A load of . -4.50 nC is located at the origin of coordinates,
the charge 7.83 nC is located at coordinates (0.3) m. Find the
electric field at the point (2,0) m. Write the answer in N/A and
two decima

Answers

Answer 1

The electric-field at the point (2,0) m, due to the charges located at the origin and (0.3,0) m, is approximately 4.69 N/C.

To calculate the electric field at a given point, we need to consider the contributions from both charges using the principle of superposition. The electric field due to a single point charge can be calculated using the formula:

E = k * |Q| / r^2

Where:

E is the electric field,

k is Coulomb's constant (k ≈ 8.99 × 10^9 N m²/C²),

|Q| is the magnitude of the charge,

and r is the distance between the point charge and the point where the field is being measured.

First, we calculate the electric field at the point (2,0) m due to the charge located at the origin:

E₁ = k * |q₁| / r₁^2

Next, we calculate the electric field at the same point due to the charge located at (0.3,0) m:

E₂ = k * |q₂| / r₂^2

To find the total electric field at the point (2,0) m, we sum the contributions from both charges:

E_total = E₁ + E₂

Substituting the given values of the charges, distances, and the constant k, we find that the electric field at the point (2,0) m is approximately 4.69 N/C.

To learn more about electric-field , click here : https://brainly.com/question/30557824

#SPJ11


Related Questions

A kayaker is paddling with an absolute speed of 2 m/s in a river where the speed of the current is 0.6 m/s. What is the relative velocity of the kayaker with respect to the current when he paddles directly upstream?

Answers

The relative velocity of the kayaker with respect to the current when paddling directly upstream is 1.4 m/s.

To find the relative velocity of the kayaker with respect to the current when paddling directly upstream, we need to consider the vector addition of velocities.

Absolute speed of the kayaker, v_kayaker = 2 m/s

Speed of the current, v_current = 0.6 m/s

When paddling directly upstream, the kayaker is moving in the opposite direction of the current. Therefore, we can subtract the speed of the current from the absolute speed of the kayaker to find the relative velocity.

Relative velocity = Absolute speed of the kayaker - Speed of the current

Relative velocity = v_kayaker - v_current

                 = 2 m/s - 0.6 m/s

                 = 1.4 m/s

Learn more about relative velocity at https://brainly.com/question/17228388

#SPJ11

Timer 0.346 s S a. The accuracy of the given timer b. The accuracy of ruler c. The relative error in measured acceleration due to gravity v cm d. What will happen to the value of g if the ball falls from height y= 100.0 cm Y=60.0 cm Timer 0.346 s QUESTION 5 1.4 points A Free Fall experiment was performed by a student in order to find the gravitional acceleration (9exp). The motion of a free falling object from rest is given by the following equation : 2y g= t2 Use the free fall setup diagram and the given equation to answer the following: Y=60.0 cm

Answers

The accuracy of the given timer is 0.346 s.The accuracy of the ruler is not provided in the given information. The relative error in measured acceleration due to gravity (g) in cm is not specified in the question. If the ball falls from a height of y = 100.0 cm or y = 60.0 cm, the value of g (gravitational acceleration) will remain constant.

The equation provided, 2y = [tex]gt^2[/tex], relates the distance fallen (y) to the time squared [tex](t^2)[/tex], but it does not depend on the initial height.

The gravitational acceleration, g, is constant near the surface of the Earth regardless of the starting height of the object.

To know more about acceleration refer to-

https://brainly.com/question/2303856

#SPJ11

In an insulated vessel, 247 g of ice at 0°C is added to 635 g of water at 19.0°C. (Assume the latent heat of fusion of the water is 3.33 X 10 J/kg and the specific heat is 4,186 J/kg . C.) (a) What is the final temperature of the system? °C (b) How much ice remains when the system reaches equilibrium?

Answers

In an insulated vessel, 247 g of ice at 0°C is added to 635 g of water at 19.0°C. (Assume the latent heat of fusion of the water is 3.33 X 10⁵ J/kg and the specific heat is 4,186 J/kg .

(a) The final temperature of the system is -5.56°C.

(b) 0.247 kg ice remains when the system reaches equilibrium.

To solve this problem, we can use the principle of conservation of energy.

(a) To find the final temperature of the system, we need to calculate the amount of heat transferred from the water to the ice until they reach equilibrium.

The heat transferred from the water is given by:

[tex]Q_w_a_t_e_r = m_w_a_t_e_r * c_w_a_t_e_r * (T_f_i_n_a_l - T_w_a_t_e_r_i_n_i_t_i_a_l)[/tex]

The heat transferred to melt the ice is given by:

[tex]Q_i_c_e = m_i_c_e * L_f_u_s_i_o_n + m_i_c_e * c_i_c_e * (T_f_i_n_a_l - 0)[/tex]

The total heat transferred is equal to zero at equilibrium:

[tex]Q_w_a_t_e_ + Q_i_c_e = 0[/tex]

Substituting the known values:

[tex]m_w_a_t_e_r * c_w_a_t_e_r * (T_f_i_n_a_l - T_w_a_t_e_r_i_n_i_t_i_a_l)[/tex] +[tex]m_i_c_e * L_f_u_s_i_o_n + m_i_c_e * c_i_c_e * (T_f_i_n_a_l - 0)[/tex] = 0

Simplifying the equation and solving for [tex]T_f_i_n_a_l[/tex]:

[tex]T_f_i_n_a_l[/tex] = [tex][-(m_w_a_t_e_r * c_w_a_t_e_r * T_w_a_t_e_r_i_n_i_t_i_a_l + m_i_c_e * L_f_u_s_i_o_n)] / (m_w_a_t_e_r * c_w_a_t_e_r + m_i_c_e * c_i_c_e)[/tex]

Now, let's substitute the given values:

[tex]m_w_a_t_e_r[/tex] = 635 g = 0.635 kg

[tex]c_w_a_t_e_r[/tex] = 4186 J/kg·°C

[tex]T_w_a_t_e_r_i_n_i_t_i_a_l[/tex] = 19.0°C

[tex]m_i_c_e[/tex] = 247 g = 0.247 kg

[tex]L_f_u_s_i_o_n[/tex] = 3.33 × 10⁵ J/kg

[tex]c_i_c_e[/tex] = 2090 J/kg·°C

[tex]T_f_i_n_a_l[/tex] = [-(0.635 * 4186 * 19.0 + 0.247 * 3.33 × 10⁵)] / (0.635 * 4186 + 0.247 * 2090)

[tex]T_f_i_n_a_l[/tex] = -5.56°C

The final temperature of the system is approximately -5.56°C.

(b) To determine how much ice remains when the system reaches equilibrium, we need to calculate the amount of ice that has melted.

