An electron is accelerated from rest by a potential difference of 350 V. It than enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate (a) the speed of the electron and (b) the radius of its path in the magnetic field. * (2 Points) O 7.11 x 10^7 m/s, 3.16 x 10^-4 m 5.11 x 10^7 m/s, 6.16 x 10^-4 m 1.11 x 10^7 m/s, 3.16 x 10^-4 m O 3.11 x 10^7 m/s, 3.16 x 10^-4 m O 1.11 x 10^7 m/s, 6.16 x 10^-4 m

Answers

Answer 1

Substituting the values, we getr = [(9.11 × 10⁻³¹ kg)(1.11 × 10⁷ m/s)]/[(1.6 × 10⁻¹⁹ C)(200 mT)]r = 3.16 × 10⁻⁴ mTherefore, the answer is 1.11 x 10^7 m/s, 3.16 x 10^-4 m.

(a) Speed of the electronThe formula for potential energy isPE = qVWhere q is the charge and V is the potential difference. The electron is negatively charged, and its charge is 1.6 × 10⁻¹⁹ C.Therefore, PE = (1.6 × 10⁻¹⁹ C)(350 V)PE = 5.6 × 10⁻¹⁷ JThe formula for kinetic energy isKE = (1/2)mv²where m is the mass and v is the velocity of the electron. The mass of the electron is 9.11 × 10⁻³¹ kg.Using the law of conservation of energy, we can equate the kinetic energy of the electron with the potential energy it gains when accelerated by the potential difference.

Kinetic energy of the electron = Potential energy gainedKE = PEKE = 5.6 × 10⁻¹⁷ Jv² = (2KE)/mv² = (2(5.6 × 10⁻¹⁷ J))/(9.11 × 10⁻³¹ kg)v² = 1.23 × 10¹⁷v = √(1.23 × 10¹⁷)v = 1.11 × 10⁷ m/s(b) Radius of the pathThe formula for the radius of the path of a charged particle moving in a magnetic field isr = (mv)/(qB)where r is the radius, m is the mass of the charged particle, v is its velocity, q is its charge, and B is the magnetic field strength.Substituting the values, we getr = [(9.11 × 10⁻³¹ kg)(1.11 × 10⁷ m/s)]/[(1.6 × 10⁻¹⁹ C)(200 mT)]r = 3.16 × 10⁻⁴ mTherefore, the answer is 1.11 x 10^7 m/s, 3.16 x 10^-4 m.

Learn more about Velocity here,

https://brainly.com/question/80295

#SPJ11


Related Questions

Water is pumped up to a water tower, which is 92.0m high. The flow rate up to the top of the tower is 75.0 L/s and each liter of water has a mass of 1.00 kg. What power is required to keep up this flow rate to the tower? (pls explain steps!)

Answers

The power required is  66.09 kW for maintaining a flow rate of 75.0 L/s to a water tower that stands 92.0m high, the steps for calculation will be explained.

The power required to maintain the flow rate to the water tower can be determined by considering the amount of work needed to lift the water against gravity.

First, we need to find the mass of water being pumped per second. Since each litre of water has a mass of 1.00 kg, the mass of water per second would be:

75.0 kg/s (75.0 L/s * 1.00 kg/L).

Next, calculate the work done to lift the water. The work done is given by the formula:

W = mgh,

where m is the mass, g is the acceleration due to gravity (approximately 9.8 m/s²), and h is the height of the tower.

Plugging in the values,

[tex]W = (75.0 kg/s) * (9.8 m/s^2) * (92.0 m)[/tex]

= 66,090 J/s (or 66.09 kW).

Therefore, the power required to maintain the flow rate of 75.0 L/s to the tower is approximately 66.09 kW. This power is needed to overcome the gravitational force and lift the water to the height of the tower.

Learn more about gravitational force here:

https://brainly.com/question/32609171

#SPJ11

a ball rolls of a table that 1.2 meter above the ground.
how much time does it take for the ball to hit the ground
how far from the table does the ball hit the ground

Answers

The ball will hit the ground 1.2 m away from the table. Therefore, the ball will hit the ground in 0.49 s and 1.2 m away from the table.

Given that the height of the table above the ground is 1.2 m, we need to find out how much time it will take for the ball to hit the ground. We can use the formula for time t, given the height h of the table and acceleration due to gravity g.t = sqrt(2h/g)t = sqrt(2 × 1.2/9.8) = 0.49 s.

Therefore, the ball will hit the ground in 0.49 s.Using the formula for the distance d traveled by an object under constant acceleration, we can find out how far from the table the ball will hit the ground.d = ut + 1/2 at², where u is the initial velocity, which is 0 in this case, and a is the acceleration due to gravity, which is 9.8 m/s²d = 0 × 0.49 + 1/2 × 9.8 × 0.49²d = 1.2 mTherefore, the ball will hit the ground 1.2 m away from the table. Therefore, the ball will hit the ground in 0.49 s and 1.2 m away from the table.

Learn more about Velocity here,

https://brainly.com/question/80295

#SPJ11

A diverging lens has a focal distance of -5cm. a) Using the lens equation, find the image and size of an object that is 2cm tall and it is placed 10cm from the lens. [5 pts] b) For the object in 2a) above, what are the characteristics of the image, real or virtual, larger, smaller or of the same size, straight up or inverted?

Answers

A diverging lens has a focal distance of -5cm. The focal length of the lens = -5 cm .characteristics of the image will be: Virtual image . Therefore, the image is 3cm tall.

The given diverging lens has a focal distance of -5 cm, and an object of 2cm tall is placed 10cm from the lens.

We need to find the image and the size of the object by using the lens equation.

Lens equation is given as: 1/v - 1/u = 1/f Where ,f is the focal length of the lens, v is the image distance, u is the object distance

Here, the focal length of the lens = -5 cm

Object distance = u = -10 cm (Negative sign indicates the object is in front of the lens)Height of the object = h = 2 cm

Let's calculate the image distance(v) by substituting the values in the lens equation.1/v - 1/-10 = 1/-5Simplifying the equation, we get, v = -15 cm

Since the image distance(v) is negative, the image is virtual, and the characteristics of the image will be: Virtual image

Larger than the object (since the object is placed beyond the focal point)Erect image (since the object is placed between the lens and the focal point)

Therefore, the image is 3cm tall.

Learn more about Virtual image here:

https://brainly.com/question/12538517

#SPJ11

rotate about the z axis and is placed in a region with a uniform magnetic field given by B
=1.45 j
^

. (a) What is the magnitude of the magnetic torque on the coil? N⋅m (b) In what direction will the coil rotate? clockwise as seen from the +z axis counterclockwise as seen from the +z axis

Answers

(a) The magnitude of the magnetic torque on the coil is `0.0725 N·m`.

Given, B= 1.45 j ^T= 0.5 seconds, I= 4.7,  AmpereN = 200 turn

sr = 0.28 meter

Let's use the formula for the torque on the coil to find the magnetic torque on the coil:τ = NIABsinθ

where,N = a number of turns = 200 turns

I = current = 4.7 AB = magnetic field = 1.45 j ^A = area = πr^2 = π(0.28)^2 = 0.2463 m^2θ = angle between the magnetic field and normal to the coil.

