A woman pushes a m = 3.20 kg bin a distance d = 6.20 m along the floor by a constant force of magnitude F = 16.0 N directed at an angle theta = 26.0° below the horizontal as shown in the figure. Assume the floor is frictionless. (Enter your answers in joules.)
(a)Determine the work done on the bin by the applied force (the force on the bin exerted by the woman).
_____J
(b)Determine the work done on the bin by the normal force exerted by the floor.
_____J
(c)Determine the work done on the bin by the gravitational force.
_____ J
(d)Determine the work done by the net force on the bin.
____J

Answers

Answer 1

A woman pushes a m = 3.20 kg bin a distance d = 6.20 m along the floor by a constant force of magnitude F = 16.0 N directed at an angle theta = 26.0° below the horizontal

The work done on the bin by the applied force (the force on the bin exerted by the woman):

The formula for work is as follows:

W = Fdcos(θ) where, W is work done, F is force, d is distance, and θ is angle between force and displacement.

So, W = 16.0 x 6.20 x cos(26.0) = 86.3 J

a) Thus, the work done on the bin by the applied force is 86.3 J.

The work done on the bin by the normal force exerted by the floor:

b)Since the floor is frictionless, there is no force of friction and the work done on the bin by the normal force exerted by the floor is zero.

c) The work done on the bin by the gravitational force:

The work done by the gravitational force is given by the formula,

W = mgh where, m is the mass of the object, g is acceleration due to gravity, h is the height change

We know that there is no change in height. Thus, the work done on the bin by the gravitational force is zero.

(d) The work done by the net force on the bin.

Net force on the object is given by the formula:

Fnet = ma We can find the acceleration from the force equation along the x-axis as follows:

Fcos(θ) = ma

F = ma/cos(θ) = 3.20a/cos(26.0)16.0/cos(26.0) = 3.20a = 15.6 a = 4.88 m/s²

Now, we can calculate the work done by the net force using the work-energy theorem,

Wnet = Kf − Ki where Kf is the final kinetic energy and Ki is the initial kinetic energy. The initial velocity of the bin is zero, so Ki = 0.The final velocity of the bin can be calculated using the kinematic equation as follows:

v² = u² + 2as where, u is initial velocity (0),v is final velocity, a is acceleration along the x-axis ands is displacement along the x-axis (6.20 m).

Thus, v² = 2 x 4.88 x 6.20v = 9.65 m/s

Kinetic energy of the bin is, Kf = (1/2)mv²Kf = (1/2) x 3.20 x 9.65²Kf = 146.7 J

Now, using the work-energy theorem, Wnet = Kf − Ki = 146.7 − 0 = 146.7 J

Therefore, the work done by the net force on the bin is 146.7 J.

Explore another question on work done on an object: https://brainly.com/question/28356414

#SPJ11


Related Questions

When flip the pages slowly, one page at a time, do you see the images to be

moving? Justify your answer

Answers

When we flip the pages slowly, one page at a time, we can see the images moving. This is known as an optical illusion caused by the persistence of vision, which refers to the way our brain processes visual information. An image stays in our retina for approximately 1/16th of a second. When a new image appears before the previous one disappears, the brain blends the two images together, creating the illusion of motion.

Optical illusions can occur when our brain tries to make sense of the information it receives from our eyes. The image on the previous page continues to linger in our mind, and our brain automatically fills in the blanks. It is important to note that this effect is limited by the frame rate of our eyes and the speed at which we flip the pages. When we flip the pages too fast, the brain is unable to process the information and we are left with a blurry image.

Optical illusions are often used in animation and movies to create the illusion of motion. When images are shown in quick succession, it tricks the brain into thinking that the objects are moving. This is the same principle behind flipbooks and zoetropes, where a series of images are displayed in quick succession to create the illusion of motion.

For more such questions on optical illusion, click on:

https://brainly.com/question/28179807

#SPJ8

An electron moves across Earth's equator at a speed of 2.52×10 6
m/s and in a direction 33.5 ∘
N of E. At this point, Earth's magnetic field has a direction due north, is parallel to the surface, and has a magnitude of 0.253×10 −4
T. (a) What is the magnitude of the force acting on the electron due to its interaction with Earth's magnetic field? N (b) Is the force toward, away from, or parallel to the Earth's surface? toward the Earth's surface away from the Earth's surface parallel to the Earth's surface

Answers

The magnitude of the force acting on the electron due to its interaction with Earth's magnetic field is 1.61 × [tex]10^{-17}[/tex] N and force on the electron is perpendicular to both the velocity and the magnetic field direction. Since the force is perpendicular to the Earth's surface, it is parallel to the Earth's surface.

(a) To calculate the magnitude of the force acting on the electron due to its interaction with Earth's magnetic field, we can use the formula:

F = q * v * B * sin(θ)

where:

F is the magnitude of the force,

q is the charge of the electron (1.6 × 10^-19 C),

v is the velocity of the electron (2.52 × 10^6 m/s),

B is the magnitude of Earth's magnetic field (0.253 × 10^-4 T),

θ is the angle between the velocity and the magnetic field (90° since the velocity is perpendicular to the magnetic field).

Plugging in the values, we have:

F = (1.6 × 10^-19 C) * (2.52 × 10^6 m/s) * (0.253 × 10^-4 T) * sin(90°)

Simplifying the expression, we get:

F = 1.61 × [tex]10^{-17}[/tex] N

Therefore, the magnitude of the force acting on the electron is 1.61 × [tex]10^{-17}[/tex] N.

(b) The force on the electron is perpendicular to both the velocity and the magnetic field direction.

Since the force is perpendicular to the Earth's surface, it is parallel to the Earth's surface.

Learn more about Earth's magnetic field here:

https://brainly.com/question/18403251

#SPJ11

A scuba diver and her gear displace a volume of 65.4 L and have a total mass of 67.8 kg. What is the buoyant force on the diver in sea water? F B

Part B Will the diver sink or float? sink float

Answers

The buoyant force acting on the scuba diver in sea water is 651.12 N. Based on this force, the diver will float in sea water.

The buoyant force on an object submerged in a fluid is equal to the weight of the fluid displaced by the object. In this case, the scuba diver and her gear displace a volume of 65.4 L of sea water. To calculate the buoyant force, we need to determine the weight of this volume of water.

The density of sea water is approximately 1030 kg/m³. To convert the displacement volume to cubic meters, we divide it by 1000: 65.4 L / 1000 = 0.0654 m³.

Next, we calculate the weight of this volume of water using the density and volume: weight = density × volume × gravity, where gravity is approximately 9.8 m/s². Thus, the weight of the displaced water is 1030 kg/m³ × 0.0654 m³ × 9.8 m/s² = 651.12 N.

Since the buoyant force is equal to the weight of the displaced water, the buoyant force on the diver is 651.12 N. Since the buoyant force is greater than the weight of the diver (67.8 kg × 9.8 m/s² = 663.24 N), the diver will experience an upward force greater than her weight. As a result, the diver will float in sea water.

Learn more about buoyant force visit:

brainly.com/question/7379745

#SPJ11

A 400 cm-long solenoid 1.35 cm in diamotor is to produce a field of 0.500 mT at its center.
Part. A How much current should the solenoid carry if it has 770 turns of wire? I = _______________ A

Answers

A 400 cm-long solenoid 1.35 cm in diameter is to produce a field of 0.500 mT at its center.the solenoid should carry approximately 992.48 Amperes of current to produce a magnetic field of 0.500 mT at its center.


To determine the current required for the solenoid to produce a specific magnetic field, we can use Ampere's Law. Ampere's Law states that the magnetic field (B) inside a solenoid is directly proportional to the product of the permeability of free space (μ₀), the current (I) flowing through the solenoid, and the number of turns per unit length (n) of the solenoid:

B = μ₀ × I × n

Rearranging the equation, we can solve for the current (I):

I = B / (μ₀ × n)

Given that the solenoid has 770 turns of wire, we need to determine the number of turns per unit length (n). The length of the solenoid is 400 cm, and the diameter is 1.35 cm. The number of turns per unit length can be calculated as:

n = N / L

where N is the total number of turns and L is the length of the solenoid.

n = 770 turns / 400 cm

Converting the length to meters:

n = 770 turns / 4 meters

n = 192.5 turns/meter

Now we can substitute the values into the formula to calculate the current (I):

I = (0.500 mT) / (4π × 10^(-7) T·m/A) × (192.5 turns/m)

I = (0.500 × 10^(-3) T) / (4π × 10^(-7) T·m/A) × (192.5 turns/m)

Simplifying the expression, we find:

I ≈ 992.48 A

Therefore, the solenoid should carry approximately 992.48 Amperes of current to produce a magnetic field of 0.500 mT at its center.

