ln(1.3)\)[/tex]
Solving for \(k\):
[tex]\(k = \frac{\ln(1.3)}{4}\)[/tex]
Now that we have the value of \(k\), we can use it to find the population size at t = 10.
[tex]\(P(t) = 100e^{kt}\)\\\(P(10) = 100e^{k \cdot 10}\)[/tex]
Substituting the value of \(k\):
\(P(10) = 100e^{(\frac{\ln(1.3)}{4}) \cdot 10}\)
Simplifying:
[tex]\(P(10) = 100e^{2.3026/4}\)[/tex]
Calculating the value:
[tex]\(P(10) \approx 100e^{0.5757} \approx 100 \cdot 1.7782 \approx 177.82\)[/tex]
Therefore, the population size at t = 10 is approximately 177.82.
Learn more about population size
https://brainly.com/question/30881076
#SPJ11
Find the perfect square for first 5 odd natural number
The perfect squares of the first 5 odd natural numbers, we can simply square each number individually. The first 5 odd natural numbers are:
1, 3, 5, 7, 9
To find the perfect square of a number, we square it by multiplying the number by itself. Therefore, we can calculate the perfect squares as follows:
1^2 = 1
3^2 = 9
5^2 = 25
7^2 = 49
9^2 = 81
So, the perfect squares of the first 5 odd natural numbers are:
1, 9, 25, 49, 81
These numbers represent the squares of the odd natural numbers 1, 3, 5, 7, and 9, respectively.
Learn more about natural here
https://brainly.com/question/2228445
#SPJ11
2. Let f be an integrable function on the interval [a, b] and let g be a function so that g(x) = f(x) for alle [a, b] (c) for some ce [a, b]. In other words, ƒ and g are the same function everywhere on [a,b], except maybe at = c.
(a) Prove that g is bounded on [a, b].
(b) Let P= {0,1,...,,) be the partition that divides the interval [a, b] into n subintervals of equal length. So zo a and b. More generally, write down an expression for x, in terms of
(c) Let M>0 be an upper bound for both If and lgl on [a,b]. Show that:
4M UP (9)-UP. (≤:
Lp, (9) LP (f)|≤ 4M
(Hint: If you're stuck, just write out the formulas for Up (9) and Up (f) and compare the terms. Do the same for the lower sums.)
(a) Proof of g being bounded on [a, b]If a function is integrable on a finite interval, then it must be bounded. This can be proven by the contradiction method.If g is unbounded on [a, b], then for all K, there exist x such that f(x) > K and x ∈ [a, b].
However, this implies that for all ε> 0, the integral of f over [a, b] is greater than ε times the measure of the set of x such that f(x) > K. But, this set is not empty since g is unbounded; hence, this integral must be infinity since ε can be arbitrarily small, contradicting the fact that f is integrable on [a, b].Therefore, g must be bounded on [a, b].
(b) Expression for x, in terms ofPn = {x0, x1, x2, ..., xn} is a partition of [a, b] into n sub-intervals of equal length. The width of each sub-interval is given by (b - a) / n.Let ci be the ith point in the partition, so c0 = a and cn = b. For any i = 1, 2, ..., n, ci = a + (b - a)i/n. So, ci can be written as ci = a + i × width.
(c) Proof of inequality |Up (g) - Up (f)| ≤ 4M/n |c - a| (Hint: the same proof can be used to show that |Lp (g) - Lp (f)| ≤ 4M/n |b - c|.) Up (g) is the upper sum of g with respect to Pn, and Up (f) is the upper sum of f with respect to Pn. So,
Up (g) = Σ (gi) × Δxandi=1 ,Up (f) = Σ (fi) × Δxandi=1
where Δx = (b - a) / n is the width of each sub-interval, and gi and fi are the sup remums of g and f over each sub interval, respectively.
Given that M is an upper bound of both f and g on [a, b], then gi ≤ M and fi ≤ M for all i = 1, 2, ..., n. Hence,|gi - fi| ≤ M - M = 0 for all i = 1, 2, ..., n.
So,|Up (g) - Up (f)| = |Σ (gi - fi) × Δx|andi=1n|Δx|Σ|gi - fi|≤ 4M|Δx|by the triangle inequality, where|c - a|≤ |gi - fi|, and|M - c|≤ |gi - fi|.Therefore,|Up (g) - Up (f)| ≤ 4M/n |c - a|, completing the proof.
To know more about finite interval refer here:
https://brainly.com/question/32998509
#SPJ11
The determinant of the matrix A= [−7 5 0 1
8 6 0 0
0 1 0 0
−3 3 3 2]
is___
Hint: Find a good row or column and expand by minors.
The determinant of the given matrix A is calculated by expanding along a row or column using minors.
To find the determinant of the matrix A, we can use the expansion by minors method. We will choose a row or column with the most zeros to simplify the calculation.
In this case, the second column of matrix A contains the most zeros. Therefore, we will expand along the second column using minors.
