For an object located at a distance of 24.6 cm from the lens, the image formed will be real, inverted, and the magnification will be less than 1. For an object located at a distance of 86 cm from the lens, the image formed will be at infinity.
A converging lens is one that converges light rays and refracts them to meet at a point known as the focal point. In this context, we have a converging lens with a focal length of 86.0 cm. We will locate images for specific object distances, where applicable. Additionally, we will calculate the magnification factor of each image.
Objects that are farther away than the focal length from a converging lens have a real image formed. The image is inverted, and the magnification is less than 1.
Objects that are located within one focal length of a converging lens have a virtual image formed. The image is upright, and the magnification is greater than 1. No image is formed when an object is located at the focal length of a lens.
Objects that are located within one focal length and the lens have a virtual image formed. The image is upright, and the magnification is greater than 1.
For an object located at a distance of 24.6 cm from the lens, the image formed will be real, inverted, and the magnification will be less than 1.
Therefore, the correct answers for part
(a) are real, inverted. The magnification is given by:
M = -d_i/d_oM = - (86)/(86 - 24.6)M = - 0.56
For an object located at a distance of 86 cm from the lens, the image formed will be at infinity.
No image will exist, and the correct answer for part (b) is no image.
The question should be:
For a converging lens with a focal length of 86.0 cm, we must determine the positions of the images formed for the given object distances, if they exist Find the magnification. (Enter 0 in the q and M fields if no image exists.) Select all that apply to part (a). real virtual upright inverted no image (b) 24.6 cm real virtual upright inverted no image.
Learn more about image at: https://brainly.com/question/27841226
#SPJ11
An open cylindrical tank with radius of 0.30 m and a height of 1.2 m is filled with water. Determine the spilled volume of the water if it was rotated by 90 rpm.
Choices:
a) 0.095 cu.m.
b) 0.085 cu.m.
c) 0.047 cu.m.
d) 0.058 cu.m.
The spilled volume of water from the open cylindrical tank, when rotated at 90 rpm, is approximately 0.095 cubic meters.
When the cylindrical tank is rotated, the water inside experiences centrifugal force. This force pushes the water towards the outer edges of the tank, causing it to rise and potentially spill over. To determine the spilled volume, we need to calculate the difference in height between the water level at rest and the water level when the tank is rotating at 90 rpm.
First, we calculate the circumference of the tank using the formula: circumference = 2πr, where r is the radius. Plugging in the given radius of 0.30 meters, we get a circumference of approximately 1.89 meters.
Next, we need to determine the distance traveled by a point on the water's surface when the tank completes one revolution at 90 rpm. To do this, we use the formula: distance = (circumference × rpm) / 60. Substituting the values, we find the distance traveled per minute is approximately 2.98 meters.
Since the tank has a height of 1.2 meters, the ratio of the distance traveled to the tank height is approximately 2.48. This means that the water level will rise by 2.48 times the height of the tank when rotating at 90 rpm.
Finally, we calculate the spilled volume by subtracting the initial height of the water from the increased height. The spilled volume is given by the formula: volume = πr^2(h_new - h_initial), where r is the radius and h_new and h_initial are the new and initial heights of the water, respectively.
Plugging in the values, we get: volume = π(0.3^2)(1.2 × 2.48 - 1.2) ≈ 0.095 cubic meters.Therefore, the spilled volume of water is approximately 0.095 cubic meters.
Learn more about spilled volume
brainly.com/question/11799197
#SPJ11
(1 p) A beam of light, in air, is incident at an angle of 66° with respect to the surface of a certain liquid in a bucket. If light travels at 2.3 x 108 m/s in such a liquid, what is the angle of refraction of the beam in the liquid?
Given that the beam of light, in air, is incident at an angle of 66° with respect to the surface of a certain liquid in a bucket, and the light travels at 2.3 x 108 m/s in such a liquid, we need to calculate the angle of refraction of the beam in the liquid.
We can use Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the velocities of light in the two media. Mathematically, it can be expressed as:
n₁sinθ₁ = n₂sinθ₂
where n₁ and n₂ are the refractive indices of the first and second medium respectively; θ₁ and θ₂ are the angles of incidence and refraction respectively.
The refractive index of air is 1 and that of the given liquid is not provided, so we can use the formula:
n = c/v
where n is the refractive index, c is the speed of light in vacuum (3 x 108 m/s), and v is the speed of light in the given medium (2.3 x 108 m/s in this case). Therefore, the refractive index of the liquid is:
n = c/v = 3 x 10⁸ / 2.3 x 10⁸ = 1.3043 (approximately)
Now, applying Snell's law, we have:
1 × sin 66° = 1.3043 × sin θ₂
⇒ sin θ₂ = 0.8165
Therefore, the angle of refraction of the beam in the liquid is approximately 54.2°.
Learn more about the refractive indices: https://brainly.com/question/31051437
#SPJ11
A piece of iron block moves across a rough horizontal surface before coming to rest. The mass of the block is 1.30 kg, and its initial speed is 2.00 m/s. How much does the block's temperature increase, if it absorbs 69% of its initial kinetic energy as internal energy? The specific heat of iron is 452 J/(kg • °C).
When a piece of iron block moves across a rough
horizontal surface
before coming to rest, its initial speed, mass, and specific heat can be used to calculate how much the block's temperature increases after absorbing 69% of its initial kinetic energy as internal energy. The following is the solution:According to the law of conservation of energy, the sum of the initial kinetic energy (KEi) and the initial potential energy (PEi) of a system equals the sum of the final kinetic energy (KEf), potential energy (PEf), and internal energy (U) of the system.
The sum of the initial
kinetic energy
and potential energy of the block can be written as KEi + PEi = mgh + (1/2)mv², where m is the mass of the block, g is the acceleration due to gravity, h is the height of the block, and v is the initial speed of the block. Since the block is on a horizontal surface, h = 0, and the equation reduces to KEi + PEi = (1/2)mv².KEi + PEi = (1/2)mv² = (1/2)(1.3 kg)(2.00 m/s)² = 2.6 J.
The sum of the final kinetic energy, potential energy, and internal energy of the block can be written as KEf + PEf + U, where KEf = 0, PEf = mgh = 0, and U is the internal energy gained by the block.KEf + PEf + U = 0 + 0 + U = 0.69(KEi + PEi) = 0.69(2.6 J) = 1.794 J.The internal energy gained by the block is equal to the amount of energy that it absorbed from its initial kinetic energy, which can be written as ΔU = mcΔT, where c is the specific heat of iron and ΔT is the change in temperature of the block.ΔU = mcΔT = 1.794 J = (1.30 kg)(452 J/(kg • °C))ΔT, so ΔT = 2.98°C.Therefore, the temperature of the iron block increases by 2.98°C after absorbing 69% of its initial kinetic energy as
internal energy
.
to know more about
horizontal surface
pls visit-
https://brainly.com/question/32885853
#SPJ11
A generator connected to an RLC circuit has an rms voltage of 140 V - Part A and an rms current of 33IIA. If the resistance in the circuit is 3.0kΩ and the capacitive reactance is 6.5kΩ, what is the inductive reactance of the circuit?