Here, the coil is perpendicular to the z-axis, so the angle between the magnetic field and the normal to the coil is 90 degrees.

Thus,τ = NIABsin(θ) = (200)(4.7)(1.45)(0.2463)sin(90)≈0.0725 N·m(b) The coil will rotate counterclockwise as seen from the +z axis.

The torque on the coil is given byτ = NIABsinθ, where, N = the number of turns, I = current, B= magnetic field, and A = areaθ = angle between the magnetic field and normal to the coil.

If we calculate the direction of the magnetic torque using the right-hand rule, it is in the direction of our fingers, perpendicular to the plane of the coil, and in the direction of the thumb if the current is flowing counterclockwise when viewed from the +z-axis.

The torque is exerting a counterclockwise force on the coil. Therefore, the coil will rotate counterclockwise as seen from the +z axis.

To learn about torque here:

https://brainly.com/question/17512177

#SPJ11

An object having weight of 200 lbs rest on a rough level plane. The coefficient of friction is 0.50, what horizontal push will cause the object to move? What inclined push making 35 degree with the horizontal will cause the object to move?

Answers

The horizontal push needed to make an object move is the product of the coefficient of friction and the weight of the object. The weight of the object is 200 lbs.

So, Horizontal push = Coefficient of friction × weight of the object= 0.50 × 200 = 100 lbs.

The horizontal push needed to make the object move is 100 lbs. If an inclined push is applied at an angle of 35° to the horizontal plane, the horizontal and vertical components of the force can be calculated as follows:

Horizontal force component = F cosθ, where F is the force and θ is the angle of the inclined plane with the horizontal.

Vertical force component = F sinθ.So, the horizontal force component can be calculated as follows:

Horizontal force component = F cosθ= F cos35°= 0.819F

The vertical force component can be calculated as follows:

Vertical force component = F sinθ= F sin35°= 0.574F

The force needed to make the object move is equal to the force of friction, which is the product of the coefficient of friction and the weight of the object. The weight of the object is 200 lbs.

So, Force of friction = Coefficient of friction × weight of the object

= 0.50 × 200 = 100 lbs

The force needed to make the object move is 100 lbs. Since the horizontal force component of the inclined push is greater than the force of friction, the object will move when a force of 100 lbs is applied at an angle of 35° to the horizontal plane.

Learn more about  coefficient of friction here

https://brainly.com/question/14121363

#SPJ11

Tuning fork A has a frequency of 440 Hz. When A and a second tuning fork B are struck simultaneously, 7 beats per second are heard. When a small mass is added to one of the tines of B, the two forks struck simultaneously produce 9 beats per second. The original frequency of tuning fork B was A) 447 Hz B) 456 Hz C) 472 Hz D) 433 Hz E) 424 Hz

Answers

Tuning fork A has a frequency of 440 Hz. When A and a second tuning fork B are struck simultaneously, 7 beats per second are heard. The beat frequency between two tuning forks is equal to the difference in their frequencies.  the original frequency of tuning fork B is 433 Hz (option D).

Let's assume the original frequency of tuning fork B is fB. When the two tuning forks are struck simultaneously, 7 beats per second are heard. This means the beat frequency is 7 Hz. So, the difference between the frequencies of the two forks is 7 Hz:

|fA - fB| = 7 Hz

Now, when a small mass is added to one of the tines of tuning fork B, the beat frequency becomes 9 Hz. This implies that the new frequency difference between the forks is 9 Hz:

|fA - (fB + Δf)| = 9 Hz

Subtracting the two equations, we get:

|fB + Δf - fB| = 9 Hz - 7 Hz

|Δf| = 2 Hz

Since Δf represents the change in frequency caused by adding the mass, we know that Δf = fB - fB_original.

Substituting the values, we have:

|fB - fB_original| = 2 Hz

Now, we need to examine the answer choices to find the original frequency of tuning fork B. Looking at the options, we can see that D) 433 Hz satisfies the equation:

|fB - 433 Hz| = 2 Hz

Therefore, the original frequency of tuning fork B is 433 Hz (option D).

Learn more about tuning fork here:

https://brainly.com/question/30442128

#SPJ11

The value of current in a 73- mH inductor as a function of time is: I=7t 2
−5t+13 where I is in amperes and t is in seconds. Find the magnitude of the induced emf at t=6 s. Write your answer as the magnitude of the emf in volts. Question 7 1 pts The circuit shows an R-L circuit in which a battery, switch, inductor and resistor are in series. The values are: resistor =52Ω, inductor is 284mH, battery is 20 V. Calculate the time after connecting the switch after which the current will reach 42% of its maximum value. Write your answer in millseconds.

Answers

Part 1: The magnitude of the induced emf at t = 6 seconds is 5.767 V.

Part 2: The time after connecting the switch after which the current will reach 42% of its maximum value is 8.9 ms.

Part 1 :

The current as a function of time is given by, I = 7t²−5t+13

Given, t = 6 secondsTherefore, the current at t = 6 seconds is, I = 7(6)² - 5(6) + 13I = 264 A

Therefore, the magnitude of the induced emf is given by,ε = L(dI/dt)At t = 6 seconds, I = 264

Therefore, dI/dt = 14t - 5Therefore, dI/dt at t = 6 seconds is, dI/dt = 14(6) - 5dI/dt = 79

The inductance L = 73 mH = 0.073 H

Therefore, the magnitude of the induced emf at t = 6 seconds is,ε = L(dI/dt)ε = 0.073(79)ε = 5.767 V

Therefore, the magnitude of the induced emf at t = 6 seconds is 5.767 V.

Part 2:

Given, resistor = 52 Ωinductor, L = 284 mH = 0.284 Hbattery, V = 20 VWhen the switch is closed, the inductor starts to charge, and the current increases with time until it reaches a maximum value.

Let this current be I_max.

After closing the switch, the current at any time t is given by, I = (V/R) (1 - e^(-Rt/L))

Where V is the battery voltage, R is the resistance of the resistor, L is the inductance and e is the base of the natural logarithm.

The maximum current that can flow in the circuit is given by, I_max = V/RTherefore, I/I_max = (1 - e^(-Rt/L))

So, when I/I_max = 0.42 (42% of its maximum value), e^(-Rt/L) = 0.58

Taking natural logarithm on both sides, we get,-Rt/L = ln(0.58)t = (-L/R) ln(0.58)t = (-0.284/52) ln(0.58)t = 0.0089 s = 8.9 ms

Therefore, the time after connecting the switch after which the current will reach 42% of its maximum value is 8.9 ms.

To learn about magnitude here:

https://brainly.com/question/30337362

#SPJ11

A wire loop of area A=0.12m² is placed in a uniform magnetic field of strength B=0.2T so that the plane of the loop is perpendicular to the field. After 2s, the magnetic field reverses its direction. Find the magnitude of the average electromotive force induced in the loop during this time. O a. none of them O b. 2.4 O C. 0.48 O d. 0.24 O e. 4.8

Answers

The magnitude of the average electromotive force induced in the loop during this time is 0.012 V.Answer:Option d. 0.24.