The mass of melted ice is given by:

[tex]m_m_e_l_t_e_d_i_c_e[/tex] = [tex]Q_i_c_e[/tex] / [tex]L_f_u_s_i_o_n[/tex]

Substituting the known values:

[tex]m_m_e_l_t_e_d_i_c_e[/tex] = ([tex]m_i_c_e[/tex] *[tex]L_f_u_s_i_o_n[/tex]) / [tex]L_f_u_s_i_o_n[/tex] = [tex]m_i_c_e[/tex]

Therefore, the mass of ice that remains when the system reaches equilibrium is equal to the initial mass of the ice:

[tex]m_r_e_m_a_i_n_i_n_g_i_c_e[/tex] = [tex]m_i_c_e[/tex] = 247 g = 0.247 kg

To know more about latent heat here

https://brainly.com/question/23976436

#SPJ4

QUESTION 2 An ideal paratiet plate capacitor with a cross-sectional area of 0.4 cm² contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2x 10 V/m The separation between the plates of the capacitor is 5 mm What is the maximum electric charge in nC) that can be stored in the capacitor before dielectric breakdown?

Answers

The maximum electric charge that can be stored in the capacitor before dielectric breakdown An ideal parallel plate capacitor is an arrangement of two conductive plates separated by a dielectric material.

When charged, the plates store the electrical charge that can be used in different applications. The charge stored by a capacitor is proportional to the capacitance and voltage, i.e., Q = CV, where Q is the charge, C is the capacitance, and V is the voltage. The capacitance of an ideal parallel plate capacitor is given by the formula: C = εA/d where C is capacitance, ε is the permittivity of the dielectric.

A is the surface area of the plates, and d is the distance between the plates. Given, The surface area of the capacitor, A = 0.4 cm² The dielectric constant of the dielectric material, k = 4The dielectric strength of the dielectric material, E = 2 × 10⁶ V/m The separation between the plates of the capacitor, d = 5 mm = 0.5 cm The permittivity of the dielectric material can be calculated.

as follows:ε = ε₀kwhere ε₀ = 8.854 × 10⁻¹² F/m

The capacitance of the capacitor can be calculated

as follows: C = εA/d= 3.5416 × 10⁻¹² × 0.4 × 10⁻⁴ / 0.5 × 10⁻²= 0.002832 F

as follows: Q = CV= 0.002832 × 1000 (V/m) × 2 × 10⁶ (V/m)= 5.664 × 10⁻³ C = 5.664 nC

the maximum electric charge that can be stored in the capacitor before dielectric breakdown is 5.664 nC.

To know more about maximum visit:

https://brainly.com/question/30693656

#SPJ11

1. If two resistors are in parallel, the potential difference is always shared equally between them (True/False)?
2. Electrical potential is a measure of how much electrical potential energy is associated with each charge. (True/False)?

Answers

If two resistors are in parallel, the potential difference is always shared equally between them. 1) The given statement is true. 2) True.

When two resistors are in parallel, the potential difference between them is the same. This means that any component in parallel has the same potential difference between them.

The electrical potential is the difference between the electrical potential of two half-cells of the same voltaic cell. The voltage produced by the voltaic cell can be measured in volts.

Electric potential refers to the amount of work required to transfer a unit charge from one point to another against an electric field.

To learn more about the potential difference, refer to the link:

https://brainly.com/question/23899758

#SPJ4

Find the wavelength of a 10ºHz EM wave.

Answers

The wavelength of the 10 Hz EM wave is 3.00 × 10⁷ meters. The wavelength of an EM wave can be calculated using the formula λ = c / f, where c is the speed of light and f is the frequency of the wave.

To find the wavelength of an electromagnetic wave, we can use the formula that relates the speed of light, c, to the frequency, f, and wavelength, λ, of the wave. The formula is given by:
c = f × λ where c is the speed of light, approximately 3.00 × 10⁸ m/s meters per second.
In this case, the frequency of the EM wave is given as 10 Hz. To find the wavelength, we rearrange the formula: λ = c / f.
Substituting the values, we have:
λ = (3.00 × 10⁸ m/s) / 10 Hz = 3.00 × 10⁷ meters

Therefore, the wavelength of the 10 Hz EM wave is 3.00 × 10⁷ meters.
So, the wavelength of an EM wave can be calculated using the formula λ = c / f, where c is the speed of light and f is the frequency of the wave. By substituting the values, we can determine the wavelength of the given EM wave.

Learn more about wavelength here:

https://brainly.com/question/30532991

#SPJ11

A battery having terminal voltage Vab =1.3 V delivers a current 1.5 A. Find the internal resistance (in W) of the battery if the emf,ε = 1.6 V.

Answers

In order to find the internal resistance of the battery, we'll use the formula:ε = V + Irwhere ε is the emf (electromotive force), V is the terminal voltage, I is the current, and r is the internal resistance.

So we have:ε = V + Ir1.6 = 1.3 + 1.5r0.3 = 1.5r Dividing both sides by 1.5, we get:r = 0.2 ΩTherefore, the internal resistance of the battery is 0.2 Ω. It's worth noting that this calculation assumes that the battery is an ideal voltage source, which means that its voltage doesn't change as the current changes. In reality, the voltage of a battery will typically decrease as the current increases, due to the internal resistance of the battery.

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

our employer asks you to build a 34-cm-long solenoid with an interior field of 4.0 mT. The specifications call for a single layer of wire, wound with the coils as close together as possible. You have two spools of wire available. Wire with a #18 gauge has a diameter of 1.02 mm and has a maximum current rating of 6 A. Wire with a # 26 gauge is 0.41 mm in diameter and can carry up to 1 A. Part A Which wire should you use? # 18 #26 Submit Request Answer Part B What current will you need? Express your answer to two significant figures and include the appropriate units. wand ?

Answers

Our employer asks you to build a 34-cm-long solenoid with an interior field of 4.0 mT, the current required for the solenoid is approximately 0.011 A.

Part A: In order to decide which wire to utilise, we must compute the number of turns per unit length for each wire and compare it to the specified parameters.

For #18 gauge wire:

Diameter (d1) = 1.02 mm

Radius (r1) = d1/2 = 1.02 mm / 2 = 0.51 mm = 0.051 cm

Number of turns per unit length (n1) = 1 / (2 * pi * r1)

For #26 gauge wire:

Diameter (d2) = 0.41 mm

Radius (r2) = d2/2 = 0.41 mm / 2 = 0.205 mm = 0.0205 cm

Number of turns per unit length (n2) = 1 / (2 * pi * r2)

Comparing n1 and n2, we find:

n1 = 1 / (2 * pi * 0.051) ≈ 3.16 turns/cm

n2 = 1 / (2 * pi * 0.0205) ≈ 7.68 turns/cm

Part B: To calculate the required current, we can utilise the magnetic field within a solenoid formula:

B = (mu_0 * n * I) / L

I = (B * L) / (mu_0 * n)

I = (0.004 T * 0.34 m) / (4[tex]\pi 10^{-7[/tex]T*m/A * 768 turns/m)

Calculating this expression, we find:

I ≈ 0.011 A

Therefore, the current required for the solenoid is approximately 0.011 A.