The inductive reactance of the circuit is approximately 9.498 kΩ.
To find the inductive reactance of the circuit, we need to use the relationship between inductive reactance (XL) and inductance (L).
The impedance (Z) of an RLC circuit is given by: Z = √(R^2 + (XL - XC)^2)
Where:
R is the resistance in the circuit
XL is the inductive reactance
XC is the capacitive reactance
In this case, we are given the resistance (R = 3.0 kΩ) and the capacitive reactance (XC = 6.5 kΩ).
The impedance is related to the rms voltage (V) and rms current (I) by: Z = V / I
Given the rms voltage (V = 140 V) and rms current (I = 33 A), we can solve for the impedance:
Z = 140 V / 33 A
Z ≈ 4.242 kΩ
Now, we can substitute the values of Z, R, and XC into the equation for impedance:
4.242 kΩ = √((3.0 kΩ)^2 + (XL - 6.5 kΩ)^2)
Simplifying the equation, we have:
(3.0 kΩ)^2 + (XL - 6.5 kΩ)^2 = (4.242 kΩ)^2
9.0 kΩ^2 + (XL - 6.5 kΩ)^2 = 17.997 kΩ^2
(XL - 6.5 kΩ)^2 = 17.997 kΩ^2 - 9.0 kΩ^2
(XL - 6.5 kΩ)^2 = 8.997 kΩ^2
Taking the square root of both sides, we get:
XL - 6.5 kΩ = √(8.997) kΩ
XL - 6.5 kΩ ≈ 2.998 kΩ
Finally, solving for XL:
XL ≈ 2.998 kΩ + 6.5 kΩ
XL ≈ 9.498 kΩ
Learn more about inductive reactance at https://brainly.com/question/4425414
#SPJ11
[5:26 pm, 13/05/2022] Haris Abbasi: a) The 10-kg collar has a velocity of 5 m/s to the right when it is at A. It then travels along the
smooth guide. Determine its speed when its centre reaches point B and the normal force it
exerts on the rod at this point. The spring has an unstretched length of 100 mm and B is located
just before the end of the curved portion of the rod. The whole system is in a vertical plane. (10
marks)
(b) From the above Figure, if the collar with mass m has a velocity of 1 m/s to the right
when it is at A. It then travels along the smooth guide. It stop at Point B. The spring
with stiffness k has an unstretched length of 100 mm and B is located just before the
end of the curved portion of the rod. The whole system is in a vertical plane. Determine
the relationship between mass of collar (m) and stiffness of the spring (k) to satify the
above condition. (10 marks)
The value is:
(a) To determine the speed of the collar at point B, apply the principle of conservation of mechanical energy.
(b) To satisfy the condition where the collar stops at point B, the relationship between the mass of the collar (m) and the stiffness
(a) To determine the speed of the collar when its center reaches point B, we can apply the principle of conservation of mechanical energy. Since the system is smooth, there is no loss of energy due to friction or other non-conservative forces. Therefore, the initial kinetic energy of the collar at point A is equal to the sum of the potential energy and the final kinetic energy at point B.
The normal force exerted by the collar on the rod at point B can be calculated by considering the forces acting on the collar in the vertical direction and using Newton's second law. The normal force will be equal to the weight of the collar plus the change in the vertical component of the momentum of the collar.
(b) In this scenario, the collar stops at point B. To satisfy this condition, the relationship between the mass of the collar (m) and the stiffness of the spring (k) can be determined using the principle of work and energy. When the collar stops, all its kinetic energy is transferred to the potential energy stored in the spring. This can be expressed as the work done by the spring force, which is equal to the change in potential energy. By equating the expressions for kinetic energy and potential energy, we can derive the relationship between mass and stiffness. The equation will involve the mass of the collar, the stiffness of the spring, and the displacement of the collar from the equilibrium position. Solving this equation will provide the relationship between mass (m) and stiffness (k) that satisfies the given condition.
To know more about mass:
https://brainly.com/question/11954533
#SPJ11
A 5.00 x 10² kg satellite is on a geosynchronous orbit where it completes the circular orbit in 23 hours 56 minutes. The mass of the Earth is 5.97 x 1024 kg. (Assumptions: Earth is spherically symmetric. Satellite goes in a circular orbit about the center of the Earth.) A. Estimate the distance of the satellite from the center of the Earth. B. What is the kinetic energy and gravitational potential of the satellite?
"The gravitational potential energy of the satellite is approximately -8.85 x 10¹⁰ Joules."
To estimate the distance of the satellite from the center of the Earth, we can use the formula for the period of a circular orbit:
T = 2π√(r³/GM)
where T is the period, r is the distance from the center of the Earth to the satellite, G is the gravitational constant (approximately 6.67430 x 10⁻¹¹ m³ kg⁻¹ s⁻²), and M is the mass of the Earth.
We are given the period T as 23 hours 56 minutes, which is equivalent to 23.933 hours.
Substituting the known values into the equation, we can solve for r:
23.933 = 2π√(r³/(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴))
Simplifying the equation:
√(r³/(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴)) = 23.933 / (2π)
Squaring both sides of the equation:
r³/(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴) = (23.933 / (2π))²
Simplifying further:
r³ = (6.67430 x 10⁻¹¹ x 5.97 x 10²⁴) x (23.933 / (2π))²
Taking the cube root of both sides of the equation:
r ≈ (6.67430 x 10⁻¹¹ x 5.97 x 10²⁴)°³³x (23.933 / (2π))°⁶⁶
Calculating the approximate value:
r ≈ 4.22 x 10⁷ meters
Therefore, the distance of the satellite from the center of the Earth is approximately 4.22 x 10⁷ meters.
To calculate the kinetic energy of the satellite, we can use the formula:
KE = (1/2)mv²
where KE is the kinetic energy, m is the mass of the satellite, and v is the velocity of the satellite.
Since the satellite is in a circular orbit, its velocity can be calculated using the formula for the circumference of a circle:
C = 2πr
where C is the circumference and r is the distance from the center of the Earth to the satellite.
Substituting the known values:
C = 2π(4.22 x 10⁷) ≈ 2.65 x 10⁸ meters
The time taken to complete one orbit is given as 23 hours 56 minutes, which is approximately 86,136 seconds.