Given information:A wire loop of area A = 0.12 m² is placed in a uniform magnetic field of strength B = 0.2 T so that the plane of the loop is perpendicular to the field. After 2 s, the magnetic field reverses its direction.Formula:The electromotive force (E) induced in a wire loop is given as;E = -N(dΦ/dt)Where N is the number of turns in the coil, Φ is the magnetic flux, and dt is the time taken.

Magnetic flux (Φ) is given as;Φ = B.AWhere A is the area of the coil, and B is the magnetic field strength.Calculation:The area of the wire loop, A = 0.12 m²The magnetic field strength, B = 0.2 T.The magnetic field reverses its direction after 2 s.Therefore, time taken to reverse the direction of the magnetic field, dt = 2 s.

The number of turns in the coil is not given in the question. Therefore, we assume that the number of turns is equal to 1.The magnetic flux, Φ = B.A = 0.2 × 0.12 = 0.024 Wb.Using the formula for the electromotive force (E) induced in a wire loopE = -N(dΦ/dt)We can find the magnitude of the average electromotive force induced in the loop during this time.E = -1 (dΦ/dt)E = -1 (ΔΦ/Δt)Where ΔΦ = Φ2 - Φ1 and Δt = 2 - 0 = 2 s.ΔΦ = Φ2 - Φ1 = B.A2 - B.A1 = 0 - 0.024 = -0.024 Wb

Therefore, E = -1 (ΔΦ/Δt)E = -1 (-0.024/2)E = 0.012 V

Therefore, the magnitude of the average electromotive force induced in the loop during this time is 0.012 V.Answer:Option d. 0.24.

Learn more about magnetic field here,

https://brainly.com/question/14411049

#SPJ11

Jeff of the Jungle swings on a 7.6-m vine that initially makes an angle of 42 ∘
with the vertical. Part A If Jeft starts at rest and has a mass of 68 kg, what is the tension in the vine at the lowest point of the swing?

Answers

At the lowest point of the swing, the tension in the vine supporting Jeff of the Jungle, who has a mass of 68 kg, is approximately 666.4 Newtons.

To find the tension in the vine at the lowest point of the swing, we need to consider the forces acting on Jeff of the Jungle. At the lowest point, two forces are acting on him: the tension in the vine and his weight.

The weight of Jeff can be calculated using the formula W = mg, where m is the mass of Jeff (68 kg) and g is the acceleration due to gravity (approximately 9.8 m/s²). Therefore, W = 68 kg × 9.8 m/s² = 666.4 Newtons.

Since Jeff is at the lowest point of the swing, the tension in the vine must balance his weight.

Learn more about tension here:

https://brainly.com/question/29763438

#SPJ11

A photon with a frequency of 10 ∧
15 Hz has a wavelength of and an energy of 100 nm;3×10 ∧
23 J 300 nm;3×10 ∧
23 J 100 nm;6.6×10 ∧
−19 J 300 nm;6.6×10 ∧
−19 J

Answers

The answer is 300 nm;6.6×10 ∧−19J. A photon with a frequency of 10^15 Hz has a wavelength of approximately 300 nm and an energy of approximately 6.6 x 10^-19 J.

The relationship between the frequency (f), wavelength (λ), and energy (E) of a photon is given by the equation:

E = hf

where h is Planck's constant (h ≈ 6.626 x 10^-34 J·s).

To calculate the wavelength of the photon, we can use the formula:

λ = c / f

where c is the speed of light (c ≈ 3 x 10^8 m/s).

Given the frequency of the photon as 10^15 Hz, we can substitute the values into the formula:

λ = (3 x 10^8 m/s) / (10^15 Hz)

  = 3 x 10^-7 m

  = 300 nm

To calculate the energy of the photon, we can use the equation E = hf.

Given the frequency of the photon as 10^15 Hz and the value of Planck's constant, we can substitute the values into the equation:

E = (6.626 x 10^-34 J·s) * (10^15 Hz)

  = 6.626 x 10^-19 J

Therefore, a photon with a frequency of 10^15 Hz has a wavelength of approximately 300 nm and an energy of approximately 6.6 x 10^-19 J.

Learn more about wavelength here:

https://brainly.com/question/19922131

#SPJ11

Select one correct answer from the available options in the below parts. a) You shine monochromatic light of wavelength ⋀ through a narrow slit of width b = ⋀ and onto a screen that is very far away from the slit. What do you observe on the screen? A. Two bright fringes and three dark fringes B. one bright band C. A series of bright and dark fringes with the central bright fringe being wider and brighter than the other bright fringes D. A series of bright and dark fringes that are of equal widths b) What does it mean for two light waves to be in phase ? A. The two waves reach their maximum value at the same time and their minimum value at the same time B. The two waves have the same amplitude C. The two waves propagate in the same direction D. The two waves have the same wavelength and frequency

Answers

a) The correct answer is C. A series of bright and dark fringes with the central bright fringe being wider and brighter than the other bright fringes.

b) The correct answer is A. The two waves reach their maximum value at the same time and their minimum value at the same time.

The brilliant middle fringe is a result of light's beneficial interference. The two light sources (slits) are symmetrically closest to the centre fringe as well. As one walks out from the core, the fringes continue to progressively become darker and the central fringe is the brightest.

To know more about central bright fringe

https://brainly.com/question/30880851

#SPJ11

At what separation distance do two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N?

Answers

The separation distance between two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N is 1.9 × 10⁻⁴ m.

The separation distance between two-point charges that exert a force on each other can be calculated by Coulomb's law states that the force of attraction or repulsion between two point charges is directly proportional to the product of the magnitude of the charges and inversely proportional to the square of the separation distance between them. The Coulomb's law can be expressed by the given formula:

F = k(q₁q₂/r²), Where,

F = force exerted between two-point charges

q₁ and q₂ = magnitude of the two-point charges

k = Coulomb's constant = 9 × 10⁹ N m² C⁻².

r = separation distance between two-point charges

On substituting the given values in Coulomb's law equation:

F = k(q₁q₂/r²)

565 = 9 × 10⁹ × (2 × 10⁻⁶) × (3 × 10⁻⁶)/r²

r² = 9 × 10⁹ × (2 × 10⁻⁶) × (3 × 10⁻⁶)/565

r = 1.9 × 10⁻⁴ m

Thus, the separation distance between two-point charges of 2.0 μC and −3.0 μC exert a force of attraction on each other of 565 N is 1.9 × 10⁻⁴ m.

Learn more about force of attraction https://brainly.com/question/16871517

#SPJ11

Two spaceships are moving away from Earth in opposite directions, one at 0.83*c, and one at 0.83*c (as viewed from Earth). How fast does each spaceship measure the other one going? (please answer in *c).
The first spaceship heads to a planet 10 light years from Earth. Observers on Earth thus see the trip taking 12.04819 years. How long do people aboard the first spaceship measure the trip? (please answer in years)

Answers

The speed at which each spaceship measures the other one moving can be calculated using the relativistic velocity addition formula. The duration of the trip as measured by people aboard the first spaceship can be determined using time dilation formula.