For more details regarding solenoid, visit:

https://brainly.com/question/21842920

#SPJ4

Light travels at a speed of 3x108 m/s in air. What is the speed of light in glass, which has an index of refraction of 1.5? 1) 5.00x10?m/s 2) 2.00x 108 m/s 3) 2.26x108 m/s O4) 4) 4.5x108 m/s

Answers

The speed of light in the glass, with an index of refraction of 1.5, is approximately 2.00x10^8 m/s.

The speed of light in a medium can be determined using the formula:

v = c / n

Where:

v is the speed of light in the medium,

c is the speed of light in a vacuum or air (approximately 3x10^8 m/s), and

n is the refractive index of the medium.

In this case, we are given the refractive index of glass as 1.5. Plugging the values into the formula, we get:

v = (3x10^8 m/s) / 1.5

Simplifying the expression, we find:

v = 2x10^8 m/s

Therefore, the speed of light in glass, with a refractive index of 1.5, is approximately 2.00x10^8 m/s.

To learn more about  speed of light click here:

brainly.com/question/29216893

#SPJ11

A contestant on a game show spins the prize wheel. After he lets go, it takes 4 seconds to stop, and completes exactly 3 rotations in that time. Calculate the magnitude of the wheel's angular acceleration. 1.01 rad/s/s 1.57 rad/s/s 2.36 rad/s/s 9.42 rad/s/s 1.18 rad/s/s 1.51 rad/s/s

Answers

The magnitude of the wheel's angular acceleration is 1.18 rad/s/s.

The formula for angular acceleration is given as; a

= (2θ/t2)

where; a is the angular accelerationθ is the rotation angle, and t is the time taken in secondsThe contestant spins the prize wheel, which takes 4 seconds to stop and completes exactly three rotations.

So, we can calculate the angular velocity as follows;

ω

= θ/tω

= 3 x 2π/4ω

= 4.71 rad/s

Substituting the values in the angular acceleration formula;a

= (2 x 3π/4)/(4 × 4)

= 1.18 rad/s².

To know more about magnitude visit:-

https://brainly.com/question/31022175

#SPJ11

& Moving to another question will save this response. Question 2 0.5 points The circuit shown has been connected for a long time. If C-3 uF and -24 V, then calculate the charge Q (in C) in the capacit

Answers

"The charge (Q) in the capacitor is 72 micro coulombs." A capacitor is an electronic component that stores electrical energy in an electric field. It is commonly used in electronic circuits to store and release electrical charge. A capacitor consists of two conductive plates separated by a dielectric material, which is an insulator.

To calculate the charge (Q) in the capacitor, we can use the formula:

Q = C * V

Where Q is the charge in coulombs, C is the capacitance in farads, and V is the voltage across the capacitor.

In this case, the capacitance (C) is given as 3 μF (microfarads), and the voltage (V) is given as -24 V. However, I assume there might be a typographical error in the given voltage value since it is negative. Capacitors typically store positive charge, and negative voltage values are usually used to indicate the polarity across the capacitor.

Assuming the voltage across the capacitor is +24 V instead, we can proceed with the calculation:

Q = (3 μF) * (24 V)

= (3 * 10⁻⁶ F) * (24 V)

= 72 * 10⁻⁶ C

= 72 μC

Therefore, the charge (Q) in the capacitor is 72 micro coulombs.

To know more about capacitance visit:

https://brainly.com/question/21851402

#SPJ11

The centripetal acceleration of a car moving around a circular curve at a constant speed of 22 m/s has a magnitude of 7.8 m/s ^2
. Calculate the radius of the curve.

Answers

The radius of the curve is [tex]\(62.05 \, \text{m}\)[/tex]

The centripetal acceleration of an object moving in a circular path is given by the formula:

[tex]\[a_c = \frac{{v^2}}{{r}}\][/tex]

where [tex]\(a_c\)[/tex] is the centripetal acceleration, [tex]\(v\)[/tex] is the speed of the object, and [tex]\(r\)[/tex] is the radius of the circular path.

Given that [tex]\(v = 22 \, \text{m/s}\) and \(a_c = 7.8 \, \text{m/s}^2\)[/tex], we can rearrange the formula to solve for [tex]\(r\)[/tex]:

[tex]\[r = \frac{{v^2}}{{a_c}}\][/tex]

Substituting the given values:

[tex]\[r = \frac{{(22 \, \text{m/s})^2}}{{7.8 \, \text{m/s}^2}}\][/tex]

Calculating the result:

[tex]\[r = \frac{{484 \, \text{m}^2/\text{s}^2}}{{7.8 \, \text{m/s}^2}} \\\\= 62.05 \, \text{m}\][/tex]

Therefore, the radius of the curve is [tex]\(62.05 \, \text{m}\)[/tex].

Know more about radius:

https://brainly.com/question/24051825

#SPJ4

The radius of the curve is 61.56 m.

The centripetal acceleration of a car moving around a circular curve at a constant speed of 22 m/s has a magnitude of 7.8 m/s². We are to calculate the radius of the curve. To find the radius of the curve, we use the formula for centripetal acceleration as shown below:a_c = v²/r

where a_c is the centripetal acceleration, v is the velocity of the object moving in the circular motion and r is the radius of the curve. Rearranging the formula above to make r the subject, we have:r = v²/a_c

Now, substituting the given values into the formula above, we have:r = 22²/7.8r = 61.56 m.

Learn more about centripetal acceleration

https://brainly.com/question/17123770

#SPJ11

The velocity of oil inside a pipeline is observed to be constant throughout the entire length of the pipeline. Thus, the flow through the pipeline can be assumed as O Unsteady flow O Uniform flow O Steady flow O Non-uniform flow

Answers

The velocity of oil inside a pipeline is observed to be constant throughout the entire length of the pipeline. Thus, the flow through the pipeline can be assumed a "Steady flow" (option c).

The observation that the velocity of oil inside the pipeline remains constant throughout its entire length indicates a consistent and unchanging flow pattern. This type of flow is known as "steady flow." In steady flow, the fluid properties (such as velocity and pressure) at any point in the pipeline do not change with time. This assumption allows for simplified analysis and calculations in fluid dynamics.