Therefore, the velocity of the satellite can be calculated as:
v = C / time = (2.65 x 10⁸) / 86,136 ≈ 3077.6 m/s
Substituting the mass of the satellite (5.00 x 10² kg) and the velocity (3077.6 m/s) into the kinetic energy formula:
KE = (1/2)(5.00 x 10²)(3077.6)²
Calculating the value:
KE ≈ 2.37 x 10¹⁰ Joules
Thus, the kinetic energy of the satellite is approximately 2.37 x 10¹⁰ Joules.
To calculate the gravitational potential energy of the satellite, we can use the formula:
PE = -GMm / r
where PE is the gravitational potential energy, G is the gravitational constant, M is the mass of the Earth, m is the mass of the satellite, and r is the distance from the center of the Earth to the satellite.
Substituting the known values:
PE = -(6.67430 x 10⁻¹¹ x 5.97 x 10²⁴ x 5.00 x 10²) / (4.22 x 10⁷)
Calculating the value:
PE ≈ -8.85 x 10¹⁰ Joules
The negative sign indicates that the gravitational potential energy is negative, representing the attractive nature of gravity.
Therefore, the gravitational potential energy of the satellite is approximately -8.85 x 10¹⁰ Joules.
To know more about gravitational potential energy visit:
https://brainly.com/question/29490129
#SPJ11
The time constant of an RL-circuit is 1 millisecond. If the
resistance of the resistor is 10 ohm, what is the inductance of the
inductor?
The inductance of the inductor is 10 mH (millihenry).
An RL-circuit is a circuit that has both a resistor and an inductor. The time constant of an RL-circuit is equal to the product of resistance and inductance. It is denoted as `τ= L/R`.We have been given that the time constant of an RL-circuit is 1 millisecond, and the resistance of the resistor is 10 ohm.
To calculate the inductance of the inductor, we need to use the formula for the time constant of an RL-circuit:`
τ = L/R`
Rearranging the above formula to solve for L:
`L = τ × R
`Now, substitute the given values:
`L = τ × R` `= 1 × 10^-3 s × 10 Ω` `= 10 × 10^-3 H` `= 10 mH`
Therefore, the inductance of the inductor is 10 mH (millihenry).
Learn more about inductor https://brainly.com/question/4425414
#SPJ11
Two sketter of mass 50 kg and 58 kg collide head on at 5 m/s and 6 m/s. As a result both of them bounce back. If the collision is an elastic collision and the sketter with mass 58 kg bounces back with 2 m/s what is the kinetic energy of the other sketter? Roundup your answer to an integer
The kinetic energy of skater A is 10200 J. In an elastic collision, both momentum and kinetic energy are conserved. We can use these principles to solve the problem.
Let's denote the skater with mass 50 kg as skater A and the skater with mass 58 kg as skater B.
Mass of skater A ([tex]m_A[/tex]) = 50 kg
Mass of skater B ([tex]m_B[/tex]) = 58 kg
Initial velocity of skater A ([tex]v_Ai[/tex]) = 5 m/s
Initial velocity of skater B ([tex]v_Bi[/tex]) = 6 m/s
Final velocity of skater B ([tex]v_Bf[/tex]) = -2 m/s (negative sign indicates direction)
Using the conservation of momentum:
[tex]m_A * v_Ai + m_B * v_Bi = m_A * v_Af + m_B * v_Bf[/tex]
Substituting the given values:
(50 kg * 5 m/s) + (58 kg * 6 m/s) = (50 kg * [tex]v_Af[/tex]) + (58 kg * -2 m/s)
Simplifying the equation:
250 kg·m/s + 348 kg·m/s = 50 kg *[tex]v_Af[/tex]- 116 kg·m/s
598 kg·m/s = 50 kg *[tex]v_Af[/tex] - 116 kg·m/s
Rearranging the equation to solve for[tex]v_Af[/tex]:
[tex]v_Af[/tex] = (598 kg·m/s + 116 kg·m/s) / 50 kg
[tex]v_Af[/tex] = 14.28 m/s
Therefore, the final velocity of skater A ([tex]v_Af)[/tex] is approximately 14.28 m/s.
To calculate the kinetic energy of skater A, we can use the formula:
Kinetic Energy (KE) = (1/2) * m *[tex]v^2[/tex]
[tex]KE_A[/tex] = (1/2) * [tex]m_A * v_Af^2[/tex]
[tex]KE_A[/tex] = (1/2) * 50 kg * ([tex]14.28 m/s)^2[/tex]
[tex]KE_A[/tex] = 10200 J
Rounding up to the nearest integer, the kinetic energy of skater A is 10200 J.
Learn more about kinetic energy here:
https://brainly.com/question/30107920
#SPJ11
In an electric shaver, the blade moves back and forth over a distance of 2.0 mm in simple harmonic motion, with frequency 100Hz. Find 1.The amplitude 2.The maximum blade speed 3. The magnitude of the maximum blade acceleration
The amplitude of the blade's simple harmonic motion is 1.0 mm (0.001 m). The maximum blade speed is approximately 0.628 m/s. The magnitude of the maximum blade acceleration is approximately 1256.64 m/s².
The amplitude, maximum blade speed, and magnitude of maximum blade acceleration in the electric shaver:
1. Amplitude (A): The amplitude of simple harmonic motion is equal to half of the total distance covered by the blade. In this case, the blade moves back and forth over a distance of 2.0 mm, so the amplitude is 1.0 mm (or 0.001 m).
2. Maximum blade speed (V_max): The maximum blade speed occurs at the equilibrium position, where the displacement is zero. The maximum speed is given by the product of the amplitude and the angular frequency (ω).
V_max = A * ω
The angular frequency (ω) can be calculated using the formula ω = 2πf, where f is the frequency. In this case, the frequency is 100 Hz.
ω = 2π * 100 rad/s = 200π rad/s
V_max = (0.001 m) * (200π rad/s) ≈ 0.628 m/s
3. Magnitude of maximum blade acceleration (a_max): The maximum acceleration occurs at the extreme positions of the motion, where the displacement is maximum. The magnitude of maximum acceleration is given by the product of the square of the angular frequency (ω^2) and the amplitude (A).
a_max = ω² * A
a_max = (200π rad/s)² * 0.001 m ≈ 1256.64 m/s²
Learn more about ”harmonic motion” here:
brainly.com/question/26114128
#SPJ11
The distance to the North Star, Polaris, is approximately 6.44x10⁻¹⁸ m. (a) If Polaris were to burn out today, how many years from now would we see it disappear?
The distance to the North Star, Polaris, is approximately 6.44x10⁻¹⁸ m. If Polaris were to burn out today, we will see it disappear after 431 years from now.