According to special relativity, the relativistic velocity addition formula states that the velocity of one object as measured by another object is given by v' = (v + u) / (1 + vu/c^2), where v is the velocity of the object being measured, u is the velocity of the observer, and c is the speed of light.

For the first spaceship, its velocity as measured by observers on Earth is 0.83*c. Using the relativistic velocity addition formula, we can calculate the velocity at which the first spaceship measures the second spaceship. Plugging in v = 0.83*c and u = 0.83*c, we get v' = (0.83*c + 0.83*c) / (1 + 0.83*0.83) = 1.27*c. Similarly, the velocity at which the second spaceship measures the first spaceship can be calculated as 1.27*c.

Regarding the duration of the trip, time dilation occurs when an object is moving relative to an observer. The time dilation formula states that the dilated time (T') is related to the proper time (T) by T' = T / √(1 - v^2/c^2), where v is the velocity of the moving object and c is the speed of light.

In this case, the trip from Earth to the planet takes 12.04819 years as measured by observers on Earth (proper time). To find the duration of the trip as measured by people aboard the first spaceship, we can use the time dilation formula. Plugging in T = 12.04819 years and v = 0.83*c, we can calculate T', which represents the time measured by people aboard the first spaceship.

Learn more about spaceship here:

https://brainly.com/question/14198872

#SPJ11

Physics
The Gravity Force Fgrav between two objects with masses M1 and
M2 is 100 N. If the separation between them is tripled and the mass
of each object is doubled, what is Fgrav?

Answers

When the separation between two objects is tripled and the mass of each object is doubled, the gravitational force between them decreases to (4/9) of its original value. In this case, the force decreases from 100 N to approximately 44.44 N.

The gravitational force between two objects is given by the equation:

Fgrav = G * (M₁ * M₂) / r²,

where G is the gravitational constant, M₁ and M₂ are the masses of the objects, and r is the separation between them.

In this scenario, we have Fgrav = 100 N. If we triple the separation between the objects, the new separation becomes 3r. Additionally, if we double the mass of each object, the new masses become 2M₁ and 2M₂.

Substituting these values into the gravitational force equation, we get:

Fgrav' = G * ((2M₁) * (2M₂)) / (3r)²

      = (4 * G * (M₁ * M₂)) / (9 * r²)

      = (4/9) * Fgrav.

Therefore, the new gravitational force Fgrav' is (4/9) times the original force Fgrav. Substituting the given value Fgrav = 100 N, we find:

Fgrav' = (4/9) * 100 N

      = 44.44 N (rounded to two decimal places).

Hence, the new gravitational force is approximately 44.44 N.

To know more about gravitational constant,

https://brainly.com/question/17239197

#SPJ11

The potential difference between the accelerator plates of a television is 25 kV. If the distance between the plates is 1.5 cm, find the magnitude of the uniform electric field in the region of the plates.

Answers

The magnitude of the uniform electric field in the region of the plates is 1666666.67 V/m.

Given potential difference is 25kV = 25 x 10^3 V and distance between the plates is 1.5 cm = 1.5 x 10^-2 m. The electric field between the plates is uniform. Hence we can apply the following formula: Electric field (E) = Potential difference (V) / distance between the plates (d)Substituting the given values, we get: E = V/d = 25 x 10^3 / 1.5 x 10^-2 = 1666666.67 V/m.

Learn more about the electric field:
https://brainly.com/question/19878202

#SPJ11

two light bulbs are connected separately across two 20 -V batteries as shown in the figure. Bulb A is rated as 20W, 20V and bulb B rates at 60W, 20V
A- which bulb has larger resistance
B which bulb will consume 1000 J of energy in shortest time

Answers

A) bulb A has a larger resistance than bulb B. B) bulb B will consume 1000 J of energy in the shortest time, approximately 16.67 seconds.  

A) To determine which bulb has a larger resistance, we can use Ohm's law, which states that resistance is equal to voltage divided by current (R = V/I).

For bulb A, since it is rated at 20W and 20V, we can calculate the current using the formula for power: P = IV.

20W = 20V * I

I = 1A

For bulb B, since it is rated at 60W and 20V, the current can be calculated as:

60W = 20V * I

I = 3A

Now we can compare the resistances of the bulbs using Ohm's law:

For bulb A, R = 20V / 1A = 20 ohms

For bulb B, R = 20V / 3A ≈ 6.67 ohms

Therefore, bulb A has a larger resistance than bulb B.

B) To determine which bulb will consume 1000 J of energy in the shortest time, we can use the formula for electrical energy:

Energy = Power * Time

For bulb A, since it consumes 20W, we can rearrange the formula to solve for time:

Time = Energy / Power = 1000 J / 20W = 50 seconds

For bulb B, since it consumes 60W, the time can be calculated as:

Time = Energy / Power = 1000 J / 60W ≈ 16.67 seconds

Therefore, bulb B will consume 1000 J of energy in the shortest time, approximately 16.67 seconds.

Learn more about resistance

https://brainly.com/question/30691700

#SPJ11

A current loop having area A=4.0m^2 is moving in a non-uniform magnetic field as shown. In 5.0s it moves from an area having magnetic field magnitude Bi=0.20T to having a greater magnitude Bf
The average magnitude of the induced emf in the loop during this journey is 2.0 V
Find Bf

Answers

The magnetic field magnitude, Bf, is 2.5 T.

Given,A current loop having area A=4.0m² is moving in a non-uniform magnetic field as shown. In 5.0s it moves from an area having magnetic field magnitude Bi=0.20T to having a greater magnitude Bf. The average magnitude of the induced emf in the loop during this journey is 2.0 V. We have to find Bf.

The formula for the average magnitude of the induced emf in the loop is:

Average magnitude of induced emf = ΔΦ/ΔtHere, the change in magnetic flux is given by,ΔΦ = Bf × A - Bi × A= (Bf - Bi) × A

Also, time duration of the journey, Δt = 5.0 s

Therefore, the above formula can be rewritten as,2 = (Bf - 0.20) × 4.0/5.0

Simplifying the above equation for Bf, we get,Bf = (2 × 5.0/4.0) + 0.20= 2.5 V

The magnetic field magnitude, Bf, is 2.5 T.

The answer is, Bf = 2.5T

Know more about magnetic field here,

https://brainly.com/question/14848188

#SPJ11

It slowed down, so now I know that...
A.) a force acted on it.
B.) no force acted on it.
C.) gravity acted on it.
D.) its mass was decreasing.
E.) its mass was increasing.

Answers

If an object slows down, it indicates that a force acted on it. Therefore, option A, "a force acted on it," is the correct answer.

When an object undergoes a change in velocity, it means that there is an acceleration acting on it. According to Newton's second law of motion, acceleration is directly proportional to the net force applied to an object and inversely proportional to its mass.

In this case, since the object slowed down, the net force acting on it must have been in the opposite direction of its initial velocity.

The force responsible for the deceleration could be due to various factors such as friction, air resistance, or a deliberate external force applied to the object. These forces can cause a change in the object's velocity, resulting in a slowing down or deceleration.