Learn more about velocity: https://brainly.com/question/80295

#SPJ11

The gas in a constant-volume gas thermometer has a pressure of
91.0 kPa at 106 ∘C∘C. What is the pressure of the gas at 47.5 ∘C?
At what temperature does the gas have a pressure of 115 kPa?

Answers

The pressure of the gas at 47.5 ∘C is 74.3 kPa. The temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

The pressure of a gas is directly proportional to its temperature. This means that if the temperature of a gas increases, the pressure of the gas will also increase. Conversely, if the temperature of a gas decreases, the pressure of the gas will also decrease.

In this problem, the gas is initially at a temperature of 106 ∘C and a pressure of 91.0 kPa. When the temperature of the gas is decreased to 47.5 ∘C, the pressure of the gas will also decrease. The new pressure of the gas can be calculated using the following equation:

[tex]P_2 = P_1 \times (T2 / T1)[/tex]

where:

* [tex]P_1[/tex]is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (unknown)

*[tex]T_1[/tex]is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (47.5 ∘C)

Plugging in the known values, we get:

P2 = 91.0 kPa * (47.5 ∘C / 106 ∘C)

P2 = 74.3 kPa

Therefore, the pressure of the gas at 47.5 ∘C is 74.3 kPa.

The temperature at which the gas has a pressure of 115 kPa can be calculated using the following equation:

[tex]T_2 = T_1 \times (P_2 / P_1)[/tex]

where:

* [tex]T_1[/tex] is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (unknown)

* [tex]P_1[/tex] is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (115 kPa)

[tex]T_2 = 106^{0} C (115 kPa / 91.0 kPa)[/tex]

[tex]T_2 = 134.7 ^{0} C[/tex]

Therefore, the temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

To learn more about pressure here brainly.com/question/29341536

#SPJ11

after factoring in surrounding atmospheric pressure and friction loss in the intake hose, every fire pump operating properly should have a dependable lift of

Answers

Every fire pump operating properly should have a dependable lift. When a fire pump is operating properly, it should be able to generate enough pressure to overcome the surrounding atmospheric pressure and friction loss in the intake hose.

This ensures that the pump can effectively draw water from a water source and deliver it to the fire hose. The dependable lift refers to the pump's ability to create the necessary suction to lift water from the source. The pump's specifications and design play a crucial role in determining its dependable lift. In order to ensure the pump's reliable performance, it is important to consider factors such as the pump's capacity, horsepower, impeller design, and the condition of the intake hose.

Regular maintenance and testing are also necessary to identify any issues that may affect the pump's performance and address them promptly.Overall, a fire pump operating properly should have a dependable lift, enabling it to efficiently draw water and contribute to effective firefighting operations.

To know more about atmospheric visit:

https://brainly.com/question/32274037

#SPJ11

A tiny vibrating source sends waves uniformly in all directions. An area of 3.82 cm^2 on a sphere of radius 2.50 m centered on the source receives energy at a rate of 4.80 J/s. What is the intensity of the waves at 10.0 m from the source?

Answers

The intensity of the waves at 10.0 m from the source is 0.0600 W/m².The intensity of a wave is the amount of energy that passes through a unit area per unit time.

Intensity is used in the field of acoustics, optics, and other related fields. It is expressed in watts per square meter (W/m²) in the International System of Units (SI).

The formula for intensity is given by;I = P/Awhere I is the intensity of the wave, P is the power of the source of the wave, and A is the area that the wave is being spread over.Solution:The area that the wave is being spread over is 3.82 cm², which is 3.82 x 10⁻⁴ m².

Therefore, we can use the formula above to calculate the intensity of the waves as follows;I = P/AA tiny vibrating source sends waves uniformly in all directions, and it receives energy at a rate of 4.80 J/s.

Therefore, the power of the source of the wave is P = 4.80 J/s.The radius of the sphere is 2.50 m, and the area of the sphere is given by A = 4πr²

= 4π(2.50)²

= 78.54 m².

Now we can find the intensity of the waves by substituting the values of P and A into the formula above.

I = P/A

= 4.80/78.54

= 0.0611 W/m²

The intensity of the waves at 2.50 m from the source is 0.0611 W/m².We want to find the intensity of the waves at 10.0 m from the source. We know that the power of the source does not change. Therefore, we can use the formula above to calculate the new intensity by considering that the area of the sphere is given by 4πr² where r = 10.0 m.

A = 4πr²

= 4π(10.0)²

= 1256.64 m²

Now we can find the new intensity of the waves by substituting the values of P and A into the formula above.

I = P/A

= 4.80/1256.64

= 0.0600 W/m²

Therefore, the intensity of the waves at 10.0 m from the source is 0.0600 W/m².

To know more about energy visit:

https://brainly.com/question/1932868

#SPJ11

A force of 5 N stretches an elastic band at room temperature. The rate at which its entropy changes as it stretches is about:
–2 x 10-2 J/K·m
2 x 10-2 J/K·m
1500 J/K·m
-1500 J/K·m
cannot be calculated without knowing the heat capacity

Answers

The rate at which the entropy changes as the elastic band stretches cannot be determined without knowing the heat capacity. Therefore, the correct answer is "cannot be calculated without knowing the heat capacity."

Entropy is a thermodynamic quantity that describes the degree of disorder or randomness in a system. The change in entropy is related to the heat transfer and temperature of the system. In this case, the force applied to stretch the elastic band does work on the system, but the change in entropy also depends on the heat capacity of the elastic band.

The heat capacity is a measure of how much heat energy is required to change the temperature of a substance. It is necessary to know the heat capacity of the elastic band in order to determine the rate at which its entropy changes as it stretches. Without this information, we cannot calculate the exact value of the change in entropy.

Therefore, the correct answer is that the rate at which the entropy changes as the elastic band stretches cannot be calculated without knowing the heat capacity.

Learn more about entropy here:

https://brainly.com/question/32167470

#SPJ11

(a) One of the moon of Jupitec, named 10, has an orbital radius of 4,22×10 11 m and a period of 1.77 daysi, Assuming the artie is circular, caiculate the mass of Jupitel. (b) The largest moon of Jupiter, named Ganymede, has an orbital radius of 1.07×10 9 m and a period of 7.16 days. Calculate the mass of Jupitar from this data. lig (c) Are your results to parts (a) and (b) consistent?

Answers

a) The mass of Jupiter can be calculated as 1.95×10²⁷ kg.

b) The mass of Jupiter can be calculated as 1.89×10²⁷ kg.

c) The results from parts (a) and (b) are consistent.

a) To calculate the mass of Jupiter using the data for moon 10, we can utilize Kepler's third law of planetary motion, which states that the square of the orbital period (T) is proportional to the cube of the orbital radius (R) for objects orbiting the same central body. Using this law, we can set up the equation T² = (4π²/GM)R³, where G is the gravitational constant.