The distance to Polaris is given as 6.44x10⁻¹⁸m. Light travels at a speed of 3x10⁸m/s. Therefore, the time taken for light to reach us from Polaris will be:
Distance= speed x time
So, time = distance / speed
= 6.44x10⁻¹⁸ / 3x10⁸
= 2.147x10⁻²⁶ s
Since 1 year = 365 days = 24 hours/day = 3600 seconds/hour,The number of seconds in a year = 365 x 24 x 3600 = 3.1536 x 10⁷ seconds/year.
Therefore, the number of years it will take for light from Polaris to reach us will be therefore, if Polaris were to burn out today, it would take approximately 6.8 x 10⁻²⁴ years for its light to stop reaching us. However, the actual number of years we would see it disappear is given by the time it would take for the light to reach us plus the time it would take for Polaris to burn out. Polaris is estimated to have a remaining lifespan of about 50,000 years. Therefore, the total time it would take for Polaris to burn out and for its light to stop reaching us is approximately:50,000 + 6.8x10⁻²⁴ = 50,000 years (to the nearest thousand).Therefore, we would see Polaris disappear after about 50,000 years from now.
To know more about disappear visit :
https://brainly.com/question/29607868
#SPJ11
There are a number of stable isotopes of iron: 54Fe, 56Fe, and 58Fe. Iron 56 has 26 protons and 30 neutrons. Find the binding energy, in MeV, of 56Fe. You will need to look up the atomic masses for the element. You can use the following atomic masses for the proton and neutron, respectively: 1.007316 amu and 1.008701 amu.
The binding energy of 56Fe is approximately 496.06 MeV.
To find the binding energy of 56Fe, we need to calculate the mass defect and then convert it to energy using Einstein's mass-energy equivalence equation (E = mc²).
Given:
Number of protons (Z) = 26
Number of neutrons (N) = 30
Atomic mass of proton (mp) = 1.007316 amu
Atomic mass of neutron (mn) = 1.008701 amu
First, we calculate the mass defect (Δm):
Δm = [tex]Z \times mp + N \times mn - Atomic mass of 56Fe[/tex]
To find the atomic mass of 56Fe, we can look it up. The atomic mass of 56Fe is approximately 55.93494 amu.
Substituting the values:
[tex]\Delta m = 26\times 1.007316 amu + 30 \times1.008701 amu - 55.93494 amu[/tex]
Δm ≈ 0.5323 amu
Now, we convert the mass defect to kilograms by multiplying by the atomic mass unit (amu) to kilogram conversion factor, which is approximately [tex]1.66054 \times 10^{-27}[/tex] kg.
Δm ≈ [tex]0.5323 amu\times 1.66054 \times 10^{-27} kg/amu[/tex]
Δm ≈ [tex]8.841 \times 10^{-28}[/tex] kg
Finally, we can calculate the binding energy (E) using Einstein's mass-energy equivalence equation:
E = Δmc²
where c is the speed of light (approximately [tex]3.00 \times 10^{8}[/tex]m/s).
E ≈ [tex](8.841 \times 10^{-28} kg) \times (3.00\times 10^{8} m/s)^2[/tex]
E ≈ [tex]7.9569 \times 10^{-11}[/tex] J
To convert the energy from joules to mega-electron volts (MeV), we can use the conversion factor: 1 MeV = [tex]1.60218 \times 10^{-13}[/tex]J.
E ≈ [tex]\frac{(7.9569 \times 10^{-11} J) }{ (1.60218 \times 10^{-13} J/MeV)}[/tex]
E ≈ 496.06 MeV
Therefore, the binding energy of 56Fe is approximately 496.06 MeV.
Learn more about binding here: brainly.com/question/31964014
#SPJ11
A Cepheid variable has a period of 17 days and an average apparent magnitude of 23. Find its distance from us. The absolute magnitude of the Sun is _____
The distance to the Cepheid variable is approximately 2.52 million parsecs.
The absolute magnitude of the Sun is 4.83.
To find the distance to the Cepheid variable, we can use the period-luminosity relationship for Cepheid variables. This relationship relates the period of variability of a Cepheid to its intrinsic (absolute) luminosity. The equation for this relationship is:
M = -2.43 log(P) - 1.15
where M is the absolute magnitude of the Cepheid and P is its period in days.
Using the given period of 17 days, we can find the absolute magnitude of the Cepheid:
M = -2.43 log(17) - 1.15
M = -2.43 x 1.230 - 1.15
M = -4.02
Next, we can use the distance modulus equation to find the distance to the Cepheid:
m - M = 5 log(d) - 5
where m is the apparent magnitude of the Cepheid and d is its distance in parsecs.
Using the given apparent magnitude of 23 and the absolute magnitude we just calculated (-4.02), we can solve for the distance:
23 - (-4.02) = 5 log(d) - 5
27.02 = 5 log(d) - 5
32.02 = 5 log(d)
log(d) = 6.404
d = 10^(6.404) = 2.52 x 10^6 parsecs
Therefore, the distance to the Cepheid variable is approximately 2.52 million parsecs.
The absolute magnitude of the Sun is 4.83.
Learn more about "Cepheid variable" : https://brainly.com/question/19132746
#SPJ11
Choose all statements below which correctly define or describe "pressure". Hint Pressure is measured in units of newtons or pounds. Small force applied over a large area produces a large pressure. Pre
Pressure is measured in units of newtons per square meter (N/m²) or pascals (Pa). Small force applied over a small area produces a large pressure.
Pressure is a measure of the force exerted per unit area. It is typically measured in units of newtons per square meter (N/m²) or pascals (Pa). These units represent the amount of force applied over a given area.
When a small force is applied over a small area, the resulting pressure is high. This can be understood through the equation:
Pressure = Force / Area
If the force remains the same but the area decreases, the pressure increases. This is because the force is distributed over a smaller area, resulting in a higher pressure.
Pressure is a measure of the force exerted per unit area and is typically measured in newtons per square meter (N/m²) or pascals (Pa).
When a small force is applied over a small area, the resulting pressure is high. This is because the force is concentrated over a smaller surface area, leading to an increased pressure value.
To know more about force , visit;
https://brainly.com/question/31175176
#SPJ11
a jogger jogs from one end to the other of a straight track in 2.50 min and then back to the starting point in 3.20 min. what is the jogger’s average speed
The distance of the run is 11.67 miles.
Speed is the unit rate in terms of distance travelled by an object and the time taken to travel the distance.
Speed is a scalar quantity as it only has magnitude and no direction.
Given that,
Speed of first jogger = 5 mph
Speed of second jogger = 4 mph
Let d be the distance in miles of the run.