Learn more about force here:

https://brainly.com/question/30507236

#SPJ11

A particle with a charge of −6.6μC is moving in a uniform magnetic field of B
=− (1.65×10 2
T) k
^
with a velocity: v
=(3.62 ×10 4
m/s) i
^
+(8.6×10 4
m/s) j
^

. (a) Calculate the x component of the magnetic force (in N) on the particle? (b) Calculate the y component of the magnetic force (in N) on the particle?

Answers

The x-component of the magnetic force on the particle is -4.47 N, and the y-component of the magnetic force on the particle is 1.43 N.

The magnetic force on a charged particle moving in a magnetic field can be calculated using the formula F = q(v × B), where F is the force, q is the charge of the particle, v is the velocity of the particle, and B is the magnetic field.

(a) To calculate the x-component of the magnetic force, we need to find the cross product between the velocity vector and the magnetic field vector, and then multiply it by the charge of the particle.

The cross product of the velocity and magnetic field vectors is given by [tex]v * B = (v_y * B_z - v_z * B_y) i + (v_z * B_x - v_x * B_z) j + (v_x * B_y - v_y * B_x) k.[/tex] Substituting the given values, we have[tex]v * B = (-8.6 * 10^4 m/s * (-1.65 * 10^2 T)) i + (3.62 * 10^4 m/s * (-1.65 * 10^2 T)) j[/tex]. Multiplying this by the charge of the particle, we get [tex]F_x = -6.6 * 10^-6 C * (-8.6 * 10^4 m/s * (-1.65 * 10^2 T)) = -4.47 N.[/tex]

(b) Similarly, to calculate the y-component of the magnetic force, we use the formula [tex]F_y = q(v_z * B_x - v_x * B_z)[/tex]. Substituting the given values, we have [tex]F_y = -6.6 * 10^-6 C * (3.62 * 10^4 m/s * (-1.65 * 10^2 T)) = 1.43 N.[/tex] Therefore, the x-component of the magnetic force is -4.47 N and the y-component of the magnetic force is 1.43 N.

Learn more about magnetic field here:

https://brainly.com/question/19542022

#SPJ11

One long wire lies along an x axis and carries a current of 60 A in the positive x direction. A second long wire is perpendicular to the xy plane, passes through the point (0, 6.6 m, 0), and carries a current of 69 A in the positive z direction. What is the magnitude of the resulting magnetic field at the point(0, 1.6 m, 0)? Number ___________ Units _______________

Answers

The magnitude of the resulting magnetic field at the point (0, 1.6 m, 0) is approximately 3.58 × 10⁻⁶ T (Tesla).

To calculate the magnetic field at the given point, we can use the Biot-Savart law. The Biot-Savart law states that the magnetic field created by a current-carrying wire is directly proportional to the current and inversely proportional to the distance from the wire.

Considering the first wire along the x-axis, the magnetic field it produces at the given point will have only the y-component. Using the Biot-Savart law, we find that the magnetic field magnitude is given by,

B1 = (μ₀I₁)/(2πr₁)

For the second wire perpendicular to the xy plane, the magnetic field it produces at the given point will have only the x-component. Using the Biot-Savart law again, we find that the magnetic field magnitude is given by,

B2 = (μ₀ * I₂) / (2π * r₂)

To find the resulting magnetic field, we use vector addition,

B = √(B₁² + B₂²)

Substituting the given values,

B = √(((4π × 10⁻⁷)60) / (2π1.6))² + ((4π × 10⁻⁷)69)/(2π * 6.6 m))²)

B ≈ 3.58 × 10⁻⁶ T

Therefore, the magnitude of the resulting magnetic field at the given point is approximately 3.58 × 10⁻⁶ T.

To know more about magnetic field, visit,

https://brainly.com/question/14411049

#SPJ4

A separate excited motor with PN 18kW UN 220V, IN-94A, n№=1000rpm, Ra=0.150, calculate: (a) Rated electromagnetic torque TN (b) No-load torque To (c) Theoretically no-load speed no (d) Practical no-load speed no (e) Direct start current Istart

Answers

(a) The value of the rated electromagnetic torque TN is 0.17 N.m.

(b) The value of the No-load torque is 3.29 N.m.

(c) The value of the theoretically no-load speed is 411.8 V.

(d) The value of the practical no-load speed is 410.8 V.

(e) The value of the direct start current, is 470 A.

What is the value of Rated electromagnetic torque TN?

(a) The value of the rated electromagnetic torque TN is calculated as follows;

TN = (PN × 60) / (2π × Nn)

where;

PN is the rated power =  18 kW.Nn is the rated speed = 1000 rpm

TN = ( 18 x 60 ) / (2π x 1000 )

TN = 0.17 N.m

(b) The value of the No-load torque is calculated as;

To = (UN × IN) / (2π × Nn)

where;

IN is the rated current = 94AUN is the rated voltage = 220V

To = (UN × IN) / (2π × Nn)

To = (220 x 94 ) / ((2π x 1000 )

To = 3.29 N.m

(c) The value of the theoretically no-load speed is calculated as;

no = (UN - (Ra × IN)) / K

where;

Ra is the armature resistance = 0.15 ΩK is a constant = 0.5, assumed.

no = ( 220 - (0.15 x 94) / (0.5)

no = 411.8 V

(d) The value of the practical no-load speed is calculated as;

no = (UN - (Ra × IN) - (To × Ra)) / K

no = (220 - (0.15 x 94) - (3.29 x 0.15) ) / 0.5

no = 410.8 V

(e) The value of the direct start current, is calculated as;

Istart = 5 × IN

Istart = 5 x 94 A

Istart = 470 A

Learn more about No-load torque here: https://brainly.com/question/31324009

#SPJ4

A skier has mass m = 80kg and moves down a ski slope with inclination 0 = 4° with an initial velocity of vo = 26 m/s. The coeffcient of kinetic friction is μ = 0.1. ▼ Part A How far along the slope will the skier go before they come to a stop? Ax = —| ΑΣΦ ? m

Answers

The skier will go approximately 33.47 meters along the slope before coming to a stop.

To determine how far along the slope the skier will go before coming to a stop, we need to analyze the forces acting on the skier.

The force of gravity acting on the skier can be divided into two components: the force parallel to the slope (mg sin θ) and the force perpendicular to the slope (mg cos θ), where m is the mass of the skier and θ is the inclination of the slope.

The force of kinetic friction acts in the opposite direction of motion and can be calculated as μN, where μ is the coefficient of kinetic friction and N is the normal force. The normal force can be calculated as mg cos θ.

Since the skier comes to a stop, the net force acting on the skier is zero. Therefore, we can set up the following equation:

mg sin θ - μN = 0

Substituting the expressions for N and mg cos θ, we have:

mg sin θ - μ(mg cos θ) = 0

Simplifying the equation:

mg(sin θ - μ cos θ) = 0

Now we can solve for the distance along the slope (x) that the skier will go before coming to a stop.

The equation for the distance is given by:

x = (v₀²) / (2μg)

where v₀ is the initial velocity of the skier and g is the acceleration due to gravity.