Let's denote the determinant of matrix A as det(A). We can calculate it as follows:
det(A) = (-1)^(1+2) * A[1][2] * M[1][2] + (-1)^(2+2) * A[2][2] * M[2][2] + (-1)^(3+2) * A[3][2] * M[3][2] + (-1)^(4+2) * A[4][2] * M[4][2]
Here, A[i][j] represents the element in the i-th row and j-th column of matrix A, and M[i][j] represents the minor of A[i][j].
Now, let's calculate the minors and substitute them into the formula:
M[1][2] = det([6 0 0; 1 0 0; 3 3 2]) = 0
M[2][2] = det([-7 0 1; 0 0 0; -3 3 2]) = 0
M[3][2] = det([-7 0 1; 8 0 0; -3 3 2]) = -3 * det([-7 1; 8 0]) = -3 * (-56) = 168
M[4][2] = det([-7 0 1; 8 6 0; -3 3 3]) = det([-7 1; 8 0]) = -56
Substituting these values into the formula, we have:
det(A) = (-1)^(1+2) * A[1][2] * M[1][2] + (-1)^(2+2) * A[2][2] * M[2][2] + (-1)^(3+2) * A[3][2] * M[3][2] + (-1)^(4+2) * A[4][2] * M[4][2]
= (-1)^(1+2) * 5 * 0 + (-1)^(2+2) * 6 * 0 + (-1)^(3+2) * 1 * 168 + (-1)^(4+2) * 3 * (-56)
= 0 + 0 + 1 * 168 + 3 * (-56)
= 168 - 168
= 0
Therefore, the determinant of matrix A is 0.
To learn more about matrix Click Here: brainly.com/question/29132693
#SPJ11
Use the construction in the proof of the Chinese Remainder Theorem to solve the
following system of congruences:
x ≡ 2 mod 5, x ≡ 6 mod 8, x ≡ 10 mod 13
Be sure to state the values for m, Mi, and yi in the proof’s construction.
The solution to the system of congruences is x ≡ 118.
How to calculate the value of M, which is the product of all the moduli. In this case, M = 5 * 8 * 13 = 520?To solve the system of congruences using the construction in the proof of the Chinese Remainder Theorem, we follow these steps:
Identify the moduli (m_i) in the system of congruences. In this case, we have [tex]m_1 = 5, m_2 = 8,[/tex] and [tex]m_3 = 13[/tex].
Compute the value of M, which is the product of all the moduli. In this case, M = [tex]m_1 * m_2 * m_3[/tex] = 5 * 8 * 13 = 520.
For each congruence, calculate the value of [tex]M_i[/tex], which is the product of all the moduli except the current modulus. In this case, we have:
[tex]M_1 = m_2 * m_3 = 8 * 13 = 104\\M_2 = m_1 * m_3 = 5 * 13 = 65\\M_3 = m_1 * m_2 = 5 * 8 = 40\\[/tex]
Find the modular inverses ([tex]y_i[/tex]) of each [tex]M_i[/tex] modulo the corresponding modulus ([tex]m_i[/tex]). The modular inverses satisfy the equation [tex]M_i * y_i[/tex] ≡ 1 (mod [tex]m_i[/tex]). In this case, we have:
[tex]y_1[/tex] ≡ 104 * [tex](104^{(-1)} mod 5)[/tex] ≡ 4 * 4 ≡ 16 ≡ 1 (mod 5)
[tex]y_2[/tex] ≡ 65 * ([tex]65^{(-1)} mod 8[/tex]) ≡ 1 * 1 ≡ 1 (mod 8)
[tex]y_3[/tex]≡ 40 * ([tex]40^{(-1)} mod 13[/tex]) ≡ 2 * 12 ≡ 24 ≡ 11 (mod 13)
Compute the value of x by using the Chinese Remainder Theorem's construction:
x ≡ ([tex]a_1 * M_1 * y_1 + a_2 * M_2 * y_2 + a_3 * M_3 * y_3[/tex]) mod M
≡ (2 * 104 * 1 + 6 * 65 * 1 + 10 * 40 * 11) mod 520
≡ (208 + 390 + 4400) mod 520
≡ 4998 mod 520
≡ 118 (mod 520)
Therefore, the solution to the system of congruences is x ≡ 118 (mod 520).
Learn more about congruences
brainly.com/question/32172817
#SPJ11
Evaluate the discriminant for each equation. Determine the number of real solutions. -2x²+7 x=6 .
The discriminant is positive (1), it indicates that there are two distinct real solutions for the equation -2x²+7x=6.
To evaluate the discriminant for the equation -2x²+7x=6 and determine the number of real solutions, we can use the formula b²-4ac.
First, let's identify the values of a, b, and c from the given equation. In this case, a = -2, b = 7, and c = -6.
Now, we can substitute these values into the discriminant formula:
Discriminant = b² - 4ac
Discriminant = (7)² - 4(-2)(-6)
Simplifying this expression, we have:
Discriminant = 49 - 48
Discriminant = 1
Since the discriminant is positive (1), it indicates that there are two distinct real solutions for the equation -2x²+7x=6.