Time taken by first jogger be t hours.
Time taken by second jogger = t + (35 minutes) = t + (7/12) hours
Speed = Distance / Time
5 = d / t and 4 = d / (t + 7/12)
d = 5t and d = 4 (t + 7/12)
5t = 4 (t + 7/12)
5t = 4t + 7/3
t = 7/3 hours
d = 5t = 11.67 miles.
Hence the distance ran by both joggers is 11.67 miles.
Learn more about Speed :
brainly.com/question/28224010
#SPJ11
A smoke particle with a mass of 25 ug and charged at -9.0x10-1* C is falling straight downward at 2.0 mm/s, when it enters a magnetic field of 0.50 T pointed directly South. Determine the magnetic force (magnitude and direction) on the particle.
The magnitude of the magnetic force on the smoke particle is 9.0x10^(-4) N with the direction of the force towards the East.
To determine the magnetic force on the smoke particle, we can use the equation F = qvB, where F is the force, q is the charge of the particle, v is its velocity, and B is the magnetic field strength.
Given that the charge of the smoke particle is -9.0x10^(-1) C, its velocity is 2.0 mm/s (which can be converted to 2.0x10^(-3) m/s), and the magnetic field strength is 0.50 T, we can calculate the magnetic force.
Using the equation F = qvB, we can substitute the values: F = (-9.0x10^(-1) C) x (2.0x10^(-3) m/s) x (0.50 T). Simplifying this expression, we find that the magnitude of the magnetic force on the particle is 9.0x10^(-4) N.
The direction of the magnetic force can be determined using the right-hand rule. Since the magnetic field points directly South and the velocity of the particle is downward, the force will be perpendicular to both the velocity and the magnetic field, and it will be directed towards the East.
Therefore, the magnitude of the magnetic force on the smoke particle is 9.0x10^(-4) N, and the direction of the force is towards the East.
Learn more about magnetic force here; brainly.com/question/10353944
#SPJ11
Question 1) 2 charges are placed on the x-axis: a charge of +12.6nC at the origin and a charge of -31.3nC placed at x=24cm. What is the electric field vector on the y-axis at y=31cm?
To find the electric field vector on the y-axis at y = 31 cm due to the two charges, we can use the principle of superposition. The electric field at a point is the vector sum of the electric fields produced by each charge individually.
Given:
Charge q1 = +12.6 nC at the origin (x = 0)
Charge q2 = -31.3 nC at x = 24 cm = 0.24 m
Point of interest: y = 31 cm = 0.31 m
We can use Coulomb's law to calculate the electric field produced by each charge at the point of interest.
Electric field due to q1 (E1):
Using Coulomb's law, the electric field at point P due to charge q1 is given by:
[tex]E1 = k * (q1 / r1^2) * u[/tex], where k is the Coulomb's constant, r1 is the distance from q1 to P, and u is the unit vector pointing from q1 to P.
Since q1 is located at the origin, the distance r1 is the distance from the origin to P, which is equal to the y-coordinate of P.
r1 = y = 0.31 m
Plugging in the values:
E1 = [tex]k * (q1 / r1^2) * u1[/tex]
Electric field due to q2 (E2):
Similarly, the electric field at point P due to charge q2 is given by:
E2 = k * (q2 / r2^2) * u, where r2 is the distance from q2 to P, and u is the unit vector pointing from q2 to P.
The distance r2 is the horizontal distance from q2 to P, which is given by:
r2 = x2 - xP
= 0.24 m - 0
= 0.24 m
Plugging in the values:
E2 =[tex]k * (q2 / r2^2) * u2[/tex]
Total Electric Field (E):
The total electric field at point P is the vector sum of E1 and E2:
E = E1 + E2
Calculating the magnitudes and directions:
1. Calculate E1:
E1 = k * [tex](q1 / r1^2) * u1[/tex]
2. Calculate E2:
E2 = k [tex]* (q2 / r2^2) * u2[/tex]
3. Calculate E:
E = E1 + E2
Remember to include the appropriate signs and directions for the electric field vectors based on the signs and electric of the .
To know more about concentration visit:
brainly.com/question/31173598
#SPJ11
A 1.0 kQ resistor is connected to a 1.5 V battery. The current
through the resistor is equal to a.1.5mA
b 1.5KA
d1.5A
c 1.5 μA
The correct answer is (d) 1.5 A.
The current through a resistor connected to a battery can be calculated using Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Mathematically, it can be expressed as I = V/R.
In this case, the voltage across the resistor is given as 1.5 V, and the resistance is 1.0 kΩ (which is equivalent to 1000 Ω). Plugging these values into Ohm's Law, we get I = 1.5 V / 1000 Ω = 0.0015 A = 1.5 A.
Therefore, the current through the 1.0 kΩ resistor connected to the 1.5 V battery is 1.5 A.
To know more about resistor click here: brainly.com/question/30672175
#SPJ11
(hrwc9p93) A body of mass 12.0 kg is traveling at 1.8 m/s along the positive x-axis with no external force acting. At a certain instant an internal explosion occurs, splitting the body into two chunks of 6.0 kg mass each. The explosion gives the chunks an additional 16 J of kinetic energy. Neither chunk leaves the line of original motion. Determine the speed and direction of motion of each of the chunks after the explosion. Enter the larger velocity. Submit Answer Tries 0/8 Enter the smaller velocity. Submit Answer Tries 0/7 Post Discussion Send Feedback
The question involves determining the velocities of two chunks after an internal explosion. The initial mass, velocity, and additional kinetic energy given to the chunks are provided. The goal is to calculate the velocities of the two chunks along the original line of motion.
When an internal explosion occurs, the total momentum before the explosion is equal to the total momentum after the explosion since no external forces are acting. Initially, the body has a mass of 12.0 kg and a velocity of 1.8 m/s along the positive x-axis. After the explosion, it splits into two chunks of equal mass, 6.0 kg each. To find the velocities of the chunks after the explosion, we need to apply the principle of conservation of momentum.
Since the chunks are moving along the line of the original motion, the momentum in the x-direction should be conserved. We can set up an equation to solve for the velocities of the chunks. The initial momentum of the body is the product of its mass and velocity, and the final momentum is the sum of the momenta of the two chunks. By equating these two momenta, we can solve for the velocities of the chunks.
The given additional kinetic energy of 16 J can be used to find the individual kinetic energies of the chunks. Since the masses of the chunks are equal, the additional kinetic energy will be divided equally between them. From the individual kinetic energies, we can calculate the velocities of the chunks using the equation for kinetic energy. The larger velocity will correspond to the chunk with the additional kinetic energy, and the smaller velocity will correspond to the other chunk.