Given:

m = 80 kg (mass of the skier)

θ = 4° (inclination of the slope)

v₀ = 26 m/s (initial velocity of the skier)

μ = 0.1 (coefficient of kinetic friction)

g ≈ 9.8 m/s² (acceleration due to gravity)

Substituting the values into the equation:

x = (v₀²) / (2μg)

x = (26²) / (2 * 0.1 * 9.8)

x ≈ 33.47 meters

To know more about kinetic friction

https://brainly.com/question/30886698

#SPJ11

Consider to boil a 1 litre of water (25ºC) to vaporize within 10 min using concentrated sunlight.
Calculate the required minimum size of concentrating mirror.
Here, the specific heat is 4.19 kJ/kg∙K and the latent heat of water is 2264.71 kJ/kg.
Solar energy density is constant to be 1 kWm-2.

Answers

To boil 1 liter of water (25ºC) to vaporize within 10 minutes using concentrated sunlight, the required minimum size of a concentrating mirror is approximately 4.3 square meters.

To calculate the required minimum size of the concentrating mirror, consider the energy required to heat the water and convert it into vapour. The specific heat of water is 4.19 kJ/kg.K, which means it takes 4.19 kJ of energy to raise the temperature of 1 kg of water by 1 degree Celsius.

The latent heat of water is 2264.71 kJ/kg, which represents the energy required to change 1 kg of water from liquid to vapour at its boiling point.

First, determine the mass of 1 litre of water. Since the density of water is 1 kg/litre, the mass will be 1 kg. To raise the temperature of this water from [tex]25^0C[/tex] to its boiling point, which is [tex]100^0C[/tex],

calculate the energy required using the specific heat formula:

Energy = mass × specific heat × temperature difference

[tex]1 kg * 4.19 kJ/kg.K * (100^0C - 25^0C)\\= 1 kg * 4.19 kJ/kg.K * 75^0C\\= 313.875 kJ[/tex]

To convert this water into vapour, calculate the energy required using the latent heat formula:

Energy = mass × latent heat

= 1 kg × 2264.71 kJ/kg

= 2264.71 kJ

The total energy required is the sum of the energy for heating and vaporization:

Total energy = 313.875 kJ + 2264.71 kJ

= 2578.585 kJ

Now, determine the time available to supply this energy. 10 minutes, which is equal to 600 seconds. The solar energy density is given as 1 kWm-2, which means that every square meter receives 1 kW of solar energy. Multiplying this by the available time gives us the total energy available:

Total available energy = solar energy density * time

= [tex]1 kW/m^2 * 600 s[/tex]

= 600 kWs

= 600 kJ

To find the minimum size of the concentrating mirror, we divide the total energy required by the total available energy:

Minimum mirror size = total energy required / total available energy

= 2578.585 kJ / 600 kJ

= [tex]4.3 m^2[/tex]

Therefore, approximately 4.3 square meters for the concentrating mirror is required.

Learn more about concentrating mirror here:

https://brainly.com/question/31588513

#SPJ11

A long cylinder having a diameter of 2 cm is maintained at 600 °C and has an emissivity of 0.4. Surrounding the cylinder is another long, thin-walled concentric cylinder having a diameter of 6 cm and an emissivity of 0.2 on both the inside and outside surfaces. The assembly is located in a large room having a temperature of 27 °C. Calculate the net radiant energy lost by the 2-cm-diameter cylinder per meter of length. Also calculate the temperature of the 6-cm- diameter cylinder

Answers

The net radiant energy lost by the 2-cm-diameter cylinder per meter of length is X Joules. The temperature of the 6-cm-diameter cylinder is Y °C.

To calculate the net radiant energy lost by the 2-cm-diameter cylinder per meter of length, we need to consider the Stefan-Boltzmann law and the emissivities of both cylinders. The formula for net radiant heat transfer is given:

Q_net = ε1 * σ * A1 * (T1^4 - T2^4)

Where:

- Q_net is the net radiant energy lost per meter of length.

- ε1 is the emissivity of the 2-cm-diameter cylinder.

- σ is the Stefan-Boltzmann constant (5.67 x 10^-8 W/(m^2·K^4)).

- A1 is the surface area of the 2-cm-diameter cylinder.

- T1 is the temperature of the 2-cm-diameter cylinder.

- T2 is the temperature of the surroundings (27 °C).

To calculate the temperature of the 6-cm-diameter cylinder, we can use the formula for the net radiant energy exchanged between the two cylinders:

Q_net = ε1 * σ * A1 * (T1^4 - T2^4) = ε2 * σ * A2 * (T2^4 - T3^4)

Where:

- ε2 is the emissivity of the 6-cm-diameter cylinder.

- A2 is the surface area of the 6-cm-diameter cylinder.

- T3 is the temperature of the 6-cm-diameter cylinder.

By solving these equations simultaneously, we can find the values of Q_net and T3.

To know more about radiant energy click here:

https://brainly.com/question/31870099

#SPJ11

A long cylinder having a diameter of 2 cm is maintained at 600 °C and has an emissivity of 0.4. Surrounding the cylinder is another long, thin-walled concentric cylinder having a diameter of 6 cm and an emissivity of 0.2 on both the inside and outside surfaces. The assembly is located in a large room having a temperature of 27 °C. Calculate the net radiant energy lost by the 2-cm-diameter cylinder per meter of length. Also, calculate the temperature of the 6-cm-diameter cylinder

A ball of mass 0.125 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.700 m. What impulse was given to the ball by the floor? magnitude kg⋅m/s direction High-speed stroboscopic photographs show that the head of a 280−g golf club is traveling at 55 m/s just before it strikes a 46−g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 41 m/s. Find the speed of the golf ball just after impact. m/5

Answers

A ball of mass 0.125 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.700 m.   the magnitude of the impulse given to the ball by the floor is approximately 0.6975 kg⋅m/s.

To find the impulse given to the ball by the floor, we can use the principle of conservation of momentum. Since the ball is dropped from rest, its initial momentum is zero.

Given:

Mass of the ball, m = 0.125 kg

Initial height, h_i = 1.25 m

Final height, h_f = 0.700 m

First, we can calculate the initial velocity of the ball using the equation for potential energy:

mgh_i = (1/2)mv^2

0.125 kg * 9.8 m/s^2 * 1.25 m = (1/2) * 0.125 kg * v^2

v = √(2 * 9.8 m/s^2 * 1.25 m) ≈ 3.14 m/s

Next, we can calculate the final velocity of the ball using the equation for potential energy:

mgh_f = (1/2)mv^2

0.125 kg * 9.8 m/s^2 * 0.700 m = (1/2) * 0.125 kg * v^2

v = √(2 * 9.8 m/s^2 * 0.700 m) ≈ 2.44 m/s

The change in velocity, Δv, can be calculated by subtracting the initial velocity from the final velocity:

Δv = v_f - v_i

Δv = 2.44 m/s - (-3.14 m/s)

Δv ≈ 5.58 m/s

Finally, we can calculate the impulse using the equation:

Impulse = Δp = m * Δv

Impulse = 0.125 kg * 5.58 m/s ≈ 0.6975 kg⋅m/s

Therefore, the magnitude of the impulse given to the ball by the floor is approximately 0.6975 kg⋅m/s.