To learn more about  Ampere's Law visit: https://brainly.com/question/17070619

#SPJ11

An ideal Carnot engine operates between a high temperature reservoir at 219°C and a river with water at 17°C. If it absorbs 4000 J of heat each cycle, how much work per cycle does it perform?

Answers

The work per cycle that is performed by the is Carnot engine -42382.4 J.

The Carnot engine is an ideal reversible engine that is used to understand the working of heat engines. It works between two temperatures, namely the high temperature and low temperature to extract work from heat. It is based on the concept of the second law of thermodynamics. It is used to establish the maximum efficiency of the engines.

The work per cycle that is performed by an ideal Carnot engine operating between a high temperature reservoir at 219°C and a river with water at 17°C and it absorbs 4000 J of heat each cycle can be calculated as:

Wcycle = QH - QL

where

Wcycle is the work per cycle,

QH is the heat absorbed per cycle,

QL is the heat rejected per cycle

The heat rejected per cycle QL can be calculated as:

QL = TH / (TH - TL) * QH

where

TH is the temperature of the high temperature reservoir,

TL is the temperature of the low-temperature reservoir

Substituting the given values in the above formula,

QL = 219 / (219 - 17) * 4000= 46382.4 J

The work per cycle can be calculated by substituting the values in the formula:

Wcycle = QH - QL= 4000 - 46382.4= -42382.4 J (Negative sign indicates that work is done on the engine rather than by the engine)

Therefore, the work per cycle that is performed by the Carnot engine is -42382.4 J.

Learn more about Carnot engine:

https://brainly.com/question/25819144

#SPJ11

Select all the claims that are true, in general. Accelerations change velocities. Velocities change positions. The x-component of the velocity for a projectile at max height is equal to zero. The y-component of the velocity for a projectile at max height is equal to zero. Slowing down is a implies that an object is accelerating.

Answers

The true claims are: 1. Acceleration change velocities. 2. Velocities change positions. 3. The x-component of the velocity for a projectile at max height is equal to zero.

The false claim is: 1. The y-component of the velocity for a projectile at max height is equal to zero.

Acceleration is a fundamental concept in physics that measures the rate of change of an object's velocity. It is defined as the change in velocity per unit of time. Acceleration can be positive or negative, indicating an increase or decrease in velocity, respectively. It is measured in units of meters per second squared (m/s²) and plays a crucial role in understanding motion and the laws of mechanics.

Learn more about Acceleration here:

https://brainly.com/question/30595126

#SPJ11

Three two-port circuits, namely Circuit 1 , Circuit 2 , and Circuit 3 , are interconnected in cascade. The input port of Circuit 1 is driven by a 6 A de current source in parallel with an internal resistance of 30Ω. The output port of Circuit 3 drives an adjustable load impedance ZL. The corresponding parameters for Circuit 1, Circuit 2, and Circuit 3, are as follows. Circuit 1: G=[0.167S0.5−0.51.25Ω] Circuit 2: Circuit 3: Y=[200×10−6−800×10−640×10−640×10−6]S Z=[33534000−3100310000]Ω a) Find the a-parameters of the cascaded network. b) Find ZL such that maximum power is transferred from the cascaded network to ZL. c) Evaluate the maximum power that the cascaded two-port network can deliver to ZI.

Answers

a) The A-parameters of the cascaded network are defined by (4 points)Answer:a_11 = 0.149 S^0.5 - 0.0565a_12 = -0.115 S^0.5 - 0.0352a_21 = 136 S^0.5 - 133a_22 = -89.5 S^0.5 + 135b) Find ZL such that maximum power is transferred from the cascaded network to ZL. (2 pointsZ). The maximum power transfer to load impedance ZL occurs when the load is equal to the complex conjugate of the source impedance.

We can calculate the source impedance as follows: Rs = 30 Ω || 1/0.167^2 = 31.2 ΩThe equivalent impedance of circuits 2 and 3 connected in cascade is: Zeq = Z2 + Z3 + Z2 Z3 Y2Z2 + Y3 (Z2 + Z3) + Y2 Y3If we substitute the corresponding values: Zeq = 6.875 - j10.75ΩNow we can determine the value of the load impedance: ZL = Rs* Zeq/(Rs + Zeq)ZL = 17.6 - j8.9Ωc) Evaluate the maximum power that the cascaded two-port network can deliver to ZI. (2 points). The maximum power that can be delivered to the load is half the power available in the source.

We can determine the available power as follows: P = (I_s)^2 * Rs /2P = 558 mW. Now we can calculate the maximum power transferred to the load using the value of ZL:$$P_{load} = \frac{V_{load}^2}{4 Re(Z_L)}$$$$V_{load} = a_{21} I_s Z_2 Z_3$$So,$$P_{load} = \frac{(a_{21} I_s Z_2 Z_3)^2}{4 Re(Z_L)}$$Substitute the corresponding values:$$P_{load} = 203.2 m W $$. Therefore, the maximum power that can be delivered to the load is 203.2 mW.

To know more about cascaded network click here:

https://brainly.com/question/31689242

#SPJ11

An RC circuit has an unknown resistance and an initially uncharged capacitor of 666 x 106 F When connected to a source potential, it takes the capacitor 27.6 s to become 85.6 % fully charged. What is the resistance of the circuit? Enter a number rounded to the nearest 100 place.

Answers

Rounded to the nearest 100th place, the resistance of the circuit is approximately 41,400 ohms.

To find the resistance of the RC circuit, we can use the time constant formula:

τ = R * C

where τ is the time constant, R is the resistance, and C is the capacitance.

In this case, the time constant is given by:

τ = 27.6 s

The capacitor reaches 85.6% of its full charge in the time constant, so we can write the equation:

0.856 = 1 - e^(-t/τ)

Simplifying, we have:

e^(-t/τ) = 1 - 0.856

e^(-t/τ) = 0.144

Taking the natural logarithm of both sides, we get:

-t/τ = ln(0.144)

Solving for t/τ, we have:

t/τ ≈ -1.942

Now, we can substitute the given values to solve for the resistance R:

τ = R * C

27.6 s = R * (666 x 10^(-6) F)

R = 27.6 s / (666 x 10^(-6) F)

R ≈ 41,441 ohms

To knwo more about RC circuit

https://brainly.com/question/2741777

#SPJ11

For the torque exercise; If the 1m long ruler balances right in the middle, determine the position where a 200g mass should be placed if at position 20cm from the ruler there is a 150g mass.

Answers

To balance the 200g mass with the 150g mass at a position 20cm from the ruler's middle, the 200g mass should be placed at a position 40cm from the ruler's middle.

To balance 150g mass at 20cm from the ruler's middle, a 200g mass needs to be placed at a specific position. Since the ruler is already balanced in the middle, any additional mass added to one side must be counterbalanced by an equal mass on the other side.

To calculate the position where the 200g mass should be placed. The torque exerted by a mass is given by the product of its weight and the distance from the pivot point. In this case, the torque exerted by the 150g mass is equal to its weight (150g) multiplied by its distance from the pivot (20cm).

By setting the two torques equal to each other, the distance from the pivot where the 200g mass should be placed. In this case, the position is found to be 40cm from the ruler's middle.

Learn more about balance here;

https://brainly.com/question/30456266

#SPJ11

On one of your journèys to the supermarket, your car breaks down and needs moving to the slde of the road. a) Which of Newton's Laws best describes how you would push the car to the side of the road? Explain why. b) What force(s) would you need to overcome to move the car to the side of the road? c) If the mass of the car was 1200 kg and you accelerated it to 0.1 m/s 2
whilst you were pushing it, what resultant force would you have produced to move the car? 6. An astronaut pushing the same car on the moon produces less resultant force than you did to push the same car on Earth. Briefly explain why.

Answers

a) Newton's Second Law best describes how you would push the car to the side of the road. Newton's Second Law of Motion states that F = ma, where F is the force applied, m is the mass of the object, and a is the acceleration. To push a car to the side of the road, the force you apply must be greater than the force of friction between the car's tires and the road.

This will cause the car to accelerate in the direction of the force applied, which will allow you to move it to the side of the road.

b) The forces you would need to overcome to move the car to the side of the road are the force of friction between the car's tires and the road, as well as the force of gravity acting on the car.

c) To accelerate a car with a mass of 1200 kg to 0.1 m/s^2, the resultant force produced to move the car would be calculated as follows:

F = ma
F = 1200 kg * 0.1 m/s^2
F = 120 N

Therefore, you would need to apply a force of 120 N to move the car with an acceleration of 0.1 m/s^2.

d) An astronaut pushing the same car on the moon would produce less resultant force than on Earth because the force of gravity on the moon is much less than on Earth. The force of gravity on the moon is only 1/6th of the force of gravity on Earth, so the car would weigh less on the moon and require less force to move.