Learn more about Velocity:
https://brainly.com/question/30559316
#SPJ11
solve it in a paper please
2 An object is able to move around a circle of radius 10 meters in 19 seconds. What is the frequency of the object's motion?
The frequency of the object's motion is 1/19 Hz
Given that an object moves around a circle of radius 10 meters in 19 seconds.
We need to find the frequency of the object's motion.
Formula for the frequency of the object's motion
Frequency of the object's motion is defined as the number of cycles completed by an object in one second. It is denoted by "f" and measured in hertz (Hz).
f = 1/Twhere,T is the time taken by the object to complete one cycle.
We have the radius of the circle, not the diameter or circumference of the circle.
Therefore, we need to find the circumference of the circle using the radius of the circle.
Circumference of the circle = 2πr= 2 x π x 10 = 20π
The object completes one full cycle to come back to its original position after it moves around the circle.
So, the time taken by the object to complete one cycle (T) = 19 seconds
Therefore, the frequency of the object's motion,f = 1/T= 1/19 Hz
Let us know more about motion : https://brainly.com/question/12640444.
#SPJ11
2. Gases are very useful for converting heat into work, since they easily expand or contract with temperature.
2.4 The work that can be done by the gas in this expansion is: Work = F x d = P A x d, on the other hand A x d = change in volume of the gas. That is, Work = P x ΔV. Calculate the work done by the gas in the expansion.
2.5 This work comes from a heat that the gas absorbs when it is in the boiling water; By conservation of energy Heat = Change in energy + Work.
The internal energy, for air, is U = (5/2) n R T. Calculate the change in energy going from 300K to 373K and then the heat absorbed from the boiling water.
2.6 Note that not all heat is converted to work. This is the general rule. Calculate the percentage of heat that becomes useful work in this process.
To calculate the work done by the gas in the expansion, we'll use the formula: Work = P x ΔV, where P is the pressure and ΔV is the change in volume of the gas.
However, since we don't have specific values for the pressure and change in volume, we won't be able to calculate the exact work done. We'll need additional information such as the initial and final volumes or pressures.
Moving on to the change in energy and heat absorbed:
The formula for the internal energy of air is given as U = (5/2) nRT, where n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.
To calculate the change in energy (ΔU) going from 300K to 373K, we can subtract the initial energy from the final energy:
ΔU = U_final - U_initial
U_initial = (5/2) (1 mole) (8.314 J/(mol·K)) (300K)
U_final = (5/2) (1 mole) (8.314 J/(mol·K)) (373K)
ΔU = U_final - U_initial
Learn more about volume here : brainly.com/question/13338592
#SPJ11
"a) Let the elevator have a mass of 1,675 kg and an upward
acceleration of 2.9 m/s2. Find T
b) The elevator of part (d) now moves with constant upward
velocity of 10 m/s. Find T.
(a)The value of T is when an upward acceleration of 2.9 m/[tex]s^2[/tex] is 10,757.5 N.
(b) The value of T is when an upward velocity of 10 m/s is 16,433 N.
a) Let the elevator have a mass of 1,675 kg and an upward acceleration of 2.9 m/s^2.
Find T.
We are given,m = 1,675 kg; a = 2.9 m/s²
For finding tension, we need to find the force acting on the mass. The net force acting on the mass can be determined by subtracting the force due to gravity from the force responsible for the acceleration.
F_net = F_app - F_gravityF_gravity = m * g, where g is the acceleration due to gravity and is taken to be 9.8 m/s².
F_app = m * aF_app = 1,675 * 2.9F_app = 4,847.5 N.
Therefore,F_net = F_app - F_gravity,
F_net = 4,847.5 - (1,675 * 9.8),
F_net = 4,847.5 - 16,445,
F_net = - 11,597.5 N
We have taken upward acceleration as positive, so the net force is in the downward direction. Tension,
T = m * (g - a) -ve sign shows that T is in the downward direction
T = (1,675 * (9.8 - 2.9)) N= 10,757.5 N
The value of T is when an upward acceleration of 2.9 m/[tex]s^2[/tex]is 10,757.5 N.
b) The elevator of part (d) now moves with a constant upward velocity of 10 m/s.
Find T.
If the elevator moves with a constant velocity, there is no acceleration.
Therefore, the net force on the elevator is zero. The tension in the cable is equal to the weight of the elevator.
T = m * g= 1,675 * 9.8= 16,433 N
The value of T is when an upward velocity of 10 m/s is 16,433 N.
Learn more about acceleration and velocity https://brainly.com/question/80295
#SPJ11
A long staight wire carried by a current of 5.9 A is placed in a magnetic field and the magnitude of magnetic force is 0.031 N. The magnetic field and the length of the wire are remained unchanged. The magnetic force acting on the wire is changed to 0.019 N while the current is changed to a different value. What is the value of this changed current? (Give your answer in amps but don't include the units.) A 15-turn circular loop of wire is placed into a magnetic field with initial magnitude 4.1 T. The magnetic field is perpendicular to the surface of the loop. Over a period of 0.25 seconds, the strength of the field is decreased to 1.2 T and as the field decreases a 2.5 V emf is induced in the loop. Calculate the diameter of the loop of wire. (Give your answer in meters but don't include the units.)
The value of the changed current is 5.9 amps. The diameter of the circular loop of wire is approximately 0.636 meters.
For the first problem, the initial current is 5.9 A, and the initial magnetic force is 0.031 N. When the magnetic force changes to 0.019 N, the current remains the same at 5.9 A.
For the second problem, we can use Faraday's law of electromagnetic induction to find the diameter of the loop. The induced electromotive force (emf) is 2.5 V, the initial magnetic field is 4.1 T, and the final magnetic field is 1.2 T.
Using the formula ε = -N(dΦ/dt), we can rearrange it to find the rate of change of magnetic flux, dΦ/dt.
dΦ/dt = -(ε / N)
Substituting the given values:
dΦ/dt = -(2.5 V / 15)
Now, we can integrate the equation to find the change in magnetic flux over time:
ΔΦ = ∫ (dΦ/dt) dt
ΔΦ = ∫ (-(2.5 V / 15)) dt
ΔΦ = -(2.5 V / 15) * (0.25 s)
ΔΦ = -0.0417 V·s
Since the magnetic field is perpendicular to the surface of the loop, the change in magnetic flux is related to the change in magnetic field:
ΔΦ = BΔA
where ΔA is the change in the area of the loop.
ΔA = ΔΦ / B
ΔA = (-0.0417 V·s) / (4.1 T - 1.2 T)
ΔA = (-0.0417 V·s) / 2.9 T
Now, the area of a circular loop is given by A = πr², where r is the radius.