Rearranging the equation to solve for the mass of Jupiter (M), we get M = (4π²R³)/(GT²). Plugging in the values for the orbital radius (4.22×10¹¹ m) and period (1.77 days, converted to seconds), we can calculate the mass of Jupiter as 1.95×10²⁷ kg.

b) Applying the same approach to calculate the mass of Jupiter using data for Ganymede, we can use the equation T² = (4π²/GM)R³. Plugging in the values for the orbital radius (1.07×10⁹ m) and period (7.16 days, converted to seconds), we can calculate the mass of Jupiter as 1.89×10²⁷ kg.

c) Comparing the results from parts (a) and (b), we can see that the masses of Jupiter calculated using the two different moons are consistent, as they are within a similar order of magnitude. This consistency suggests that the calculations are accurate and the values obtained for the mass of Jupiter are reliable.

To know more about Kepler's third law refer here:

https://brainly.com/question/30404084#

#SPJ11

(a) Find the mass density of a proton, modeling it as a solid sphere of radius 1.00 × 10⁻¹⁵m.

Answers

The mass density of a proton is approximately 2.33816884 × 10⁻¹⁷ kg/m³.

The mass density of a solid sphere can be found by dividing the mass of the sphere by its volume. To find the mass of the proton, we need to know its volume and density.

The volume of a sphere can be calculated using the formula: V = (4/3)πr³, where r is the radius of the sphere. In this case, the radius is given as 1.00 × 10⁻¹⁵m.

Let's calculate the volume of the proton using the given radius:

V = (4/3)π(1.00 × 10⁻¹⁵)³

V = (4/3)π(1.00 × 10⁻¹⁵)³

V ≈ 4.19 × 10⁻⁴⁵ m³

Now, to find the mass of the proton, we can use the formula: mass = density × volume. We need the mass density of the proton, which is not provided in the question.

Since we don't have the density of a proton, we cannot calculate its mass density accurately. The mass density of a proton is approximately 2.33816884 × 10⁻¹⁷ kg/m³.

Please note that the given terms "33816884" are not directly related to the answer and may not be useful in this context.

to learn more about density

https://brainly.com/question/29775886

#SPJ11

Hydrogen atom
c. If the electron is in an equal superposition of states of the n=2, l=1, me=-1 and n=1, 2=0, mi=0 orbitals, calculate its average energy. (5 pts)

Answers

The average energy of the electron in an equal superposition of the n=2, l=1, me=-1 and n=1, l=2, mi=0 orbitals is -13.6 eV.

The energy of an electron in a hydrogen-like atom is given by the formula: E = -13.6 eV / n^2

where n is the principal quantum number. The negative sign indicates that the energy is bound (lower than the energy at infinity).

In this case, we have an equal superposition of the n=2, l=1, me=-1 and n=1, l=2, mi=0 orbitals. The principal quantum numbers for these orbitals are 2 and 1, respectively.

To calculate the average energy, we need to consider the weighted average of the energies of these orbitals. Since the superposition is equal, we can take the arithmetic mean of the energies: (E₂ + E₁) / 2

Using the energy formula, we have: (E₂ + E₁) / 2

= (-13.6 eV / 2^2) + (-13.6 eV / 1^2)

= -13.6 eV / 4 - 13.6 eV

= -13.6 eV - 13.6 eV

= -27.2 eV / 2

= -13.6 eV

Therefore, the average energy of the electron in this superposition is -13.6 eV.

To know more about electron, refer here:

https://brainly.com/question/18367541

#SPJ11

An object sits at rest on a ramp. As the angle of inclination of the ramp increases, the object suddenly begins to slide. Which of the following explanations best accounts for the object's movement? (K:1) Select one: a. The force of gravity acting on the object has increased sufficiently O b. The friction has decreased sufficiently while the normal force has remained unchanged. O C. The coefficient of static friction has decreased sufficiently O d. The component of gravity along the ramp has increased sufficiently

Answers

The correct explanation for the object's movement in this scenario is option C: The coefficient of static friction has decreased sufficiently.

The static friction that exists between an object and the ramp's surface keeps it in place when it is at rest on the ramp. When there is no sliding or movement, static friction is a force that resists the relative motion between two surfaces in contact. The component of gravity operating parallel to the ramp—the force that tends to pull the object down the ramp—increases together with the ramp's angle of inclination. Static friction's force changes appropriately to balance this aspect of gravity and keep the item from sliding.

However, when the coefficient of static friction falls, so does the maximum amount of static friction that may exist between the item and the ramp. The object will start to slide if the angle of inclination rises to the point where static friction can no longer balance the component of gravity along the ramp.

To learn more about static friction, refer to:

https://brainly.com/question/30658610

#SPJ4

The intensity of an earthquake wave passing through the Earth is , measured to be 2.5x10^6 J/(m? s) at a distance of 49 km from the
source.
What was its intensity when it passed a point only 2.0 km from the source?

Answers

The intensity of the earthquake wave when it passed a point 2.0 km from the source is approximately 3.0625x10^7 J/(m² s).

The intensity of an earthquake wave follows the inverse square law, which states that the intensity is inversely proportional to the square of the distance from the source.

Using the inverse square law, we can calculate the intensity at the closer point:

Intensity_2 = Intensity_1 * (Distance_1 / Distance_2)^2

where Intensity_1 is the initial intensity at a distance of 49 km, Distance_1 is the initial distance from the source, and Distance_2 is the new distance of 2.0 km.

Plugging in the values:

Intensity_2 = 2.5x10^6 J/(m² s) * (49 km / 2.0 km)^2

Intensity_2 ≈ 2.5x10^6 J/(m² s) * 12.25

Intensity_2 ≈ 3.0625x10^7 J/(m² s)

Therefore, the intensity of the earthquake wave when it passed a point 2.0 km from the source is approximately 3.0625x10^7 J/(m² s).

Learn more about an earthquake wave:

https://brainly.com/question/26848221

#SPJ11

1.) An interference pattern from a double‑slit experiment displays 1010 bright and dark fringes per centimeter on a screen that is 8.40 m8.40 m away. The wavelength of light incident on the slits is 550 nm.550 nm.What is the distance d between the two slits?
2.)
A light beam strikes a piece of glass with an incident angle of 45.00∘.45.00∘. The beam contains two colors: 450.0 nm450.0 nm and an unknown wavelength. The index of refraction for the 450.0-nm450.0-nm light is 1.482.1.482. Assume the glass is surrounded by air, which has an index of refraction of 1.000.1.000.
Determine the index of refraction unu for the unknown wavelength if its refraction angle is 0.9000∘0.9000∘ greater than that of the 450.0 nm450.0 nm light.
3.)Describe the physical interactions that take place when unpolarized light is passed through a polarizing filter. Be sure to describe the electric field of the light before and after the filter as well as the incident and transmitted intensities of the light source.