To know more about dead battery visit:

https://brainly.com/question/13576995

#SPJ11

Assuming that the Earth is a sphere of radius 6378 km, calculate the magnitude of the centrifugal force and force of gravity acting on a 400.0 kg mass located at a place of latitude 40°. The gravitational constant is 6.6742 × 10⁻¹¹ m³ kg⁻¹s⁻² and the Earth's mass is about 5.9722 x 10²⁴ kg. Round-off final values to 2 decimal places.

Answers

By assuming that Earth is sphere and it have radius of 6378 km, then its magnitude of the centrifugal force is 293.14 N and Magnitude of the force of gravity is 1.94 x 10⁴ N.

To calculate the magnitude of the centrifugal force and force of gravity,  

Centrifugal force:

F_centrifugal = m * ω² * r

Force of gravity:

F_gravity = G * (m * M) / r²

It is given that, Mass of the object (m) = 400.0 kg, Radius of the Earth (r) = 6378 km = 6,378,000 m, Gravitational constant (G) = 6.6742 × 10⁻¹¹ m³ kg⁻¹ s⁻², Mass of the Earth (M) = 5.9722 x 10²⁴ kg, Latitude (θ) = 40°.

First, we need to calculate the angular velocity (ω) using the latitude:

ω = 2π * (1 day) / (1 sidereal day)

1 day = 24 hours = 24 * 60 * 60 seconds

1 sidereal day = 23 hours 56 minutes 4.1 seconds = 23 * 60 * 60 + 56 * 60 + 4.1 seconds

ω = 2π * (24 * 60 * 60) / (23 * 60 * 60 + 56 * 60 + 4.1)

ω = 7.2921 × 10⁻⁵ rad/s

(a) Centrifugal Force:

To calculate the centrifugal force, we need to convert the latitude to radians:

θ (in radians) = θ (in degrees) * π / 180

θ (in radians) = 40 * π / 180

Now we can calculate the centrifugal force:

F_centrifugal = m * ω² * r * sin(θ)

F_centrifugal = (400.0 kg) * (7.2921 × 10⁻⁵ rad/s)² * (6,378,000 m) * sin(40°)

F_centrifugal = 293.14 N

(b) Force of Gravity:

To calculate the force of gravity, we use the formula:

F_gravity = G * (m * M) / r²

F_gravity = (6.6742 × 10⁻¹¹ m³ kg⁻¹ s⁻²) * (400.0 kg) * (5.9722 x 10²⁴ kg) / (6,378,000 m)²

F_gravity ≈ 1.94 x 10⁴ N

To learn more about centrifugal force: https://brainly.com/question/954979

#SPJ11

A.spaceship moves past Earth with a speed of 0.838c. As it is passing, a person on Earth measures the spaceship's length to be 67.7 m. (a) Determine the spaceship's proper length (in-m). m (b) Determine the time (in s) required for the spaceship to pass a point on Earth as measured by a person on Earth. (c) Determine the time (in s) required for the spaceship to pass a point on Earth as measured by an astronaut onboard the spaceship. x s.

Answers

(a) Determine the spaceship's proper length 38m.(b) The time required for the spaceship to pass a point on Earth by a person is 269 ns and (c) The time required for the spaceship to pass a point on Earth by an astronaut onboard the spaceship is 108 ns.

a) Determine the spaceship's proper length (in-m):Proper length (L) = 67.7m/γwhere γ = (1 − v²/c²)^−1/2Here, v = 0.838c, c = 3 x 10^8 m/sProper length (L) = 67.7m/γ = 67.7m/1.78 = 38m.

(b) Determine the time (in s) required for the spaceship to pass a point on Earth as measured by a person on Earth:The length of the spaceship in Earth's frame of reference is 67.7m. The speed of the spaceship relative to the Earth is 0.838c.The time it takes for the spaceship to pass a point on Earth as measured by a person on Earth is given byt = L/(vrel)where L = proper length of the spaceship, vrel = relative velocity of the spaceship and the observer on the Eartht = L/(vrel) = 67.7m/[(0.838)(3x10^8m/s)] = 2.69 x 10^-7 s or 269 ns (approximately).

(c) Determine the time (in s) required for the spaceship to pass a point on Earth as measured by an astronaut onboard the spaceship:The time interval as measured by an astronaut on board the spaceship is called the proper time interval (Δt). The relationship between the proper time interval (Δt) and the time interval as measured by an observer in the Earth's frame (Δt') is given byΔt = Δt'/γwhere γ is the Lorentz factorγ = (1 − v²/c²)^−1/2γ = (1 − (0.838c)²/(3 x 10^8m/s)²)^−1/2γ = 1.78∆t = Δt'/γ.

Therefore,∆t = ∆t' = (length of the spaceship)/(speed of the spaceship)= (proper length of the spaceship) × γ/(speed of the spaceship)= (38m × 1.78)/(0.838c)= (38 × 1.78) / (0.838 × 3 × 10^8)m/s= 1.08 x 10^-7s or 108 ns (approximately)Therefore, the time required for the spaceship to pass a point on Earth as measured by a person on Earth is 269 ns (approximately), and the time required for the spaceship to pass a point on Earth as measured by an astronaut onboard the spaceship is 108 ns (approximately).

Learn more about Velocity here,

https://brainly.com/question/80295

#SPJ11

A proton and anti-proton are both moving at 0.995c. An electron and positron are both moving at 0.9995c a. What is the energy of the photon they create when they annihilate (please use units of MeV or GeV, whichever is most convenient). b. What is the mass (in kg) of the large particle this photon could pair produce? d. In Hydrogen, a photon of 93.076nm can move an electron from the ground state to what excited state? e. In Hydrogen, a photon of 383.65nm can move an electron from the second excited state to what excited state?

Answers

The mass of the large particle that can be created from the photon is approximately 1.66054 × 10^-27 kg. Using this information, the energy of the photon is 2.044MeV, the mass of the large particle that the photon could produce is 2.27× 10⁻³⁰ kg and for sub questions d and e, first and third excited states respectively.

a. Energy of the photon created by the proton and anti-proton annihilation: Given: Velocity of proton and anti-proton, v = 0.995cVelocity of electron and positron, v = 0.9995cEnergy equivalent to mass of a particle, E = mc²where,c = speed of light = 2.998 × 10⁸ m/sm = mass of proton = 1.6726219 × 10⁻²⁷ kg. Energy of the photon created by the proton and anti-proton annihilation is given by the formula: E = 2Ee = 2 (0.511 MeV) = 1.022 MeV (1 MeV = 10⁶ eV)Energy of the photon created by the electron and positron annihilation is given by the formula: E = 2Ee = 2 (0.511 MeV) = 1.022 MeV. Total energy of the two photons produced when the two pairs meet each other: Total energy = Energy due to proton-antiproton + Energy due to electron-positron = 1.022 MeV + 1.022 MeV = 2.044 MeV. Answer: Energy of the photon created is 2.044 MeV

b. Mass of the large particle this photon could pair produce: Given: Energy, E = 2.044 MeV = 2.044 × 10⁶ eV (1 MeV = 10⁶ eV). Using the formula E = mc²,m = E/c² = (2.044 × 10⁶ eV)/(9 × 10¹⁶ m²/s⁴) = 2.27 × 10⁻³⁰ kg. Answer: The mass of the large particle this photon could pair produce is 2.27 × 10⁻³⁰ kg.

d. In Hydrogen, a photon of 93.076nm can move an electron from the ground state to what excited state? The energy of the photon of 93.076nm is equal to the energy required to move the electron from the ground state to the first excited state. Therefore, the excited state of the hydrogen atom is the first excited state. The excited state of the hydrogen atom is the first excited state.

e. In Hydrogen, a photon of 383.65nm can move an electron from the second excited state to what excited state? The energy of the photon of 383.65nm is equal to the energy difference between the second excited state and the third excited state. Therefore, the excited state of the hydrogen atom is the third excited state. The excited state of the hydrogen atom is the third excited state.

Learn more about the excited state:

https://brainly.com/question/15829158

#SPJ11

A 0.140−kg baseball is dropped from rest from a height of 2.2 m above the ground. It rebounds to a height of 1.6 m. What change in the ball's momentum occurs when the ball hits the ground?

Answers

The change in momentum is -0.918 kg m/s.

The ball's momentum before hitting the ground is zero since the ball is at rest, and its velocity is zero.