Since the loop has 15 turns, the number of turns multiplied by the area will give us the total area of the loop:
15A = πr²
Substituting the value of ΔA:
15 * (ΔA) = πr²
Solving for r, we can find the radius:
r = sqrt((15 * (ΔA)) / π)
Substituting the known values:
r = sqrt((15 * (-0.0417 V·s)) / π(2.9 T))
Finally, to find the diameter, we multiply the radius by 2:
diameter = 2 * r
Calculating the value gives us approximately 0.636 meters for the diameter of the loop.
To learn more about loop.
Click here:brainly.com/question/30175986
#SPJ11
can
i please get the answer to this
Question 6 (1 point) + Doppler shift Destructive interference Standing waves Constructive interference Resonance O Resonant Frequency
Resonance is a phenomenon that occurs when the frequency of a vibration of an external force matches an object's natural frequency of vibration, resulting in a dramatic increase in amplitude.
When the frequency of the external force equals the natural frequency of the object, resonance is said to occur. This results in an enormous increase in the amplitude of the object's vibration.
In other words, resonance is the tendency of a system to oscillate at greater amplitude at certain frequencies than at others. Resonance occurs when the frequency of an external force coincides with one of the system's natural frequencies.
A standing wave is a type of wave that appears to be stationary in space. Standing waves are produced when two waves with the same amplitude and frequency travelling in opposite directions interfere with one another. As a result, the wave appears to be stationary. Standing waves are found in a variety of systems, including water waves, electromagnetic waves, and sound waves.
The Doppler effect is the apparent shift in frequency or wavelength of a wave that occurs when an observer or source of the wave is moving relative to the wave source. The Doppler effect is observed in a variety of wave types, including light, water, and sound waves.
Constructive interference occurs when two waves with the same frequency and amplitude meet and merge to create a wave of greater amplitude. When two waves combine constructively, the amplitude of the resultant wave is equal to the sum of the two individual waves. When the peaks of two waves meet, constructive interference occurs.
Destructive interference occurs when two waves with the same frequency and amplitude meet and merge to create a wave of lesser amplitude. When two waves combine destructively, the amplitude of the resultant wave is equal to the difference between the amplitudes of the two individual waves. When the peak of one wave coincides with the trough of another wave, destructive interference occurs.
The resonant frequency is the frequency at which a system oscillates with the greatest amplitude when stimulated by an external force with the same frequency as the system's natural frequency. The resonant frequency of a system is determined by its mass and stiffness properties, as well as its damping characteristics.
To know more about Resonance, refer
https://brainly.com/question/29298725
#SPJ11
A 400-kg box is lifted vertically upward with constant velocity by means of two cables pulling at 50.0° up from the horizontal direction. What is the tension in each cable?
The tension in each cable used to lift the 400-kg box vertically upward, we can use the equilibrium condition and resolve the forces in the vertical and horizontal directions.
Let's denote the tension in each cable as T₁ and T₂.In the vertical direction, the net force is zero since the box is lifted with constant velocity. The vertical forces can be represented as:
T₁sinθ - T₂sinθ - mg = 0, where θ is the angle of the cables with the horizontal and mg is the weight of the box. In the horizontal direction, the net force is also zero:
T₁cosθ + T₂cosθ = 0
Given that the weight of the box is mg = (400 kg)(9.8 m/s²) = 3920 N and θ = 50.0°, we can solve the system of equations to find the tension in each cable:
T₁sin50.0° - T₂sin50.0° - 3920 N = 0
T₁cos50.0° + T₂cos50.0° = 0
From the second equation, we can rewrite it as:
T₂ = -T₁cot50.0°
Substituting this value into the first equation, we have:
T₁sin50.0° - (-T₁cot50.0°)sin50.0° - 3920 N = 0
Simplifying and solving for T₁:
T₁ = 3920 N / (sin50.0° - cot50.0°sin50.0°)
Using trigonometric identities and solving the expression, we find:
T₁ ≈ 2826.46 N
Finally, since T₂ = -T₁cot50.0°, we can calculate T₂:
T₂ ≈ -2826.46 N * cot50.0°
Therefore, the tension in each cable is approximately T₁ ≈ 2826.46 N and T₂ ≈ -2202.11 N.
To learn more about equilibrium click here.
brainly.com/question/30807709
#SPJ11
a ball is kicked upward with an initial velocity of 68 feet per second. the ball's height, h (in feet), from the ground is modeled by h
The ball reaches a maximum height of 289 feet after 4.25 seconds.
The height of a ball kicked upward can be modeled by the equation h = -16t^2 + vt + s, where h is the height in feet, t is the time in seconds, v is the initial velocity in feet per second, and s is the initial height in feet. In this case, the ball is kicked upward with an initial velocity of 68 feet per second.
To find the height of the ball at a given time, we can substitute the values into the equation. Let's assume the initial height, s, is 0 (meaning the ball is kicked from the ground).
Therefore, the equation becomes: h = -16t^2 + 68t + 0.
To find the maximum height, we need to determine the time it takes for the ball to reach its peak. At the peak, the velocity is 0.
To find this time, we set the equation equal to 0 and solve for t:
-16t^2 + 68t = 0.
Factoring out t, we get:
t(-16t + 68) = 0.
Setting each factor equal to 0, we find two solutions:
t = 0 (this is the initial time when the ball is kicked) and -16t + 68 = 0.
Solving -16t + 68 = 0, we find t = 4.25 seconds.
So, it takes 4.25 seconds for the ball to reach its peak height.
To find the maximum height, we substitute this time into the original equation:
h = -16(4.25)^2 + 68(4.25) + 0.
Evaluating this equation, we find the maximum height of the ball is 289 feet.
Therefore, the ball reaches a maximum height of 289 feet after 4.25 seconds.
To know more about velocity visit:
https://brainly.com/question/30559316
#SPJ11
The subject of this question is Physics. It asks about the height of a ball kicked upward with an initial velocity of 68 feet per second. Projectile motion equations can be used to model the ball's height.
Explanation:The subject of this question is Physics. The question is asking about the height of a ball that is kicked upward with an initial velocity of 68 feet per second. This can be modeled using equations of projectile motion.
Learn more about Projectile Motion here:https://brainly.com/question/29545516
#SPJ2
"Four-point charges are placed at the four corners of a square that is 60 cm on each side. Find the potential at the center of the square if the four charges are each +3 3.33×10 ∧ 6 V 3.0×10 ∧ 6 V 3.4×10 ∧ 6 V −3.33×10 ∧ 6 V "
The potential at the center of the square is 1.27 × 10^6 V.