As for the direction, the impulse given by the floor acts in the opposite direction to the initial velocity, which is upward. Therefore, the direction of the impulse would be downward.

Learn more about principle of conservation of momentum. here:

https://brainly.com/question/29044668

#SPJ11

The speed of sound in an air at 20°C is 344 m/s. What is the wavelength of sound with a frequency of 784 Hz, corresponding to a certain note in guitar string? a. 0.126 m b. 0.439 m C. 1.444 m d. 1.678 m

Answers

The wavelength of the sound with a frequency of 784 Hz is 0.439 m. So, the correct answer is option b. 0.439 m. To calculate the wavelength of sound, we can use the formula:

wavelength = speed of sound / frequency

Given:

Speed of sound in air at 20°C = 344 m/s

Frequency = 784 Hz

Substituting these values into the formula, we get:

wavelength = 344 m/s / 784 Hz

Calculating this expression:

wavelength = 0.439 m

Therefore, the wavelength of the sound with a frequency of 784 Hz is 0.439 m. So, the correct answer is option b. 0.439 m.

The speed of sound in a medium is determined by the properties of that medium, such as its density and elasticity. In the case of air at 20°C, the speed of sound is approximately 344 m/s.

The frequency of a sound wave refers to the number of complete cycles or vibrations of the wave that occur in one second. It is measured in hertz (Hz). In this case, the sound has a frequency of 784 Hz.

To calculate the wavelength of the sound wave, we use the formula:

wavelength = speed of sound / frequency

By substituting the given values into the formula, we can find the wavelength of the sound wave. In this case, the calculated wavelength is approximately 0.439 m.

It's worth noting that the wavelength of a sound wave corresponds to the distance between two consecutive points of the wave that are in phase (e.g., two consecutive compressions or rarefactions). The wavelength determines the pitch or frequency of the sound. Higher frequencies have shorter wavelengths, while lower frequencies have longer wavelengths

To know more about The wavelength

brainly.com/question/31322456

#SPJ11

The density of iron is 7.9 x 10³ kg/m². Determine the mass m of a cube of iron that is 2.0 cm x 2.0 cm x 2.0 cm in size.

Answers

The mass of a cube of iron that is 2.0 cm × 2.0 cm × 2.0 cm in size is 63 g. Given the density of iron, 7.9 × 10³ kg/m³.

The volume of the cube can be calculated as follows:

Volume of the cube = (2.0 cm)³ = 8.0 cm³ = 8.0 × 10⁻⁶ m³

The mass of the cube can be calculated using the following equation:

Density = Mass/Volume

Let's substitute the given values:

Density = 7.9 × 10³ kg/m³

Volume = 8.0 × 10⁻⁶ m³

Let's calculate the mass by rearranging the above formula.

Mass = Density x Volume

Mass = 7.9 × 10³ kg/m³ x 8.0 × 10⁻⁶ m³

Therefore, Mass = 0.0632 kg ≈ 63 g

To learn more about density of iron, refer:-

https://brainly.com/question/29596677

#SPJ11

When both focii of an ellipse are located at exactly the same position, then the eccentricity of must be: a) 0.5 b) 0.75 c) 0
d) 0.25
e) 1.0

Answers

When both foci of an ellipse coincide at the same position, the eccentricity of the ellipse is 0, and it becomes a circle. The answer is (c) 0.

When both foci of an ellipse are located at exactly the same position, the eccentricity of the ellipse must be 0. An ellipse is a set of points whose distance from two fixed points (foci) sum to a fixed value. The distance between the foci is the major axis length, and the distance between the vertices is the minor axis length. The formula for an ellipse is (x−h)2/a2+(y−k)2/b2=1.

The distance between the foci is 2c, which is always less than the length of the major axis. The relationship between the semi-major axis a and semi-minor axis b of an ellipse is given by a2−b2=c2. An ellipse's eccentricity is defined as the ratio of the distance between the foci to the length of the major axis, with e=c/a. When the two foci coincide at the same position, the eccentricity of the ellipse is 0, and the ellipse becomes a circle.

The answer is (c) 0.

Learn more about eccentricity of the ellipse

https://brainly.com/question/8047982

#SPJ11

A wire 0.15 m long carrying a current of 2.5 A is perpendicular to a magnetic field. If the force exerted on the wire is 0.060 N, what is the magnitude of the magnetic field? Select one: a. 6.3 T b. 16 T c. 2.4 T d. 0.16 T

Answers

Answer: option (d) The magnitude of the magnetic field is 0.16 T.

The force on a current-carrying conductor is proportional to the current, length of the conductor, and magnetic field strength.

Force on a current-carrying conductor formula is given by; F = BIL sin θ  WhereF is the force on the conductor B is the magnetic field strength, L is the length of the conductor, I is the current in the conductor, θ is the angle between the direction of current and magnetic field.

Length of wire, L = 0.15 m

Current, I = 2.5 A

Force, F = 0.060 N

Using the force on a current-carrying conductor formula above, we can calculate the magnetic field strength

B = F / IL sin θ

The angle between the direction of current and magnetic field is 90°. So, sin θ = 1, Substituting values;

B = 0.060 / 2.5 × 0.15 × 1B

= 0.16 T,

Therefore, the magnitude of the magnetic field is 0.16 T.

Answer: d. 0.16 T.

Learn more about magnetic field: https://brainly.com/question/14411049

#SPJ11

What is the escape speed from an asteroid of diameter 395 km with a density of 2180 kg/m³ ? ►View Available Hint(s) k

Answers

The escape speed from an asteroid with a diameter of 395 km and a density of [tex]2180 kg/m^3[/tex] is approximately 2.43 km/s.

To calculate the escape speed, we need to use the formula [tex]v = \sqrt(2GM/r)[/tex], where v is the escape speed, G is the gravitational constant (approximately [tex]6.67430 * 10^-^1^1 N(m/kg)^2)[/tex], M is the mass of the asteroid, and r is the radius of the asteroid.

First, we calculate the mass of the asteroid using the formula [tex]M = (4/3)\pi r^3\rho[/tex], where ρ is the density of the asteroid. Given that the diameter is 395 km, the radius can be calculated as r = (395 km)/2 = 197.5 km. Converting the radius to meters, we have r = 197,500 m. Now we can calculate the mass using the density value of [tex]2180 kg/m^3[/tex].

Plugging these values into the formula, we find the mass to be approximately [tex]2.754 * 10^2^0[/tex] kg. Finally, we can substitute the values of G, M, and r into the escape speed formula to obtain the result. The escape speed from the asteroid is approximately 2.43 km/s.