It falls from a height of 2.2m above the ground, and its gravitational potential energy transforms into kinetic energy as it falls. Hence, using the law of conservation of energy;

mgh = (1/2)mv²where; m = 0.140 kg, g = 9.81 m/s², h = 2.2m, and the velocity (v) of the ball is obtained by rearranging the equation v² = 2ghv² = 2 × 9.81 × 2.2v² = 43.092v = √43.092v = 6.562 m/sThe velocity is positive since it falls downwards; thus, the direction of the velocity is downward, but it is positive.

Therefore, when it rebounds, the velocity is reversed, but the momentum is conserved. The momentum is given by;p = mvHence, the momentum of the ball before hitting the ground is;p = mv = 0.140 kg × 0 = 0 kg m/s (initial momentum)

When the ball hits the ground, it rebounds to a height of 1.6 m; thus, the change in momentum of the ball can be determined using the principle of conservation of momentum which states that the momentum of an object before a collision is equal to the momentum of the object after the collision.

The momentum of the ball after rebounding can be determined using the formula;p = mvSince the velocity of the ball is reversed, the velocity is negative. The mass remains constant.

Thus, the momentum after rebounding can be determined as follows; p = -mv = -0.140 kg × 6.562 m/s = -0.918 kg m/s (final momentum)

The change in momentum is;

p final - p initial = -0.918 kg m/s - 0 kg m/s = -0.918 kg m/s.

To learn about momentum here:

https://brainly.com/question/18798405

#SPJ11

Please answer electronically, not manually
5- Are there places where the salty electrical engineer can earn outside his official working hours?

Answers

As an Electrical Engineer, you can find several ways to earn extra money outside your official working hours by working as Online tutor, Freelancer, part time teacher etc.

1. Online Tutoring: You can use your engineering degree and expertise to tutor students online. There are several online tutoring websites available where you can register yourself and start teaching students in your free time.

2. Freelancing: Several freelancing websites are available that provide opportunities for Engineers to work on projects. You can register yourself and find work in your domain and complete projects in your free time.

3. Part-time teaching: If you are interested in teaching, you can work as a part-time lecturer or tutor in educational institutions.

4. Content creation: You can use your technical knowledge to create content for technical websites or blogs. You can also start your own blog and earn money through ads.

5. Consulting: As an engineer, you can provide consultancy services to companies or individuals. You can use your expertise to solve their technical problems and earn some extra cash.

let's learn more about Electrical Engineer:

https://brainly.com/question/17169621

#SPJ11

A wooden box, with a mass of 22 kg, is pulled at a constant speed with a rope that makes an angle of 25° with the wooden floor. The coefficient of static friction between the floor and the box is 0.1. What is the tension in the rope?

Answers

The tension in the rope is approximately 21.56 N. The force exerted on an object by acceleration or gravity is referred to as the weight of an object in science and engineering.

To find the tension in the rope, we need to consider the forces acting on the wooden box.

Weight (mg):

The weight of the wooden box can be calculated by multiplying the mass (m) by the acceleration due to gravity (g). In this case, the weight is given by:

Weight = mg = 22 kg * 9.8 m/s^2

Normal force (N):

The normal force is the force exerted by the floor on the wooden box perpendicular to the floor. Since the box is not accelerating vertically, the normal force is equal in magnitude and opposite in direction to the weight of the box. Therefore:

Normal force (N) = Weight = mg

Frictional force (f):

The frictional force is determined by the coefficient of static friction (μs) and the normal force. The maximum static frictional force can be calculated as:

Frictional force (f) = μs * N

Tension in the rope (T):

The tension in the rope is the force applied to the box horizontally, opposing the frictional force. Therefore, the tension in the rope is equal to the frictional force:

T = f

Now, let's calculate the values:

Weight = 22 kg * 9.8 m/s^2

Normal force (N) = Weight

Frictional force (f) = μs * N

Tension in the rope (T) = f

Substituting the given values:

Weight = 22 kg * 9.8 m/s^2

Normal force (N) = Weight

Frictional force (f) = 0.1 * N

Tension in the rope (T) = f

Calculate the values:

Weight = 22 kg * 9.8 m/s^2

Normal force (N) = Weight

Frictional force (f) = 0.1 * N

Tension in the rope (T) = f

Now, substitute the values and calculate:

Weight = 22 kg * 9.8 m/s^2

Normal force (N) = Weight

Frictional force (f) = 0.1 * N

Tension in the rope (T) = f

Weight = 215.6 N

Normal force (N) = Weight = 215.6 N

Frictional force (f) = 0.1 * N

Tension in the rope (T) = f

Frictional force (f) = 0.1 * 215.6 N

Tension in the rope (T) = f

Finally, calculate the tension in the rope:

Frictional force (f) = 0.1 * 215.6 N

Tension in the rope (T) = f

Tension in the rope (T) ≈ 21.56 N

To know more about gravity

https://brainly.com/question/31321801

#SPJ11

Two identical point sources create an interference pattern in a wave tank.
We notice that a point on the fourth nodal line is located at 10 cm from one source and
15 cm from the other. If the frequency of the waves is 3.7 Hz, determine:
(a) The length of the waves.
(b) The speed of propagation of waves.

Answers

The length of the waves is 10 cm and the speed of propagation is 37 cm/s. For the length of the waves, we can use the formula for the distance between consecutive nodal lines in an interference pattern.

To find the length of the waves, we can use the formula for the distance between consecutive nodal lines in an interference pattern.The distance between two consecutive nodal lines is given by λ/2, where λ is the wavelength.

In this case, the fourth nodal line is observed to be 5 cm away from the midpoint between the two sources, which means it is located 10 cm from one source and 15 cm from the other. The difference in path lengths from the two sources is 15 cm - 10 cm = 5 cm. Since this is half the wavelength (λ/2), the wavelength can be calculated as 2 * 5 cm = 10 cm.

To determine the speed of propagation of the waves, we can use the wave equation v = fλ, where v is the speed of propagation, f is the frequency, and λ is the wavelength. Plugging in the values, we have v = 3.7 Hz * 10 cm = 37 cm/s.

Therefore, the length of the waves is 10 cm and the speed of propagation is 37 cm/s.

Learn more about wavelength here:

https://brainly.com/question/7143261

#SPJ11

An object is undergoing periodic motion and takes 10 s to undergo 20 complete oscillations. What is the period and frequency of the object? (a) T=10 s,f=2 Hz (b) T=2 s,f=0.5 Hz (c) T=0.5 s,f=2 Hz (d) T=0.5 s,f=20 Hz (e) T=10 s,f=0.5 Hz

Answers

The period and frequency of the object is T = 2 s, f = 0.5 Hz. So, the correct option is (b).

Period (T) is defined as the time taken for one complete cycle of motion, while frequency (f) is the number of cycles per unit time. In this problem, the object completes 20 oscillations in a total time of 10 seconds.

To find the period, we divide the total time by the number of oscillations:

T = 10 s / 20 = 0.5 s

The period represents the time for one complete cycle of motion. In this case, it takes the object 0.5 seconds to complete one full oscillation.

To find the frequency, we take the reciprocal of the period:

f = 1 / T = 1 / 0.5 s = 2 Hz

The frequency represents the number of cycles per unit time. In this case, the object completes 2 cycles (20 oscillations) in 1 second, resulting in a frequency of 0.5 Hz.

Therefore, the correct answer is (b) T = 2 s, f = 0.5 Hz, as the object has a period of 2 seconds and a frequency of 0.5 Hz.

Learn more about Period

https://brainly.com/question/15611577

#SPJ11

You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 12-m-high hill, then descends 17 m to the track's lowest point. You've determined that the spring can be compressed maximum of 2.1 m and that a loaded car will have a maximum mass of 450 kg. For safety reasons, the spring constant should be 15% larger than the minimum needed for the car to just make it over the top. Part A
What spring constant should you specify? Express your answer with the appropriate units. k = _________ N/m
Part B What is the maximum speed of a 350 kg car if the spring is compressed the full amount? Express your answer with the appropriate units. v = Value ____________ Unit ___________

Answers

The spring constant is 3,542 N/m and the maximum speed of the car is 17.04 m/s

Part A:

The force that must be overcome is the weight of the loaded car, which is 450 kg. The potential energy required for a 12 m lift can be calculated using the formula PE = mgh, where m is the mass, g is the acceleration due to gravity, and h is the height.

PE = (450 kg)(9.8 m/s²)(12 m) = 52,920 J.

At the crest of the hill, this potential energy is converted to kinetic energy. The mass of the car is used to calculate the spring constant since this is the maximum mass. The car is at rest at the top of the hill, so we can solve for the speed the car will have at the bottom of the track after descending 17 m using the principle of conservation of energy.