The potential at the center of the square is:
V = √2kq/a
where:
k is the Coulomb constant (8.988 × 10^9 N m^2/C^2)
q is the magnitude of each charge (3.33 × 10^-6 C)
a is the side length of the square (0.6 m)
Plugging in these values, we get:
V = √2(8.988 × 10^9 N m^2/C^2) (3.33 × 10^-6 C)/(0.6 m) = 1.27 × 10^6 V
Therefore, the potential at the center of the square is 1.27 × 10^6 V.
The potential is positive because all four charges are positive. If one of the charges were negative, the potential would be negative.
Learn more about potential with the given link,
https://brainly.com/question/24142403
#SPJ11
determine the velocity of a proton that is moving perpendicular
to a magnetic field whose magnitude is 3.5x10-3 and
Magnetic force is 8.2 x 10-16 N recall that protons
charge is 1.60 x 10-19C
The velocity of a proton that is moving
perpendicular
to a magnetic force can be determined by using the formula for the magnitude of the magnetic force on a charged particle in a magnetic field given by the equation F = qvB,
where F is the magnetic force, q is the charge of the particle, v is the velocity of the particle, and B is the magnetic field strength.
The velocity of the proton can be determined by
rearranging
the equation to solve for v, which gives the formula v = F / (qB). In this case, the magnetic force acting on the proton is given as 8.2 x 10^-16 N, and the charge of the proton is 1.60 x 10^-19 C.Therefore, substituting these values into the equation, we get:v = (8.2 x 10^-16 N) / (1.60 x 10^-19 C x B)To find the value of B, more information would be needed.
However, once the value of B is known, the velocity of the proton can be calculated using this formula.Explanation:Given, Magnetic force = 8.2 x 10^-16 NCharge of proton = 1.60 x 10^-19 CWe know that the magnetic force acting on the proton is given by the formula:F = qvB, where F is the magnetic force, q is the charge of the particle, v is the velocity of the particle, and B is the magnetic field
strength
.
By rearranging the equation, we can solve for the velocity of the proton as follows:v = F / (qB)Substituting the given values into the equation, we get:v = (8.2 x 10^-16 N) / (1.60 x 10^-19 C x B)To calculate the value of the velocity of the proton, we would need to know the value of the magnetic field strength, B. Once this value is known, the velocity of the proton can be calculated using the above
formula
.
to know more about
perpendicular
pls visit-
https://brainly.com/question/12746252
#SPJ11
A sphere rotates at 212 rpm. If the radius of the sphere is reduced to 90% but it maintains its same mass, what is the new angular velocity of the sphere?
The new angular velocity of the sphere is approximately 1.2346 times the initial angular velocity. Angular momentum is conserved when no external torques act on the system. The angular momentum of a rotating object is given by the equation:
L = Iω
Where:
L is the angular momentum,
I is the moment of inertia,
ω is the angular velocity.
Since the mass of the sphere remains the same, and the moment of inertia of a solid sphere is proportional to the radius cubed (I ∝ r^3), we can express the initial and final angular momenta as:
[tex]L_{initial}= I_{initial }* ω_{initial}[/tex]
[tex]L_{final} = I_{final[/tex]* ω_final
Since the mass remains constant, the initial and final moment of inertia can be related as:
[tex]I_initial * r_initial^2 = I_final * r_final^2[/tex]
We are given the initial angular velocity (ω_initial = 212 rpm), and the radius is reduced to 90%.
Substituting the values into the equation, we can solve for the new angular velocity
[tex]I_initial * r_initial^2[/tex] * ω_initial =[tex]I_final * r_final^2[/tex] * ω_final
Since the mass remains the same,[tex]I_initial = I_final.[/tex]
[tex]r_initial^2[/tex] * ω_initial = r_final^2 * ω_final
(1.0 *[tex]r_initial)^2[/tex] * ω_initial = (0.9 *[tex]r_initial)^2[/tex] * ω_final
ω_final = 1.2346 * ω_initial
Therefore, the new angular velocity of the sphere is approximately 1.2346 times the initial angular velocity.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
Consider 3 resistors with resistances 1.2 x 102 52, 2.9 k2, and 4.3 ks. 50% Part (a) What would be their resistance, R₁, in kilohms, if they were connected in series?
When three resistors with resistances of 1.2 x 10^2 Ω, 2.9 x 10^2 Ω, and 4.3 x 10^3 Ω are connected in series, the total resistance, R₁, would be 4.71 kΩ.
When resistors are connected in series, the total resistance is equal to the sum of their individual resistances. In this case, we have three resistors with resistances of 1.2 x 10^2 Ω, 2.9 x 10^2 Ω, and 4.3 x 10^3 Ω. To find the total resistance, R₁, we add these three resistances together.
First, we convert the resistances to the same unit. The resistance of 1.2 x 10^2 Ω becomes 120 Ω, the resistance of 2.9 x 10^2 Ω becomes 290 Ω, and the resistance of 4.3 x 10^3 Ω becomes 4300 Ω.
Next, we sum these resistances: 120 Ω + 290 Ω + 4300 Ω = 4710 Ω.
Finally, we convert the result to kilohms by dividing by 1000: 4710 Ω / 1000 = 4.71 kΩ.
Learn more about resistors here:
https://brainly.com/question/30672175
#SPJ11
1. An airplane flying at 50.0 m/s is bringing food and emergency first aid supplies to a camp. The plan is for the pilot to drop the supplies so that they land on an "X" marked on the ground 150 m below. a. How long will it take the supplies to fall to the ground? (You can ignore the effect of air resistance.) b. How far in front of the "X" should the pilot release the supplies so that they land directly on the "X"?
a. The supplies will take approximately 3.04 seconds to fall to the ground.
b. The pilot should release the supplies 152 meters in front of the "X" to ensure they land directly on iwith the help of kinematic equation .
a. To calculate the time it takes for the supplies to fall to the ground, we can use the kinematic equation:h = 0.5 * g * t^2
Where:
h = height = 150 m
g = acceleration due to gravity = 9.8 m/s^2 (approximate value on Earth)
t = time
Rearranging the equation to solve for t:t = √(2h / g)
Substituting the given values:t = √(2 * 150 / 9.8)
t ≈ 3.04 seconds
b. To find the horizontal distance the supplies should be released in front of the "X," we can use the equation of motion:d = v * t
Where:
d = distance
v = horizontal velocity = 50.0 m/s (given)
t = time = 3.04 seconds (from part a)
Substituting the values:d = 50.0 * 3.04
d ≈ 152 meters
Therefore, the pilot should release the supplies approximately 152 meters in front of the "X" to ensure they land directly on it.
To know more kinematic equation click here.
brainly.com/question/24458315?
#SPJ11