Learn more about escape speed here:

https://brainly.com/question/28608063

#SPJ11

Other Questions
Because the deep ocean lacks the benefits of sunlight, it does not feature the usual diminutive, prolific plant or animal life that forms the foundation of typical food chains. Over time, deep-sea organisms have developed abilities and characteristics to cope with this deficiency. Some organisms have large mouths that enable them to catch what little food is available, while others make their own light, flashing on and off to attract prey. Recently discovered is a family of "yeti crabs," which have silky, hair-like filaments on their legs. These crabs live near hydrothermal vents. The chemicals seeping from the vents serve as an energy source for bacteria. Scientists believe that the crabs use their filaments to capture the bacteria, which provide them with nourishment.Do It!The creatures benefit from _________.A conservationistsB adaptationsC nearsightednessD domestication A synchronous machine of 50 Hz,4 poles has a synchronous reactance of 2.0 and an armature resistance of 0.4. The synchronous machine operates at E A=4608 V and the terminal voltage V T=4800 V. i) Identify whether this machine operates as a motor or a generator. ii) Calculate the magnitude of the line and phase currents. iii) Calculate the real power P and reactive power Q of the machine when consuming from or supplying to the electrical system. iv) If the armature resistance is neglected, calculate the maximum torque of the synchronous machine. (14 marks) What is the voltage input if ADC readings is 300 from the temperature sensor if +Vref is 5V? Note answer must round in two decimal places. BEST ANSWER GETS BRAINLIEST !!!!Describe a sequence of transformations that take trapezoid ABCD to TSCU. You may use the draw tool to help illustrate your thinking, but MUST describe the sequence of transformations in the text box. Which of the following is the interpretation for SSE for the scenario below?A) The variation in fertilizer explained by the variation in yield.B) The variation in fertilizer not explained by the variation in yield.C) The variation in yield explained by the variation in fertilizer.D) The variation in yield not explained by the variation in fertilizer. Given this information: Expected demand during lead time = 300 units' Standard deviation of lead time demand = 30 units Determine each of the following, assuming that lead time demand is distributed normally: a. The ROP that will provide a risk of stock out of I percent during lead time.b. The safety stock needed to attain a 1 percent risk of stock out during lead time.c. Would a stock out risk of 2 percent require more or less safety stock than a 1 percent risk? Explain. Would the ROP be larger, smaller, or unaffected if the acceptable risk were 2 percent instead of 1 percent? Explain. What is gender-based violence? What are the factors that contribute to such kind of violence in Bangladesh society? Explain your position with relevant examples, including both policy and programmatic solutions to resolve this societal problem. 1-use python to solve a lower triangular system throughsuccessive substitution2- use python to solve an upper triangular system throughretroactive substitution Instructions: Answer each part of each question in a paragraph (about 3-6 sentences). For all portions, cite all sources used, including textbook and page number and/or active web links.All work should be your own; collaboration with anyone else is unacceptable. Each numbered question is worth 50 points for a total of 200 points.Consider GPS, The Global Positioning System.(a) How many satellites are used in GPS and how accurate is a GPS system?(b) In addition to position, what does GPS provide?(c) Summarize how GPS works for someone who is curious but unfamiliar with technology concepts.Consider IP (Internet Protocol) addressing.Discuss five (5) differences between IPv4 and IPv6.What is IPv4 address exhaustion? Discuss the issue and potential solutions.3) Describe the function of routers and gateways. Explain both similarities and differences.4) How does the TCP/IP protocol apply to LANs? Give two specific examples.All work should be your own; collaboration with anyone else is unacceptable. Each numbered question is worth 50 points for a total of 200 points.Consider GPS, The Global Positioning System.(a) How many satellites are used in GPS and how accurate is a GPS system?(b) In addition to position, what does GPS provide?(c) Summarize how GPS works for someone who is curious but unfamiliar with technology concepts.Consider IP (Internet Protocol) addressing.Discuss five (5) differences between IPv4 and IPv6.What is IPv4 address exhaustion? Discuss the issue and potential solutions.3) Describe the function of routers and gateways. Explain both similarities and differences.4) How does the TCP/IP protocol apply to LANs? Give two specific examples A concrete pile having a diameter of 0.30m. is to be driven into loose sand. It has a length of 12m. The shaft lateral factor (K) is assumed to be 0.92 and the factor of safety is 3.0, Unit weight of sand is 20.14 KN/cu.m., coefficient of friction between sand and pile is 0.45, bearing capacity factor Nq = 80. In an APT(Advanced Persistent Threat);For Reconnaissance Phase which of the below can be used;Viruses, worms, trojan horses, blended threat, spams, distributed denial-of-service, Phishing, Spear-phishing and why? Consider a LTI system with a Laplace Transform that has four poles, at the following values s = 3,1+j, -1-j, 2. Sketch the s-plane showing the locations of the poles, and show the region of convergence (ROC) for each of the following two cases: i. The LTI system is causal ii. The LTI system is stable Find io in the op amp circuit of Fig. 5.66. Figure 5.66 For Prob. 5.28. study caseAt Puente Hills Toyota, most employees variable incentive pay increases linearly with performance, however performance is defined. This results in higher bonuses for higher performance regardless of the level of performance. Many incentive systems work on a budget basis so that bonuses are not achieved until a target is achieved. What are the advantages and disadvantages of using a reward function that is linear as Puente Hill Toyota uses?How can the opportunity to "game" the systems be reduced? 1 What does the chairman of the board do?2 What is economy of scale? A 120 g block slides down an incline plane of inclination angle 25 . A . 25 N friction force impedes the sliding motion of the block. Find the magnitude of the acceleration undergone by the block. Select one: a. 2.06 m/s 2b. 2.89 m/s 2C. 1.17 m/s 2d. 1.89 m/s 2e. 3.54 m/s 2 Is the right to choose whether to carry a pregnancy to term orto have an abortion is based on utilitarian thinking?YesorNo a Li+ wavelength in nm= 671 find the experimental energy in J and the n initial and n final by applying the equation E=-2.18*10^-18J(1/n^2final - 1/n^2initial)Z^2 A force sensor was designed using a cantilever load cell and four active strain gauges. 2 Show that the bridge output voltage (eor) when the strain gauges are connected in a full- bridge configuration will be four times greater than the bridge output voltage (e02) when connected in a quarter bridge configuration (Assumptions can be made as required). [6] (b) Describe the Hall effect and explain how a Hall sensor or probe can be used to measure pressure with suitable diagrams IN PYTHONWrite a function named friend_list that accepts a file name as a parameter and reads friend relationships from a file and stores them into a compound collection that is returned. You should create a dictionary where each key is a person's name from the file, and the value associated with that key is a setof all friends of that person. Friendships are bi-directional: if Marty is friends with Danielle, Danielle is friends with Marty.The file contains one friend relationship per line, consisting of two names. The names are separated by a single space. You may assume that the file exists and is in a valid proper format. If a file named buddies.txt looks like this:Marty CynthiaDanielle MartyThen the call of friend_list("buddies.txt") should return a dictionary with the following contents:{'Cynthia': ['Marty'], 'Danielle': ['Marty'], 'Marty': ['Cynthia', 'Danielle']}You should make sure that each person's friends are stored in sorted order in your nested dictionary.Constraints:You may open and read the file only once. Do not re-open it or rewind the stream.You should choose an efficient solution. Choose data structures intelligently and use them properly.You may create one collection (list, dict, set, etc.) or nested/compound structure as auxiliary storage. A nested structure, such as a dictionary of lists, counts as one collection. (You can have as many simple variables as you like, such as ints or strings.) Steam Workshop Downloader