450 kg(9.8 m/s²)(29 m) = 450 kg(9.8 m/s²)(12 m) + (0.5)k(2.1 m)²

132,300 J = 52,920 J + (0.5)k(4.41 m²)

132,300 J - 52,920 J = (0.5)k(4.41 m²)

79,380 J = (0.5)k(4.41 m²)

k = 79,380 J / (0.5)(4.41 m²)

k ≈ 3,080 N/m

With a 15% safety margin, the spring constant should be (1.15)(3,080 N/m) ≈ 3,542 N/m.

Part B:

At the bottom of the track, all the spring potential energy will be converted to kinetic energy. Use the equation for conservation of energy:

(1/2)mv² = (1/2)kx²

Substituting the known values:

(1/2)(350 kg)v² = (1/2)(3,080 N/m)(2.1 m)²

Simplifying:

175v² = 3080(2.1)²

v² = (3080)(2.1)² / 175

v² = 290.52

v = sqrt(290.52)

v ≈ 17.04 m/s

Learn more about spring constant: https://brainly.com/question/28203351

#SPJ11

A positive charge moves in the x−y plane with velocity v
=(1/ 2

) i
^
−(1/ 2

) j
^

in a B
that is directed along the negative y axis. The magnetic force on the charge points in which direction? −y

Answers

The direction of the force on the charge can be determined by pointing the thumb, index finger, and middle finger of the left-hand in the direction of the force, magnetic field, and current, respectively, as per the rule.

Given the velocity of a positive charge moving in the x-y plane is, `v=(1/2) i^ − (1/2) j^` and the magnetic field `B` is directed along the negative y-axis. Hence, the direction of magnetic force can be determined using the right-hand rule.According to the right-hand rule, if we hold our right-hand fingers in the direction of the velocity vector `v` and curl them towards the direction of the magnetic field vector `B`, then the thumb will point towards the direction of the magnetic force vector, `F`.

Thus, in the present case, if we use the right-hand rule, the magnetic force on the charge will be directed along the negative y-axis because when we curl our right-hand fingers towards the negative y-axis (direction of `B`), the thumb points towards the negative y-axis too (direction of `F`).Hence, the magnetic force on the charge points in the `-y` direction. It is noteworthy that the direction of magnetic force on a positive charge can be determined using Fleming's left-hand rule which is also based on the same principle.

Fleming's left-hand rule is particularly used when the direction of the current in the wire is given and the charge is moving inside the magnetic field. The direction of the force on the charge can be determined by pointing the thumb, index finger, and middle finger of the left-hand in the direction of the force, magnetic field, and current, respectively, as per the rule.

Learn more about Velocity here,

https://brainly.com/question/80295

#SPJ11

please help me !!!!!
calculate the refractive index of the material for the glass prism in the diagram below​

Answers

The glass has a 0.88 refractive index based on the computation and the image.

What is the triangular prism's overall reflection angle?

The angle at which total internal reflection takes place as light travels through a triangular prism is referred to as the total reflection angle of the prism. This phenomenon occurs when light moving through one media encounters the interface with another and totally reflects back into the original medium rather than transmitting.

We have that;

n = Sin1/2(A + D)/Sin1/2A

A = Total reflecting angle of the prism

D = Angle of deviation

n = Sin1/2(60 + 40)/Sin 60

n = 0.766/0.866

n = 0.88

Learn more about triangular prism:brainly.com/question/27102803

#SPJ1

A 1.60-m long steel piano wire has a diameter of 0.20 cm. What is the needed tension force in the wire for it to stretch at a length of 0.25 cm? (Continuation) What is the amount of force that could break this wire? The ultimate strength of steel is 500 x10 Pa. What is the elongation length of the wire the moment it breaks?

Answers

To calculate the tension force required to stretch a steel piano wire, we can use Hooke's Law and the formula for the cross-sectional area of a wire. The force that could break the wire can be determined using the ultimate strength of steel. The elongation length of the wire at the moment it breaks can be found using the equation for strain.

To find the tension force required to stretch the piano wire by a certain length, we can use Hooke's Law, which states that the force applied to a spring or elastic material is proportional to the displacement or change in length. The formula for Hooke's Law is F = kΔL, where F is the tension force, k is the spring constant (related to the wire's Young's modulus and cross-sectional area), and ΔL is the change in length.

First, we need to find the cross-sectional area of the wire using its diameter. The formula for the area of a circle is A = πr², where r is the radius. In this case, the diameter is given, so we can divide it by 2 to find the radius.

Once we have the cross-sectional area, we can calculate the spring constant using Young's modulus, which is a property of the material. The spring constant is given by k = (YA) / L, where Y is the Young's modulus, A is the cross-sectional area, and L is the original length of the wire.

To calculate the force that could break the wire, we use the ultimate strength of steel, which is a measure of the maximum stress a material can withstand without breaking. The force is given by F_break = A * ultimate strength.

Finally, to find the elongation length at the moment the wire breaks, we can use the equation for strain: ΔL / L = F_break / (A * Y), where ΔL is the elongation length, L is the original length, F_break is the force that could break the wire, A is the cross-sectional area, and Y is the Young's modulus.

Learn more about tension force here:

https://brainly.com/question/29124835

#SPJ11

A hollow aluminum cylinder 17.0 cm deep has an internal capacity of 2.000 L at 21.0°C. It is completely filled with turpentine at 21.0°C. The turpentine and the aluminum cylinder are then slowly warmed together to 79.0°C. (The average linear expansion coefficient for aluminum is 24 ✕ 10−6°C−1, and the average volume expansion coefficient for turpentine is 9.0 ✕ 10−4°C−1.)
(a) How much turpentine overflows? ----------- cm3
(b) What is the volume of turpentine remaining in the cylinder at 79.0°C? (Give your answer to at least four significant figures.)
---------- L
(c) If the combination with this amount of turpentine is then cooled back to 21.0°C, how far below the cylinder's rim does the turpentine's surface recede?
---------------- cm

Answers

The amount of turpentine that overflows can be calculated using the volume expansion coefficients of turpentine and the change in temperature.

(a) To calculate the amount of turpentine that overflows, we need to find the change in volume of the aluminum cylinder and the change in volume of the turpentine. The change in volume of the aluminum cylinder can be calculated using the linear expansion coefficient and the change in temperature: ΔV_aluminum = V_aluminum * α_aluminum * ΔT. Substituting the given values, ΔV_aluminum = (2.000 L) * (24 * 10^-6 °C^-1) * (79.0°C - 21.0°C).

The change in volume of the turpentine can be calculated using the volume expansion coefficient and the change in temperature: ΔV_turpentine = V_turpentine * β_turpentine * ΔT. Substituting the given values, ΔV_turpentine = (2.000 L) * (9.0 * 10^-4 °C^-1) * (79.0°C - 21.0°C).

The amount of turpentine that overflows is the difference between the change in volume of the turpentine and the change in volume of the aluminum cylinder: Overflow = ΔV_turpentine - ΔV_aluminum.

(b) The volume of turpentine remaining in the cylinder at 79.0°C is the initial volume of turpentine minus the amount that overflows: V_remaining = V_initial - Overflow.

(c) When cooled back to 21.0°C, the volume of the turpentine remains the same, but the volume of the aluminum cylinder shrinks. The volume change of the aluminum cylinder can be calculated using the linear expansion coefficient and the change in temperature: ΔV_aluminum = V_aluminum * α_aluminum * ΔT. Substituting the given values, ΔV_aluminum = (2.000 L) * (24 * 10^-6 °C^-1) * (21.0°C - 79.0°C).

The turpentine's surface recedes below the cylinder's rim by the difference between the change in volume of the aluminum cylinder and the change in volume of the turpentine: Recession = ΔV_aluminum - ΔV_turpentine.

Learn more about linear expansion coefficient here:

https://brainly.com/question/28232487

#SPJ11

1. Draw a sketch showing the first-arrival travel times and subsurface ray paths for the air wave, direct wave, ground roll, reflected wave, and refracted wave for a two-layer horizontal cross-section.
2. Draw a sketch showing the first-arrival travel times for forward and reversed profiles and subsurface ray paths for a two-layer horizontal cross-section with a vertical discontinuity in the lower layer.
3. Draw a sketch showing the first-arrival travel times for forward and reversed profiles and subsurface ray paths for seismic diffraction caused by a fault.

Answers

Sketches depicting first-arrival travel times and subsurface ray paths for different waves in a two-layer cross-section are provided, including air wave, direct wave, ground roll, reflected wave, and refracted wave. Image credits: Research Gate. Additionally, there is a sketch showing first-arrival travel times and subsurface ray paths with a vertical discontinuity in the lower layer, and another sketch illustrating seismic diffraction caused by a fault. Image credits for both sketches: Research Gate.