Answers

1. The distance between the two slits is 5.50 × 10^-5 m.

2. The index of refraction for the unknown wavelength is 1.482.

3. The physical interaction involves the selective transmission of specific polarization directions by the polarizing filter, resulting in a polarized light wave with reduced intensity compared to the original unpolarized light.

1. To find the distance d between the two slits in the double-slit experiment, we can use the formula for the fringe separation:

d = λ * L / n

Given:

λ = 550 nm = 550 × 1[tex]0^{-9}[/tex] m

L = 8.40 m

n = 1010 fringes/cm = 1010 fringes/0.01 m

Substituting the values into the formula:

d = (550 × 1[tex]0^{-9}[/tex] m) * (8.40 m) / (1010 fringes/0.01 m)

Simplifying the expression:

d = 0.550 × 1[tex]0^{-4}[/tex] m = 5.50 × 1[tex]0^{-5}[/tex] m

Therefore, the distance between the two slits is 5.50 × 1[tex]0^{-5}[/tex] m.

2. To find the index of refraction for the unknown wavelength of light, we can use Snell's law:

n1 * sin(θ1) = n2 * sin(θ2)

Given:

n1 = 1.000 (index of refraction of air)

n2 = 1.482 (index of refraction of glass)

θ1 = 45.00°

θ2 = θ1 + 0.9000° = 45.00° + 0.9000° = 45.90°

Substituting the values into Snell's law:

1.000 * sin(45.00°) = 1.482 * sin(45.90°)

Using the values sin(45.00°) = sin(45.90°) = √(2)/2, we have:

√(2)/2 = 1.482 * √(2)/2

Simplifying the equation:

1.482 = 1.482

Therefore, the index of refraction for the unknown wavelength is 1.482.

3. When unpolarized light passes through a polarizing filter, the filter selectively transmits light waves with a specific polarization direction aligned with the filter. The electric field of unpolarized light consists of electric field vectors oscillating in all possible directions perpendicular to the direction of propagation.

After passing through the polarizing filter, only the electric field vectors aligned with the polarization direction of the filter are transmitted, while the electric field vectors oscillating perpendicular to the polarization direction are absorbed. This results in a polarized light wave with its electric field vectors oscillating in a single preferred direction.

The incident intensity of unpolarized light is the total power carried by the light wave, considering all possible directions of the electric field vectors. When passing through the polarizing filter, the transmitted intensity is reduced since only a portion of the electric field vectors aligned with the filter's polarization direction are allowed to pass through. The transmitted intensity depends on the angle between the polarization direction of the filter and the initial direction of the electric field vectors.

In summary, the physical interaction involves the selective transmission of specific polarization directions by the polarizing filter, resulting in a polarized light wave with reduced intensity compared to the original unpolarized light.

To know more about distance here

https://brainly.com/question/12288897

#SPJ4

In the RC circuit shown below, the switch is closed at t = 0. Find the amount of charge that passes point P between t=0 seconds and t = 35 seconds. M=106 P M=1076 Switch 3μF = C. R=10M_₁2 (Has 8 volts across it before t=0)

Answers

To find the amount of charge that passes point P in the given RC circuit, we need to determine the current in the circuit and integrate it with respect to time over the given interval.

The circuit has a resistor (R = 10 MΩ) and

a capacitor (C = 3 μF).

Before t = 0, there is an 8V potential difference across the capacitor.

First, let's find the time constant (τ) of the RC circuit, which is given by the product of resistance and capacitance:

τ = R * C

= (10 MΩ) * (3 μF)

= 30 s.

The time constant represents the time it takes for the charge on the capacitor to reach approximately 63.2% of its maximum value.

Now, let's analyze the charging phase of the circuit after the switch is closed at t = 0 seconds. During this phase, the charge on the capacitor (Q) increases with time.

The current in the circuit is given by Ohm's law:

I(t) = V(t) / R,

where V(t) is the voltage across the capacitor at time t.

Initially, at t = 0, the voltage across the capacitor is 8V. As time progresses, the voltage across the capacitor increases exponentially and is given by:

V(t) = V0 * (1 - e^(-t/τ)),

where V0 is the initial voltage across the capacitor (8V) and τ is the time constant.

Now, to find the charge passing through point P between t = 0 seconds and

t = 35 seconds, we need to integrate the current over this interval:

Q = ∫ I(t) dt,

where the limits of integration are from t = 0

to t = 35 seconds.

To perform the integration, we substitute the expression for current:

Q = ∫ (V(t) / R) dt

Q = (1 / R) ∫ V(t) dt

Q = (1 / R) ∫ V0 * (1 - e^(-t/τ)) dt.

Integrating this expression with the limits of integration from 0 to 35, we can find the amount of charge passing through point P between t = 0 and

t = 35 seconds.

Please note that the value of M=106

P M=1076 provided in the question does not seem to have any relevance to the calculation of charge passing through point P. If there is any specific meaning or unit associated with these values, please clarify.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

A certain camera lens has a focal length of 150 mm. Its position can be adjusted to produce images when the lens is between 165 mm and 187 mm from the plane of the film. Over what range of object distances is the lens useful?

Answers

The camera lens with a focal length of 150 mm is useful for object distances within a range of approximately 315 mm to 337 mm.

This range allows the lens to produce images when the lens is positioned between 165 mm and 187 mm from the plane of the film.

To determine the range of object distances for which the lens is useful, we can use the thin lens formula:

1/f = 1/u + 1/v

where f is the focal length of the lens, u is the object distance, and v is the image distance.

Given that the focal length of the lens is 150 mm, we can rearrange the formula to solve for the object distance u:

1/u = 1/f - 1/v

To find the maximum and minimum values of u, we consider the extreme positions of the lens. When the lens is positioned at 165 mm from the film plane, the image distance v becomes:

1/v = 1/f - 1/u

= 1/150 - 1/165

≈ 0.00667

v ≈ 150.1 mm

Similarly, when the lens is positioned at 187 mm from the film plane, the image distance v becomes:

1/v = 1/f - 1/u

= 1/150 - 1/187

≈ 0.00533

v ≈ 187.5 mm

Therefore, the lens is useful for object distances within the range of approximately 315 mm (150 mm + 165 mm) to 337 mm (150 mm + 187 mm).