To know more about discriminant refer here:
https://brainly.com/question/29018418
#SPJ11
The function g(x) = -6x+3. Compare the slopes and y-intercepts. Ca OA. The slopes are different but the y-intercepts are the same. O B. Both the slopes and the y-intercepts are the same. OC. The slopes are the same but the y-intercepts are different. D. Both the slopes and the int
The correct option is A, the slopes are different and the y-intercepts are equal.
How to compare the slopes and the y-intercepts?The general linear equation is:
y = ax + b
Where a is the slope and b is the y-intercept.
We know that:
g(x) = -6x + 3
And f(x) is on the graph, the y-intercept is:
y = 3
f(x) = ax + 3
And it passes through (1, 1), then:
1 = a*1 + 3
1 - 3 = a
-2 = a
the line is:
f(x) = -2x + 3
Then:
The slope of f(x) is smaller.
The y-intercepts are equal.
The correct option is A.
Learn more about linear equations at:
https://brainly.com/question/1884491
#SPJ1
The DNA molecule has the shape of a double helix. The radius of each helix is about 9 angstroms (1Å= 10-8 cm). Each helix rises about 32 Å during each complete turn, and there are about 2.5 x 108 complete turns. Estimate the length of each helix. (Round your answer to two decimal places.) ×1010A
The length of each helix in the DNA molecule is approximately 7.68 centimeters.
To calculate the length of each helix, we need to multiply the rise per turn by the number of turns and convert the result to centimeters. Given that each helix rises about 32 Å (angstroms) during each complete turn and there are about 2.5 x 10^8 complete turns, we can calculate the length as follows:
Length of each helix = Rise per turn × Number of turns
= 32 Å × 2.5 x 10^8 turns
To convert the length from angstroms to centimeters, we can use the conversion factor: 1 Å = 10^(-8) cm.
Length of each helix = 32 Å × 2.5 x 10^8 turns × (10^(-8) cm/Å)
Simplifying the equation:
Length of each helix = 32 × 2.5 × 10^8 × 10^(-8) cm
= 8 × 10^(-6) cm
= 7.68 cm (rounded to two decimal places)
Therefore, the length of each helix in the DNA molecule is approximately 7.68 centimeters.
To know more about DNA structure and its properties, refer here:
https://brainly.com/question/33306649#
#SPJ11
The table below represents the closing prices of stock ABC for the last five days. What is the r-value of the linear regression that fits these data?
Day
1
2
3
4
5
Value
472.08
454.26
444.95
439.49
436.55
О A. -0.94719
O B. 0.97482
O C. -0.75421
O D. 0.89275
The r-value of the linear regression that fits these data is approximately -0.94719. The correct answer is option A.
To find the r-value of the linear regression that fits the given data, we need to calculate the correlation coefficient. The correlation coefficient, also known as the Pearson correlation coefficient, measures the strength and direction of the linear relationship between two variables.
First, we calculate the mean (average) of the x-values (days) and the y-values (closing prices):
mean(x) = (1 + 2 + 3 + 4 + 5) / 5 = 3
mean(y) = (472.084 + 454.264 + 444.954 + 439.494 + 436.55) / 5 = 449.6704
Next, we calculate the deviations from the mean for both x and y:
x-deviation = (1 - 3, 2 - 3, 3 - 3, 4 - 3, 5 - 3) = (-2, -1, 0, 1, 2)
y-deviation = (472.084 - 449.6704, 454.264 - 449.6704, 444.954 - 449.6704, 439.494 - 449.6704, 436.55 - 449.6704) = (22.4136, 4.5936, -4.7164, -10.1764, -13.1204)
We calculate the sum of the products of the deviations:
[tex]\sum(x-deviation \times y-deviation) = (-2 \times 22.4136) + (-1 \times 4.5936) + (0 \times -4.7164) + (1 \times -10.1764) + (2\times -13.1204) = -80.6744[/tex]
Next, we calculate the square root of the sum of the squares of the deviations for both x and y:
[tex]\sqrt(\sum(x-deviation)^2) = \sqrt((-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2) = \sqrt(4 + 1 + 0 + 1 + 4) = \sqrt10\sqrt(\sum(y-deviation)^2) = \sqrt(22.4136^2 + 4.5936^2 + (-4.7164)^2 + (-10.1764)^2 + (-13.1204)^2) = \sqrt(501.5114296 + 21.1240896 + 22.1985696 + 103.5532496 + 171.7240144) = \sqrt820.1113528 = 28.649[/tex]
Finally, we calculate the correlation coefficient (r-value):
[tex]r-value = \sum(x-deviation \times y-deviation) / (\sqrt(\sum(x-deviation)^2) \times \sqrt(\sum(y-deviation)^2)) = -80.6744 / (√10 \times 28.649) = -0.94719[/tex]
Option A.
For more such questions on linear regression
https://brainly.com/question/30401933
#SPJ8