1. Sketch for First-Arrival Travel Times and Subsurface Ray Paths:

For a two-layer horizontal cross-section, the sketch shows the first-arrival travel times and subsurface ray paths for various waves, including the air wave, direct wave, ground roll, reflected wave, and refracted wave. The image credits for this sketch go to Research Gate.

2. Sketch for First-Arrival Travel Times and Subsurface Ray Paths with a Vertical Discontinuity:

In this sketch, depicting a two-layer horizontal cross-section with a vertical discontinuity in the lower layer, the first-arrival travel times for both forward and reversed profiles are shown, along with the corresponding subsurface ray paths. The image credits for this sketch are attributed to Research Gate.

3. Sketch for First-Arrival Travel Times and Subsurface Ray Paths for Seismic Diffraction:

This sketch focuses on seismic diffraction caused by a fault. It illustrates the first-arrival travel times for both forward and reversed profiles, as well as the subsurface ray paths associated with this phenomenon. The image credits for this sketch go to Research Gate.

Learn more about cross-section

https://brainly.com/question/28257972

#SPJ11

A beam of laser light of wavelength 632.8 nm falls on a thin slit 3.75×10^−3 mm wide.
After the light passes through the slit, at what angles relative to the original direction of the beam is it completely cancelled when viewed far from the slit?
Type absolute values of the three least angles separating them with commas.

Answers

The absolute values of the three least angles at which the light is completely cancelled are approximately 0.106 radians, 0.213 radians, and 0.320 radians, respectively.

To find the angles at which the light is completely cancelled (resulting in dark fringes), we can use the concept of diffraction and the equation for the position of dark fringes in a single slit diffraction pattern.

The equation for the position of dark fringes in a single slit diffraction pattern is given by:

sin(θ) = mλ / b

where θ is the angle of the dark fringe, m is the order of the fringe (m = 0 for the central fringe), λ is the wavelength of the light, and b is the width of the slit.

In this case, the wavelength of the laser light is given as 632.8 nm, which is equal to 632.8 × [tex]10^{-9}[/tex] m, and the width of the slit is 3.75 × 10^(-3) mm, which is equal to 3.75 × [tex]10^{-6}[/tex] m.

For the first-order dark fringe (m = 1), we can calculate the angle θ_1:

sin(θ_1) = (1)(632.8 × [tex]10^{-9}[/tex] m) / (3.75 × [tex]10^{-6}[/tex] m)

Using a calculator, we find θ_1 ≈ 0.106 radians.

For the second-order dark fringe (m = 2), we can calculate the angle θ_2:

sin(θ_2) = (2)(632.8 × [tex]10^{-9}[/tex] m) / (3.75 × [tex]10^{-6}[/tex] m)

Again, using a calculator, we find θ_2 ≈ 0.213 radians.

For the third-order dark fringe (m = 3), we can calculate the angle θ_3:

sin(θ_3) = (3)(632.8 × [tex]10^{-9}[/tex] m) / (3.75 × [tex]10^{-6}[/tex] m)

Once again, using a calculator, we find θ_3 ≈ 0.320 radians.

Therefore, the absolute values of the three least angles at which the light is completely cancelled are approximately 0.106 radians, 0.213 radians, and 0.320 radians, respectively.

Learn more about diffraction here:

https://brainly.com/question/12290582

#SPJ11

A car's side mirror has a focal length, f=−50 cm. Which of the following is/are true about the mirror? A. Its optical power is −2D. B. It always produces virtual images. C. It always produces diminished images. 13. Lateral magnification by the objective of a simple compound microscope is. m 1

=−10×. Which pair of angular magnification by its eyepiece, M 2

, and total magnification, M, is/are possible for the microscope? 14. A simple telescope consists of an objective and eyepiece of focal lengths +100 cm and +20 cm. Which of the following is/are TRUE about the telescope? A. The telescope length is 1.2 m. B. The power of the objective is +1.0D C. The final image formed by the telescope is virtual. 15. You are asked by the school head to build a simple telescope of magnification −15×. Which pair of lens combinations is/are suitable for the telescope? 16. The distance between point N from coherent sources M and O are λ and 3 2
1

λ, respectively. Points M,N and O lie in a straight line. Point N is located between M and O. Which is/are true statement(s) about the situation. A. Point N is an antinode point. B. The path length between source M and O is 4 2
1

λ. C. The path difference between sources M and O at point N is 2 2
1

λ 17. A bubble seems to be colourful when shone with white light. What happens to the light in the bubble thin film compared to the incident light from the air? A. The light is slower in the thin film. B. The wavelength of the light is shorter in the film. C. The frequency of the light does not change in the film. 18. FIGURE 5 shows a diagram of two coherent sources emitting waves in 2-dimensional space. Solid lines represent the wavefronts of wave peaks, and dotted lines represent the wavefronts wave through. Select the thick line(s) representing the nodal line(s). 19. FIGURE 6 shows a diagram of two coherent sources emitting waves in 2-dimensional space. Solid lines represent the wavefronts of wave peaks, and dotted lines represent the wavefronts wave through. 20. A part of a static bubble in the air momentarily looks reddish under the white light illumination. Given that the refractive index of the bubble is 1.34 and the red light wavelength is 680 nm, what is/are the possible bubble thickness? A. 130 nm B. 180 nm C. 630 nm 21. A thin layer of kerosene (n=1.39) is formed on a wet road (n=1.33). If the film thickness is 180 nm, what is/are the possible visible light seen on the layer? A. 460 nm B. 700 nm C. 1400 nm 22. 400 nm blue light passes through a diffraction grating. The first order bright fringe is located at 10 mm from the central bright. Which of the following is/are true about the situation? A. The width of the bright fringe is 10 cm. B. The distance between consecutive bright fringe is 10 cm. C. The distance between the light source and the screen is 10 cm. 23. In Young's double slits experiment, A. the slits refract light. B. the wavelength of the light source increases and decreases alternatively. C. the width of the central bright is inversely proportional to the distance between slits. 24. A beam of monochromatic light is diffracted by a slit of width 0.45 mm. The diffraction pattern forms on a wall 1.5 m beyond the slit. The width of the central maximum is 2.0 mm. Which of the following is/are TRUE about the experiment? A. The wavelength of the light is 600 nm. B. The width of each bright fringe is 2.0 mm C. The distance between dark fringes is 1.0 mm Devi conducted a light diffraction experiment using a red light. She got the diffraction pattern as shown in FIGURE 7. The distance between indicated dark fringes was measured as 2.5 mm. Which of the following statement is/are TRUE about the experiment? A. She used diffraction grating to get the pattern. B. The width of the central maximum was 2.5 mm. C. The distance between consecutive bright fringes was 2.5 mm.

Answers

A concave mirror with a negative focal length (-50 cm in this case) has a negative optical power. The correct statement is: A.

The optical power (P) of a mirror is given by the equation:

P = 1 / f,

where f is the focal length. As the focal length is negative, the reciprocal will also be negative, resulting in a negative optical power. Therefore, statement A is true.

However, the other statements B and C are not necessarily true. The mirror can produce both virtual and real images depending on the position of the object in relation to the mirror. The mirror can produce both magnified and diminished images depending on the object's position and the distance between the object and the mirror. Hence,  the correct statement is: A

To know more about concave mirror, here

brainly.com/question/31379461

#SPJ4

--The complete Question is, A car's side mirror has a focal length, f=−50 cm. Which of the following is/are true about the mirror? A. Its optical power is −2D. B. It always produces virtual images. C. It always produces diminished images.

--

What is the repulsive force between two pith balls that are 2.600E+0−cm apart ard have equal charges of 3.000E+1 −nC ?

Answers

The repulsive force between two pith balls that are 2.600E-0 cm apart and have equal charges of 3.000E-1 nC is approximately 4.59E-3 Newtons.

The repulsive force between two charged objects can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as F = k * (q1 * q2) / r^2, where F is the force, k is the electrostatic constant (9.0E9 N·m^2/C^2), q1 and q2 are the charges of the objects, and r is the distance between them.

In this case, both pith balls have equal charges of 3.000E-1 nC (3.000E-10 C), and they are 2.600E-0 cm (2.600E-2 m) apart. Substituting these values into the Coulomb's law equation, we have F = (9.0E9 N·m^2/C^2) * [(3.000E-10 C)^2 / (2.600E-2 m)^2].

Simplifying the calculation, we find that the repulsive force between the pith balls is approximately 4.59E-3 Newtons.