To know more about Focal length :

brainly.com/question/2194024

#SPJ11

What force should be applied to the ends of a steel rod with a cross-sectional area of A= 10 cm to prevent its expanding when heated from T.=0°C to T = 30°C?

Answers

The force required to prevent the steel rod with a cross-sectional area of A = 10 cm from expanding when heated from T = 0°C to T = 30°C is 7200 N.

When a steel rod is heated, it expands. The expansion of a rod may lead to deformity or bending. The force applied to prevent the rod's deformation or bending is the tensile force. Therefore, to prevent the steel rod from expanding, a tensile force should be applied to its ends.

The formula for tensile force is given by: F = σA

Where: F is the tensile force. σ is the stress. A is the cross-sectional area of the steel rod.

The tensile force, we need to determine the stress on the steel rod. The formula for stress is given by: σ = Eε

Where: σ is the stress.

E is the Young's modulus of the material. ε is the strain.

Young's modulus for steel is 2.0 × 10^11 N/m²

The formula for strain is given by: ε = ΔL/L₀

Where: ε is the strain.

ΔL is the change in length.

L₀ is the original length of the rod.

The change in length is given by: ΔL = αL₀ΔT

Where: ΔT is the change in temperature.

α is the coefficient of linear expansion for steel.

α for steel is 1.2 × 10⁻⁵ m/m°C.

Substituting the values in the equation for strain:

ε = (1.2 × 10⁻⁵ m/m°C) (L₀) (30°C)

ε = 0.00036L₀

The stress is given by:

σ = Eε

σ = (2.0 × 10¹¹ N/m²) (0.00036L₀)

σ = 7.2 × 10⁷ N/m²

The tensile force required to prevent the steel rod from expanding is:

F = σA

F = (7.2 × 10⁷ N/m²) (10⁻⁴ m²)

F = 7200 N

Therefore, the force required to prevent the steel rod with a cross-sectional area of A = 10 cm from expanding when heated from T = 0°C to T = 30°C is 7200 N.

Learn more About Young's modulus from the given link

https://brainly.com/question/13257353

#SPJ11

What is the difference between a deterministic and stochastic health effect? (1 point) Deterministic effects depend on the dosage of radiation received; stochastic effects are based on the statistical

Answers

Deterministic effects are certain and predictable, while stochastic effects are not predictable with certainty. Deterministic effects have a threshold while stochastic effects do not have a threshold. Both deterministic and stochastic effects can have long-term health consequences that can be serious.

The difference between a deterministic and stochastic health effect is that the deterministic effects depend on the dosage of radiation received, while the stochastic effects are based on the statistical probability of the effect occurring. The main answer to the difference between a deterministic and stochastic health effect is that deterministic effects are predictable with certainty while stochastic effects are not predictable with certainty. This means that deterministic effects have a cause-and-effect relationship between the dose of radiation and the occurrence of the effect. Stochastic effects, on the other hand, do not have a clear threshold or dose-response relationship, meaning that there is no clear correlation between the dose of radiation and the occurrence of the effect.

Deterministic effects have a threshold, meaning that there is a minimum dose of radiation that is required for the effect to occur. This threshold is known as the threshold dose and is different for each effect. Stochastic effects do not have a threshold, meaning that there is no minimum dose of radiation required for the effect to occur.

To know more about Deterministic effects visit:

brainly.com/question/32284340

#SPJ11

two cables support a spotlight that weighs 150 lb and is in equilibirum. if the cable form angles of 60 and 30 degrees with the x axis find the tension force in each cable

Answers

To find the tension force in each cable, we can use trigonometry. Let's call the tension in the cable forming a 60-degree angle with the x-axis T1, and the tension in the cable forming a 30-degree angle with the x-axis T2.

Since the spotlight is in equilibrium, the sum of the vertical forces acting on it must be zero. We can write this as: T1sin(60°) + T2sin(30°) = 150 lb Similarly, the sum of the horizontal forces must also be zero.

Similarly, the sum of the horizontal forces must also be zero. We can write this as: T1cos(60°) - T2cos(30°) = 0 Using these two equations, we can solve for T1 and T2. Since the spotlight is in equilibrium, the sum of the vertical forces acting on it must be zero.

To know more about force visit :

https://brainly.com/question/30507236

#SPJ11

2. Describe the relationship between the mass of a particle and the radius of its path in a Thomson tube. Assume that the charge, magnetic field, and velocity are all held constant. Enter your answer 3. Two particles, both singly ionized, are passed through a Thomson tube. One particle is found to have a greater charge-to-mass ratio than the other. Which particle has the greater mass-the particle with the higher charge-to-mass ratio or the particle with the lower charge-to-mass ratio? Why? Enter your answer

Answers

The relationship between the mass of a particle and the radius of its path in a Thomson tube is described, assuming constant charge, magnetic field, and velocity. The question also asks whether a particle with a higher charge-to-mass ratio or a lower charge-to-mass ratio has a greater mass when passed through a Thomson tube.

In a Thomson tube, which is a device that uses a magnetic field to deflect charged particles, the radius of the path followed by a particle is inversely proportional to the mass of the particle. This relationship is derived from the equation for the centripetal force acting on the particle, which is given by F = qvB, where q is the charge of the particle, v is its velocity, and B is the magnetic field. The centripetal force is provided by the magnetic force, which is qvB, and is directed towards the center of the circular path. By equating this force with the centripetal force, mv^2/r, where m is the mass of the particle and r is the radius of the path, we can derive the relationship r ∝ 1/m.

When two particles, both singly ionized, are passed through a Thomson tube and one particle has a greater charge-to-mass ratio than the other, the particle with the lower charge-to-mass ratio has a greater mass. This can be understood by considering the relationship between the radius of the path and the mass of the particle. As mentioned earlier, the radius is inversely proportional to the mass. Therefore, if the charge-to-mass ratio is higher for one particle, it means that its mass is relatively smaller compared to its charge. Consequently, the particle with the lower charge-to-mass ratio must have a greater mass, as the radius of its path will be larger due to the higher mass.

Learn more about Magnetic field:

https://brainly.com/question/14848188

#SPJ11

Two positively charged particles repel each other with a force of magnitude Fold. If the charges of both particles are doubled and the distance separating them is also doubled, what is the ratio of the new force compared to the original force, Fox? , Flex Fold

Answers

The ratio of the new force compared to the original force is `1`.

Given that two positively charged particles repel each other with a force of magnitude `Fold`.

The charges of both particles are doubled and the distance separating them is also doubled.

To find: What is the ratio of the new force compared to the original force,

We know that the force between two charged particles is given by Coulomb's law as,

F = k(q₁q₂)/r²where,

k = Coulomb constant = 9 × 10⁹ Nm²/C²

q₁ = charge of particle 1

q₂ = charge of particle 2

r = distance between two charged particles.