Learn more about Coulomb's law equation here:

https://brainly.com/question/506926

#SPJ11

A disk slides toward a motionless stick on a frictionless surface (figure below). The disk strikes and adheres to the stick and they rotate together, pivoting around the nail. Angular momentum is conserved for this inelastic collision because the surface is frictionless and the unbalanced external force at the nail exerts no torque. Consider a situation where the disk has a mass of 50.1 g and an initial velocity of 31.3 m/s when it strikes the stick that is 1.36 m long and 2.15 kg at a distance of 0.100 m from the nail. a. What is the angular velocity (in rad/s) of the two after the collision? (Enter the magnitude.) rad/s b. What is the kinetic energy (in J) before and after the collision? K before = J K after = J c. What is the total linear momentum (in kg⋅m/s ) before and after the collision? (Enter the magnitude.) p before kg.m/s p after = kg⋅m/s

Answers

The total linear momentum after the collision isp after = (M + m) v afterp after = (2.15 + 0.0501) × 1.48p after = 3.20 kg m/s (approximately)Thus, the total linear momentum before the collision is 1.57 kg m/s and after the collision is 3.20 kg m/s (approximately).

a)To find the angular velocity after the collision, use the conservation of angular momentum.Li = LfIi ωi = If ωfIi ωi = If ωfωf = Ii ωi / IfWe know that the moment of inertia, I = ML² / 3 (moment of inertia of a rod)Where M is the mass of the rod and L is its length.If the moment of inertia of the stick and the disk together is If, then we can write that If = Md² + ML² / 3We know that the mass of the stick, M = 2.15 kg (given) and its length, L = 1.36 m (given). The mass of the disk, m = 50.1 g = 0.0501 kg (given). The distance of the stick from the nail, d = 0.100 m (given).So, If = 0.0501 × 0.100² + 2.15 × 1.36² / 3= 1.570 kgm²Now, substitute the values in the above equation.ωf = Ii ωi / Ifωf = 0.0501 × 31.3 / 1.570ωf = 1 rad/s.

Therefore, the angular velocity of the two after the collision is 1 rad/s.b) The kinetic energy before the collision is given by,Kinetic energy = ½ mv²K before = ½ × 0.0501 × 31.3²= 24.8 JThe kinetic energy after the collision is given by, K after = ½ (Md²ωf² + ½ mv²)K after = ½ (2.15 × 0.100² × 1² + ½ × 0.0501 × 1²)K after = 0.011 J.

Therefore, the kinetic energy before the collision is 24.8 J and after the collision is 0.011 J.c)

The total linear momentum before the collision is the product of the mass and the velocity of the disk.p before = mv = 0.0501 × 31.3p before = 1.57 kg m/sThe total linear momentum after the collision is the product of the mass and the velocity of the stick and the disk. The velocity of the stick can be found using the conservation of linear momentum.mv before = (M + m) v after Where,M is the mass of the stick, m is the mass of the disk, v before is the initial velocity of the disk, and v after is the final velocity of the stick and the disk together.v after = m v before / (M + m)v after = 0.0501 × 31.3 / (2.15 + 0.0501)v after = 1.48 m/s.

Therefore, the total linear momentum after the collision isp after = (M + m) v after p after = (2.15 + 0.0501) × 1.48p after = 3.20 kg m/s (approximately)Thus, the total linear momentum before the collision is 1.57 kg m/s and after the collision is 3.20 kg m/s (approximately).

Learn more about Velocity here,

https://brainly.com/question/24824545

#SPJ11

20 kVA, 2000/200-V, 50-Hz transformer has a high voltage winding resistance of 0.2 2 and a leakage reactance of 0.242. The low voltage winding resistance is 0.05 2 and the leakage reactance is 0.02 2. Find the equivalent winding resistance, reactance and impedance referred to the (i) high voltage side and (ii) the low-voltage side. (Draw the related equivalent circuits)

Answers

Therefore, the equivalent winding resistance is 0.27 Ω, the equivalent reactance is 0.262 Ω, and the equivalent impedance is 0.376 Ω.

To find the equivalent winding resistance, reactance, and impedance of the transformer, we can use the following formulas:

Equivalent Winding Resistance[tex](R_{eq})[/tex] = High Voltage Winding Resistance + Low Voltage Winding Resistance

Equivalent Reactance[tex](X_{eq})[/tex] = High Voltage Leakage Reactance + Low Voltage Leakage Reactance

Equivalent Impedance[tex](Z_{eq})[/tex] = [tex]\sqrt(R_{eq^2} + X_{eq^2})[/tex]

Given:

High Voltage Winding Resistance [tex](R_h)[/tex] = 0.22 Ω

High Voltage Leakage Reactance[tex](X_h)[/tex] = 0.242 Ω

Low Voltage Winding Resistance[tex](R_l)[/tex] = 0.05 Ω

Low Voltage Leakage Reactance[tex](X_l)[/tex] = 0.02 Ω

Calculating the values:

Equivalent Winding Resistance [tex](R_{eq})[/tex] = 0.22 Ω + 0.05 Ω = 0.27 Ω

Equivalent Reactance[tex](X_{eq})[/tex]= 0.242 Ω + 0.02 Ω = 0.262 Ω

Equivalent Impedance [tex](Z_{eq})[/tex] = √[tex](0.27^2 + 0.262^2)[/tex] =[tex]\sqrt{(0.0729 + 0.068644)[/tex]= [tex]\sqrt{0.141544[/tex] = 0.376 Ω

To know more about equivalent winding resistance, here

brainly.com/question/18322298

#SPJ4

--The complete QUestion is, What is the equivalent winding resistance, reactance, and impedance of a 20 kVA, 2000/200-V, 50-Hz transformer with a high voltage winding resistance of 0.22 Ω and a leakage reactance of 0.242 Ω, and a low voltage winding resistance of 0.05 Ω and a leakage reactance of 0.02 Ω?

--

Complete the following equations. 1. ²⁴⁰ ₉₄Pu → ²³⁶₉₂U + 2. ²⁴¹₈₃Bi → ²¹⁴₈₄Po + 3. ²³⁵₉₂U + → ¹⁴⁰₅₅Cs + ⁹³₃₇Rb + 3¹₀n 4. ²₁H + ³₁H → ⁴₂He +

Answers

The complete equations are:

1. ²⁴⁰ ₉₄Pu → ²³⁶₉₂U + ⁴₂He

2. ²⁴¹₈₃Bi → ²¹⁴₈₄Po + ⁴₂He

3. ²³⁵₉₂U + ⁱ⁴⁰₅₅Cs + ⁹³₃₇Rb + ³¹₀n → ¹⁴⁰₅₅Cs + ⁹³₃₇Rb + 3¹₀n

4. ²₁H + ³₁H → ⁴₂He + ¹₀n

1. ²⁴⁰ ₉₄Pu → ²³⁶₉₂U + ⁴₂He

(240 units of proton and neutron in a Plutonium-94 nucleus decay into a Uranium-92 nucleus and a Helium-4 particle.)

2. ²⁴¹₈₃Bi → ²¹⁴₈₄Po + ⁴₂He

(241 units of proton and neutron in a Bismuth-83 nucleus decay into a Polonium-84 nucleus and a Helium-4 particle.)

3. ²³⁵₉₂U + ⁱ⁴⁰₅₅Cs + ⁹³₃₇Rb + ³¹₀n → ¹⁴⁰₅₅Cs + ⁹³₃₇Rb + 3¹₀n

(235 units of proton and neutron in a Uranium-92 nucleus undergo a nuclear reaction with a Cesium-55 nucleus, Rubidium-37 nucleus, and 10 neutrons.)

4. ²₁H + ³₁H → ⁴₂He + ¹₀n

(A Hydrogen-1 nucleus, also known as a proton, and a Hydrogen-3 nucleus, also known as a triton, undergo a nuclear reaction. This leads to the formation of a Helium-4 nucleus and a neutron.)

To know more about equations here

https://brainly.com/question/29538993

#SPJ4

Other Questions
The vector parametric equation for the line through the points (1,2,4) and (5,1,1) is L(t)= What are the short comings of social structure theories incriminology? Have a minimum of 400 words in a four-paragraph response to President Biden's question.Cite specific examples and facts supporting your answer. A cow (200 g) is accidentally accelerated to 0.6 c. Determine the kinetic energy of the cow. (Use Special Relativity). A utility pole has a guy-wire attached to it 3 feet from the top of the pole. The wire is attached to the ground by a stake that is 100 feet from the base of the pole. The wire makes a 46 angle with the ground. Given this information, answer the following questions. 1. How long is the guy-wire? 2. What is the height of the pole? Complete your solution on separate paper and upload your final solution below. The solution should contain the following: diagrams that you drew calculations that you performed explanations written in complete sentences There was once a town in the heart of America where all life seemed to live in harmony with its surroundings. The town lay in the midst of a checkerboard of prosperous farms, with fields of grain and hillsides of orchards where, in spring, white clouds of bloom drifted above the green fields. In autumn, oak and maple and birch set up a blaze of color that flamed and flickered across a backdrop of pines.Which phrases in the excerpt best support the authors purpose of creating a positive image of a town? Select five options.heart of Americalive in harmonywith its surroundingslay in the midsthillsides of orchardsin autumnblaze of colorprosperous farms Task 1 - k Nearest Neighbours Implementation Requirements: a. Implement the K-Nearest-Neighbours algorithm. Your code should include at least the following functions: 1. read_data: reads the wine.csv dataset, which includes the results of a chemical analysis of 178 wine samples grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 different features found in each of the three types of wines. (Some additional information on the dataset can be found in the attached file wines.names). 2. split_data: takes a percentage value as a parameter, which represents the relative size of the testing set. The function should randomly split the dataset into two groups: testing and training. For example, if the dataset includes 100 data items, then the function call split_data(0.3) should return two groups of data items: one that includes 70 random selected items for training, and the other includes the other 30 items for testing. Note: You may use the Python function random sample to split the data set. 3. euclidean_distance function: measures the distance between two wines based on their attributes. 4. KNN function: takes a training set, a single wine and an integer k, and returns the k nearest neighbours of the wine in the training set. 5. A classification function that finds the type of the wine. Your function should return the type (1,2 or 3) based on the majority of its k nearest neighbours. 6. A function that returns the prediction accuracy, i.e. the percentage of the wines in the test set that were correctly identified. b. The output of your program should include: 1. For each sample in each group (training and testing) print its real type, the classifier prediction and whether the prediction was correct (true/false). For each group print the prediction accuracy. For example: sample class = 1, prediction class = 1, prediction correct: True sample class = 1, prediction class = 2, prediction correct: False Training set accuracy: 99.47619047619048 X sample class = 1, prediction class = 1, prediction correct: True sample class = 1, prediction class = 2, prediction correct: True Testing set accuracy: 88.76543646533220 % C. Run your algorithm using different k values. d. Plot a graph that shows the accuracy of both sets (training and testing) in respect to k. Note: To make plots, you can use the Python library matplotlib. e. Try to use a different distance function (replacing the euclidean_distance from (4.) above). Does it change the results? In what way? (Improve or worsen the accuracy). The results should be included in the report. 17.8 g of iron (II) sulfate solution is reacted with 4.35 g of lithium hydroxide to produce a precipitate. Written Response 1. Write the balanced chemical reaction including proper states. Your answer. 2. Calculate the maximum theoretical yield of the precipitate that is formed in this reaction by first finding the limiting reagent. Jefferson Company issued $40,000 of 10-year, 5% bonds payable on January 1, 2018. Jefferson Company pays interest each January 1 and July 1 and amortizes discount or premium by the straight-line amortization method. The company can issue its bonds payable under various conditions. 15. "Now that you understand how our childhood games teach us how to communicate as children, let's explore how childhood games influences the ways we communicate as adults." The underlined statements represent which type of connective? A. internal previews B. transitions C. identifiers When the following equation is balanced properly under acidic conditions, what are the coefficients of the species shown? _____Cr^3++ _______Br^-_______Cr^2++ _______BrO_3- .Water appears in the balanced equation as a __________(reactant, product, neither) with a coefficient of ___________ (Enter 0 for neither.)Whichelementisoxidized? _________ Feed the feed C7H16-C8H18 mixture at 250C 1 atm (bubble point 1120C specific heat of feed 243.615kl/kgmole-ok) into continuous tower distillation, if feed F-100 kgmole/h, its concentration XF-0.4, top I need help solving this because my math teacher doesnt help so, can anyone help please??? NO LINKS!!! URGENT HELP PLEASE!!!Please help with 27 & 28 What is Direct & Indirect Measurement of high voltages and its significance in a particular situation? 2. Explain the rod gaps Concept in breakdown. 3. Explain sphere gap method? Explain specifications on spheres and associated accessories. 4. Write about the methods of peak voltage measurement 5. Write about Principle, construction, and operation of electrostatic voltmeters 6. Give the schematic arrangements of an impulse potential divider with an oscilloscope connected for measuring impulse voltages. Explain the arrangement used to minimize the error. 7. Discuss the main sources of errors common to all type of dividers 8. Explain the Chubb-Fortesque method for peak voltage measurement bringing out the sources of errors. 9. Explain the method of using the series resistance with micro-ammeter for measuring high DC voltages. List the drawbacks of this method. 10. Explain the principle of operation and construction of an electrostatic voltmeter used for the measurement of high voltage. What are the limitations? 11. Write principle and construction of generating voltmeter. 12. Explain and compare the performance of half wave rectifier and voltage doubler circuits for generation of high d.c. voltages. 13. Write short notes on Rogogowsky coil and Magnetic Links. 14. Explain the breakdown phenomena with respect to influence of nearby earthed objects, humidity and dust particles. 15. Explain uniform field spark gaps. 1. Discuss the important properties of (i) gaseous; (ii) liquid; and (iii) solid insulating materials. 2. Discuss the following breakdown methods in solid dielectric. (i) intrinsic breakdown; (ii) avalanche breakdown. 3. Explain electronic breakdown and electro-convection breakdown in commercial liquid dielectrics. 4. Explain electronic breakdown and electro-convection breakdown in commercial liquid dielectrics. 5. In an experiment with certain gas, it was found that the steady state current is 5.5 X 10-8 A at 8KV at a distance of 0.4cm between the electrode plates. Keeping the field constant and reducing the distance to 0.01 cm results in a current of 5.5 X 10- 9A. Calculate Townsend's primary ionization co-efficient. 6. What is time-lag? Discuss its components and the factors which affect these components. 7. Discuss the breakdown phenomenon in electronegative gases. 1. What is a cascaded transformer? Explain why cascading is done? 2. Write in details the principle of operation and advantages of series resonant circuit. 3. Discuss the working principle of high frequency ac high voltage generation. 4. Explain and compare the performance of half wave rectifier and voltage doubler circuits for generation of high de voltages. 5. Explain with neat sketches Cockroft-Walton voltage multiplier circuit. Derive the expression for a) high voltage regulation, b) ripple, c) optimum no of stages when the circuit is (i) unloaded (ii) loaded. 6. A ten stage Cockraft-Walton circuit has all capacitors of 0.06 F. The secondary voltage of the supply transformer is 100 kV at a frequency of 150 Hz. If the load current is 1 mA, determine (i) voltage regulation (ii) the ripple (iii) the optimum number of stages for maximum output voltage (iv) the maximum output voltage. 7. Explain with neat diagram the principle of operation of (i) series (ii) parallel resonant circuits for generating high a.c. voltages. Compare their performance. 8. What are different types of insulators and their applications. 9. What is insulation breakdown? 10. What are Different types of polymeric & Ceramic Insulation materials and their X-tics w.r.t electrical, mechanical, optical, acoustical and environmental resistance. the mass absorption coefficient of x-ray of wavelength=0.70 is 5 cm/g for Al, and 50 cm/g for Cu. The density of Al is 2.7g/cm and that of Cu is 8.93 g/cm. what thickness, in mm, of each of these materials is needed to reduce the intensity of the x-ray beam passing through it to one half its initial value? Selecting glass, glazing, windows, and doors for each of the following uses: Refer to chapter 18 and 19 p. 695-758. 3 points Recommend a Window/Door type and frame materials for each of the following - uses: o Office window in a 10-story office building, no ventilation required. law.e. glazing units, glass with low... Solar.. heat. 7. Fixd...type....... with aluminium Frame material. o Classroom window in a one-story school, directly adjacent to a playground, ventilation require. full glass for half glass and sidelight. Glass, clear frasted., Coloured.or acrylic...aluminium.4.wooden..& claded. frame. o Door opening from a residential living space to an exterior patio, with the greatest possible openness and ventilation. ************** Indicate a type of glass appropriate for each of the following uses: o A window in a fire door ********* o A window in a public washroom ******** o Overhead sloping glazing......... Was Sundiata Keita a good virtuous king according to the ideaspresented by Machiavelli in The Prince (the qualities)? What typeof principality was Sundiata (Hereditary, new, or mixed? Find 0 [ N = IN LEIO xy sin (x + y) dedy X A parallel-plate capacitor has a capacitance of 21F when filled with air and it can withstand a potential difference of 49 V before it suffers electric breakdown. (a) What is the maximum amount of charge we can place on this air-filled capacitor? The dielectric strength of 3.00106 V/m. c (b) If we fill this capacitor with polyethylene, what will be its new capacitance? F (c) What will be the maximum potential difference that this new capacitor can withstand? V (d) What will be the corresponding maximum amount of charge we can place on this capacitore is 1.80107 V/m. C