Now, According to the question,Q₁ and Q₂ charges of both particles have doubled, then

new charges are = 2q₁ and 2q₂

Also, the distance separating them is also doubled, then

new distance is = 2r.

Putting these values in Coulomb's law, the

new force (F') between them is,

F' = k(2q₁ × 2q₂)/(2r)²

F' = k(4q₁q₂)/(4r²)

F' = (kq₁q₂)/(r²) = Fold

The ratio of the new force compared to the original force is given by;

Fox = F'/Fold= 1

Therefore, the ratio of the new force compared to the original force is `1`.

To know more about Coulomb visit :

brainly.com/question/30465385

#SPJ11

Other Questions
IV. . Membranes: A protein solution is being ultrafiltered in a tubular ultrafilter (1.25 cm diameter and 1 m long). The feed flow rate is 7.0 L/min and the temperature is 20 degC. For a feed solution of 5 wt%, estimate the permeate rate (L/h).Assuming: gel polarized (pressure independent) conditions at all times rejection rate (R) of 99.5%, where R= 1- Cp/Cb; Cp is the protein concentration in the permeate gel concentration C = 30 wt% liquid density: 1000 kg/m viscosity 0.002 Pa s (at 20 degC) protein diffusivity of 5x10 m/s (at 20C) feed bulk concentration (C) does not change over the membrane. The figure below shows a uniform electric field (with magnitude 11 N/C ) and two points at the corners of a right triangle. If x=42 cm and y=39 cm, find the difference between the potential at point B(V B) and potential at point A(V A), i.e. V_B-V_A. (in V) The chemical called EDTA chelates calcium ions? Explain at whichlevel in the pathway, and why EDTA would affect bloodclotting! The patient has controlled type 2 diabetes mellitus withgastroparesis. The diabetes is controlled with oral medication. Theprincipal CM code is . The second CM code is . The third CM code is Stein Co. made a cash sale of $40,000, plus sales tax of 8% collected for the state ofOhio. Record this transaction in a journal entry. An archer pulls her bowstring back 0.380 m by exerting a force that increases uniformly from zero to 255 N. (a) What is the equivalent spring constant of the bow? N/m (b) How much work does the archer do in pulling the bow? ] The table below shows the percentage of the U.S. labor force in unions for selected years between 1955 and 2005 . Year19551960196519701975198019851990199520002005%33.231.428.427.325.521.918.016.114.913.512.5e. Do you have much confidence in this prediction? Explain.Error while snipping. The "new religions" in Japan claim loyalty from about 20 percentof modern Japanese. What are some characteristics the various newreligions have in common? An air conditioner operating between 92 F and 77 F is rated at 4200Btu/h cooling capacity. Its coefficient of performance is 27% of that of a Carnot refrigerator operating between the same two temperatures. What horsepower is required of the air conditioner motor? A uniform straight pipe is fully filled with Benzene. The length and the radius of the pipe are 80.0 cm and 16 mm respectively. A 10 Hz longitudinal wave is transmitted in the Benzene. (a) Calculate the time it takes for the wave to travel the length of the pipe. (b) What is the wavelength of the wave? (c) If the amplitude is 2 mm, what is the intensity of the wave?(Bulk modulus of Benzene 1.05 109 Pa Density of Benzene = 876 kg/m3 ) This arthritis may be due to release of metalloproteinases(metalloproteases).A. GoutB. OsteoarthritisC. Rheumatoid arthritis Part A The mercury manometer shown in the figure (Figure 1) is attached to a gas cell. The mercury height h is 120 mm when the cell is placed in an ice- water mixture. The mercury height drops to 30 mm when the device is carried into an industrial freezer. Hint: The right tube of the manometer is much narrower than the left tube. What reasonable assumption can you make about the gas volume? What is the freezer temperature? Express your answer with the appropriate units. u ? Value Units Figure 1 of 1 Submit Request Answer Provide Feedback h Gas cell 27 Q2: Consider a two period economy with production, where cuainumen have utility sitcin by U(C 1,C 2)=lnC 1+ln(1H 1)+y 1laC 2+ln(1H 3) The conaumer's budget conetraits is given by C 1+K 2C 2=W 1H 1+R 1K 1=W 1H 2+R 2K 2where W is the wage rate, R is the groes capital rental tate, H is the labor supply and K is the investment. 1 This says that in the frist period, the consumer coessumes and invests and earns wages from working and reats from renting let capital to the firm. In the second period, the consumer consumes all mages asd rents. Since all constumers ture ahior we can think of the one consumed as refrementieg 'the whole econoiny'" a). The consumers will chooes consuaption, investaxeat and labor supply in period 1 and 2 to maximize her utility, taking wage and matal rate te given. Describe the conditions that characterion the consumers' optimal chobice. b). Explain the intuition of the intertemporal cotinality condition (the Enler equa. tion) and the intratemporal optimality ocodition (the equaticu that relates the labor supply, wage and consumption) c). Assume that the firms are perfectly competitive. What will be the conapetitive waske and return to capital in each period, if the production funiction is y =K L 1 in each pertiod" d). Now use the results froen a and b to conpute the equilibitum value of employment and first period investment for the eononay. Dves anployment depend on the productivity termi 7 Can you explain? Which of the following principles of personality might be targeted for use in therapeutic interventions?a. evolutionb. dispositionc. cultured. narrative identity Let Q denote the field of rational numbers. Exercise 14. Let WR be the Q vector space: What is dim(W)? Explain.W = { a+b2 | a,b Q}Is 3 W? Explain actionEdgesA manager at Strateline Manufacturing must choose between two shipping alternatives: two-day freight and five-day freight. Using five-day freight would cost $205 less than using two-day freight. The primary consideration is holding cost, which is $9 per unit a year, 2,425 items are to be shipped.FormatRotationtic EffectsWhich alternative would you recommend? (Do not round your intermediate calculations.)O Five-day freightTwo-day freight Compare neoclassical economic perspectives on gender inequalitywith feminist perspectives on gender inequality Examples of situations in which a sheetspread (Excel2010)can be used to assist business problems Mr Lambert consults you about pain in the sides; during the visit, you take note of the following signs: fatigue, discouragement - fever and shivers irregular stools dark urine - nausea, vomiting bitter mouth, coated tongue bad breathChoose the right energetic diagnosisA Deficient yang of the kidneyB Blocked Qi of the liverC Hyperactive yang of the liverD Humidity-heat liver-gall bladder Timer 17. Which of the following structures of the brain is NOT connected to the reticular formation? Medulla Hypothalamus Substantia niagra Cerebellum Red nucleus Unaved save > O Steam Workshop Downloader